Α

7		MITTERDOT	TOOLIDI MOL						DT KDUKGONG	WINHIGGODD
Arabidopsis		MLVKPSI	ISGLVRLTSH	SPSSSSSVLR	KŐEL. PAKI, PG	GSPIIRA	MSSTSEADAE	SATKLALA	DUKRHKGQAG	KIAVIGGCRE
Maize	MSRPTGAWR LGMATCTIPA APRAHVGF	LP GIRQAARPAL	LLPSFSSSTL	LCHRLPPILP	LVLQLLRVRA	NHA <mark>M</mark> AAS	AGTVYEADAE	AVVRRITPAL	DRARHKGQAG	KIAVIGGCRE
Onion	MNS	LA IFSSCTESRL	LLSSSILRRQ	LFLIKTLG	AYCCRAH <mark>M</mark> DT	NQTEASG	ITLALELDAE	TVIRDITPIL	DPKRHKGQAG	KIAVIGGCRE
Switchgrass	MSRPTGAWR HQPQHRGF	MW AASPFFRRQL	VLLRSLLPQS	PPPSVAGCRF	AHLSSPSGTS	GSLRAARA <mark>M</mark> A	AATVYEADAE	AVVRRITPPL	DRARHKGQAG	KIAVIGGCRE
Wheat		MW AASPAFRRQL	FLLRSLAPT-	CAD	GGRASSSSLR	PHL <mark>M</mark> YAA	AGPVYEADAE	AVVRRITPPL	DRARHKGQAG	KIAIIGGCRE
Orange	MLIRYGV	ST GFASLGSVKN	CMLASSAVFR	RQQFLIRSLG	GYSDHIEPRR	MQDIRSMS	GTTF-EADAE	NVMREITPVL	DPSKHKGQAG	KIAVIGGCRE
Oak	MFVKHGM	NS QFTLLGSAKH	CMLASSAVLR	RQQFLIRTLG	GYTDQNHLKR	MQQTKA <mark>M</mark> S	GTAF-EADSE	NILRAITPNL	DPSKHKGQAG	KIAVIGGCRE
Beech	MFVRHGM	NC QFTLLGSAKH	CMLDSSAVFR	RQQFLIRTLG	GYTDQTHQKR	MQQT <mark>M</mark> ALS	GTAF-EADAE	NILRAITPTF	DPSKHKGQAG	KIAVIGGCRE
Iris	MLSDLLFFGR RLVFHDDM	SS WLTFSGCLGN	RLLSSSAIYR	RQLFLIRSLG	––CCKAH <mark>M</mark> EE	GRGVPGVG	VSTS-QTDGE	TVIQRITPVL	DPSRHKGHAG	KIAVIGGCRE
Ginger	Ν	RG SIPFSCYPEN	CTLASAAVLR	RNLFLIKCLD	GFCCRSHSQR	MQGTQSAA	VPAA-EADAE	KTIQM <mark>ITP</mark> AL	DPIRYKGQAG	KIAVIGGCRE
Cotton	MFVKHGM	NS GFSS	LASSAVLR	RQKFLIRSLK	GYSV-SDKIR	MEAVKCLS	GGASLEANAE	SVLRAITPSL	DPTRHKGQAG	KIAVIGGCRE
Cocoa	MIVKHGM	NS GFSS	LASSAVLR	RQQFLIRSLR	GYSDHTHQKR	MEGMKCFS	GGASLEADSE	NVLRAIIPSL	DPTRHKGQAG	KIAVIGGCRE
Grape	MIIKNGV	SL LHSPNNR	-MLASSAVFR	RQEFLIRCLG	VGGQSQQFNR	-KSIPR	-T <mark>M</mark> ALEADAE	NILRAITPTL	DLARHKGQAG	KIAVIGGCRE
Lotus	MNSOI	PL LRCANTC	VLLASSPVFR	ROKLLIRSLG	SGIDYHNHNH	SENMOR	-MRSVEADAE	SIIRAITPAL	DSTRHKGOAG	KIAVIGGCRE
Rice	~	WW AASPAFRRRL	FLLRSLSPSP	CAALPGNAAC	SSPSPSTSIR	VNAMSA	SGPVYEADAE	AVVRRITPPL	DRARHKGOAG	KIAVIGGCRE
									~ ~	
В										
Arabidopsis	MRNV	IR RVTTMTFTFL	LQSPPLPISP	SPPQFSLSSS	PLSKTQRFIT	PSQGSRLRTL	CTKVIIPN	<mark>M</mark> QDSGS	PPLSYLTQ	REAAEIDETL
Maize	MLAAVAS RTRNKSATTV LSLAMPFI	LS AASASTTTNP	HPLSPFPRSO	NNSRVHRLOL	PARRLPSFPA	VAPGASFAPL	PORLG <mark>M</mark> AS	LAASAA	AAAEVTHLTO	RDAAEIDEOL
Radish		MTFSFL	LO-SPLPISP	K-PLLSYEOH	RYSLSSLLPL	PTHRFRLLRT	FCTKSIPN	MODSTS	SVSYLSO	REAAEIDETL
Canola	MRTV	IR RRVTRMISAF	LFOOPLPISP	KHOYSLL	PLTTTORFLT	ASHGFRT	LSTKSIPN	MODSAS	VSYLSO	REAAEIDETL
Lime	MWSVIRK SRRMSMT(SI. I.AOSI.TI.AYH	VNSSPATKST	CNDESDEVSN	OSSSSSVELR	DUSADATRAF	CSKSDAMS		SVSHLTO	REALETDETL
Dime	indvinte biddibilie		11.001111101	51.1 1 51 1 1 51	2000001110		0010001110	Shighod	5 ,01111 <u>v</u>	

Lime	MWSVIRK SRRMSMTCSL	LAQSLTLAYH	YNSSPAIKST	CNPFSPFVSN	QSSSSSVFLR	PVSAPAIRAF	CSKSDA <mark>M</mark> S	SAQNSD	SVSHLTQ	REAAEIDETL
Cotton		MICSLLSQ	APVSPAYYYR	SSPSIYKPKP	SNRFSWGFLA	PIPSPAIRVF	CSKPGEVGGL	<mark>M</mark> ASSVQ	NQGSISYLTQ	REAAEVDETL
Cocoa	MICS	LLTQAPFPLA	YCSSPSSIYE	AKPSGYLP	RFSSGFLC	PISCSAIRAL	CSKSGKVGG-	<mark>M</mark> ASSLQ	NQGSITYLTQ	REAAEIDEIL
Apple	MW SLARNTRKMT	RLLFLNHSLS	SNPIPKPPIS	NAYTSFHIPP	SSLSTSAFLQ	SVRSPAIRAF	CSNPSGAAGV	GSVHAAPS <mark>M</mark> Q	NPGDISYLTQ	REAAEIDEVL
Rice	MLTVAASALR NNKKSTAAAC FSLAMPFLLS	SPTPPPPHS	SSLPRSP	SPRPRLPL	PPPRRAALVT	AAQDPRW	rra <mark>m</mark> asla	VSASASA	SGEEVTHLAQ	REAAEIDEQL
Sorghum	MLAVA SRTRNKSATT VTLAMPFLLS	AANASATTNS	RPLSPYPRSQ	NNSRAHRLQL	PARRLPSFPA	AAPGAPFAPL	PQRRG <mark>M</mark> ASLA	ASAAAAA	AAE-VTHLTQ	RDAVEIDEQL
Orchid	MSSCXLS	RSIKLLIPPP	TATVTVPADT	AASLCVPPRG	ITRHSSVPLS	IFRRPAYLSL	SRRPPSRRCF	SLGAQ <mark>M</mark>	AEESVSYLSQ	KEAAEIDEIL

Supplemental Figure 1. Amino acid alignment of various plant NAD(P)HX dehydratase (A) and NAD(P)HX epimerase-PPOX (B) aminoterminal sequences that are supported by EST evidence. Completely conserved and highly conserved residues are colored red and blue, respectively. Dashes are gaps introduced to maximize alignment. Predicted alternative start methionine residues are highlighted yellow. The mature protein is predicted to start close to the beginning of high sequence conservation.

Supplemental Figure 2. Purification to near-homogeneity of recombinant proteins used in this study. Five μ g of Ni-affinity purified *Arabidopsis* NAD(P)HX dehydratase (AD), *Arabidopsis* NAD(P)HX epimerase:PPOX (AE), maize NAD(P)HX dehydratase (ZD), maize NAD(P)HX epimerase:PPOX (ZE), *Arabidopsis* NAD(P)HX epimerase separate domain (ED), and *Arabidopsis* PPOX separate domain (PX) were analyzed by SDS-PAGE (10%) with Coomassie staining. Each protein preparation was estimated to be ≥90% pure.

Supplemental Figure 3. Confirmation that both Arabidopsis NAD(P)HX dehydratase T-DNA insertion lines are knockouts. A, Genotyping the Salk 203790 and Gabi 173F11 lines. Genomic DNA from each line and the corresponding wild-type, Columbia-0 (Col-0) was used as template for PCR reactions with wild-type allele primers (wt, Salk LP and Salk RP or Gabi-LP and Gabi-RP, respectively) or T-DNA insertion allele primers (KO, Salk LBb1.3 and Salk RP or Gabi_LBb and Gabi_RP, respectively). Amplicons were analyzed by agarose-gel electrophoresis. Results are shown for two wild-type plants and two plants homozygous for the T-DNA insertion. B, Testing for the presence of the NAD(P)HX dehydratase transcript. Total RNA was used for first-strand cDNA synthesis, followed by PCR with primers designed to amplify a fragment of the NAD(P)HX dehydratase transcript (AtDHT 1ex2 F and AtDHT 11ex10 R) or a fragment of the actin-7 transcript (actin-7 F and actin-7 R). Amplicons were analyzed by agarose-gel electrophoresis. C, T-DNA insertion sites in the NAD(P)HX dehydratase gene. PCR amplicons obtained with the T-DNA insertion allele primers in part A above were cloned and sequenced. The gene model is drawn to scale with exons as black boxes, introns as black lines, and 5'- and 3'-UTRs as gray boxes. The T-DNA insertion sites in exon 3 (Salk) and exon 7 (Gabi) are indicated in red. The positions of the first potential start codon and the stop codon are indicated.

Supplemental Figure 4. Targeted metabolomics analysis of NAD(P)HX in *Arabidopsis* seedlings. A, B, and C, Extracted ion chromatograms at m/z 682.1281 (A, NADHX), 664.1175 (B, cyclic NADHX), and 744.0838 (C, cyclic NADPHX) for representative dehydratase knockout (red trace) and wild-type (black trace) samples. D, Molecular ion signals (m/z) and retention times (RT, min) used to monitor NAD(P)HX forms and oxidized or reduced pyridine nucleotides.

Α

В

atgctggccgccgttgcgagtcgtacccgtaataaaagtgctaccaccgttctgtccctggctatgccg tttctgctgtccgctgctagcgcatctaccacgaccaacccgcatccgctgagcccgtttccgcgtagt cagaacaattcccgtgtgcaccgcctgcaactgccggcgcgtcgcctgccgagcttcccggcggttgcc GCGGCGGAGGTgacgcacctcacgcagcgcgacgcggagatcgacgagctcatgggcccgctc gggttcagcgtcgaccagctcatggaacttgctggattgagcgttgcggcagcccttgcggaggtttac aagttgaatgaacatgcaagggtacttgttatctgtggcccaggaaataatggtggtgatggtctggta gctgctcgtcatctttatcactttggatataggccatctatttgctacccaaaacgcacacccaaacct aacgaattaccacgggagtttgatgttattgttgatgcaatgtttggtttctcatttcatggaacaccc agaccaccctttgatcatcttatccaaatgcttgtttcattgagtgatattcaaaatccagataagcgc ccagcaattgtttctattgatatcccttctggatggcatgttgaagagggagatgtcgatggaggcatt aaacctgatatgctggtgtcattgactgcacctaagctctgtgcaaaaaagttcactggcccacaccat tttcttgggggaaggtttgtccccccacctattttaaacaaatacggacttcagcttcctccttaccct qqcacatcaatqtqtqtqaqaattqqaaaaqctccatctqttqaaatttcatctctcaqqqaqaactat atttcccctgaacttcttgagagtcaagtgatgtctgatccatttgatcagttccttaaatggtttgatagccggaaggcgcatgacttgtgtgaaaaccctaacgcagcactccttttctactggaatgagatgaac cgtcaggtaagagttgaagggtcagttgagaaggttccagaagctgaatcagataaatatttccacagc cttcaacaqqattacaaqaaattqqaacaaaaatattctqatqqqaqcttqattccaaaaacctqaatat tggggtggctacaaattgacaccgacactttttgagttctggcaaggacaacagtctcgactgcatgac cggttacaatactcgcagagagaagtagatgggagcacagtgtggcacatcgagaggttgtccccttga

Supplemental Figure 5. Sequence data for maize epimerase/PPOX (GRMZM2G061988). A, Nucleotide sequence of the recoded 5'-region. B, Nucleotide sequence of the assembled complete open reading frame. Recoded nucleotides are in red, native maize epimerase/PPOX sequence is in black, and overlapping sequence used to splice the sequences is in uppercase.

Table S1. Predicted localization of Arabidopsis and maize NAD(P)HX epimerase and dehydratase proteins

Targeting of the full length *Arabidopsis* (At) and maize (Zm) NAD(P)HX dehydratase and NAD(P)HX epimerase/PPOX sequences was predicted using TargetP (<u>http://www.cbs.dtu.dk/services/TargetP/</u>), Predotar (<u>http://urgi.versailles.inra.fr/predotar/predotar.html</u>), WoLF PSORT (<u>http://wolfpsort.org/</u>), and the COSSMOSS ambiguous targeting algorithm (<u>http://www.cosmoss.org/bm/ATP</u>). Predicted locations: P, plastids; M, mitochondria; N, nucleus. In some cases the prediction was weak (<).

Protein	TargetP	Predotar	WoLF PSORT	COSSMOSS
At Dehydratase	Р	Р	P,M	<(P,M)
Zm Dehydratase	М	<m></m>	P, <m< td=""><td><(P,M)</td></m<>	<(P,M)
At Epimerase/PPOX	Р	<m></m>	P, <n< td=""><td>P,M</td></n<>	P,M
Zm Epimerase/PPOX	Р	<m></m>	M, <p< td=""><td>no dual targeting</td></p<>	no dual targeting

Table S2. Oligonucleotide primers used in this study.

Primer	Name	Sequence				
Maize epimerase assembly						
1	Epm assemble1F	gcggccgccgcggaggtgacgc				
2	Epm assemble1R	acctccgccgcggcggccgcacttgc				
3	Zm Epm FL Ndel F	ggaattcCATATGctggccgccgttgcgagtcg				
4	Zm Epm EcoRI R	gGAATTCtcaaggggacaacctctcgatgtgcc				
	Protein	overexpression in <i>E. coli</i>				
5	At Dht m Ndel F	ggaattcCATATGagttccacatcagaggccg				
6	At Dht EcoRI R	gGAATTCttaagatgcaggcagatatcc				
7	At Epm m Ndel F	ggaattcCATATGcaagattcaggatcaccacc				
8	At Epm EcoRI R	gGAATTCtcatggggccaatctatgaattttcc				
9	Zm Dht m Ndel F	ggaattcCATATGgcggcgtccgccgggacgg				
10	Zm Dht EcoRI R	gGAATTCctagtgctcggcaggcagatatc				
11	Zm Epm m Ndel F	ggaattcCATATGgcttcgctggctgcaagtgc				
12	At ED EcoRI R	gGAATTCctagacatagttcactctcatagcag				
13	At PPOX Ndel F	ggttttcCATATGtgtgttagaattggtaaacc				
	IV	T and dual import				
14	Dht FL EcoRI F	gGAATTCctgAtgttggtgaagcccagtatcatc				
15	Dht T EcoRI F	gGAATTCaccatgagttccacatcagaggccg				
16	Dht Xbal R	gcTCTAGAttaagatgcagggcagatatcc				
17	Dht M2L F	gggtcaccaatcatcagagcattgagttccacatcagaggccg				
18	Dht M2L R	cggcctctgatgtggaactcaatgctctgatgattggtgaccc				
19	Epm FL EcoRI F	gGAATTCtaaatgaggaatgtgatacgcagagtc				
20	Epm T EcoRI F	gGAATTCaccatgcaagattcaggatcaccacc				
21	Epm Xbal R	gcTCTAGAtcatggggccaatctatgaattttcc				
22	Epm M2L F	gtaccaaagtcatcataccaaacttgcaagattcaggatcaccacc				
23	Epm M2L R	ggtggtgatcctgaatcttgcaagtttggtatgatgactttggtac				
		GFP fusions				
24	Dht FL BamHI F	cgcGGATCCctgatgttggtgaagcccagtatcatc				
25	Dht T BamHI F	cgcGGATCCatgagttccacatcagaggccgacg				
26	Dht BamHI R	cgcGGATCCagatgcaggcagatatcctcc				
27	Epm FL BamHI F	cgcGGATCCtaaatgaggaatgtgatacgcagagtc				
28	Epm T BamHI F	cgcGGATCCatgcaagattcaggatcaccacc				
29	Epm BamHI R	cgcGGATCCtggggccaatctatgaattttcc				
Arabidopsis knockouts						
30	Salk LP	tcattcacatttggggttaagac				
31	Salk RP	cgattgacttctcattcaccttc				
32	Salk LBb1.3	attttgccgatttcggaac				
33	Gabi LP	attgagacgaaatgtttttgtgg				
34	Gabi RP	caaaaagtccaatgttccttttg				
35	Gabi LBb	atattgaccatcatactcattgc				
36	At DHT 1ex2 F	caaaggccaagctggaagatagc				
37	At DHT 11ex10 R	ggcagatatcctccaaactctccc				
38	At actin-7 F	atggccgatggtgaggat				
39	At actin-7 R	gtctcaaacatgatctgagtc				

Restriction enzyme sites are capitalized.