www.landesbioscience.com

Supplemental Material to:

Katerina Chalupnikova, Petr Solc, Vadym Sulimenko, Radislav Sedlacek, and Petr Svoboda

An oocyte-specific ELAVL2 isoform is a translational repressor ablated from meiotically competent antral oocytes

Cell Cycle 2014; 13(7) http://dx.doi.org/10.4161/cc.28107

http://www.landesbioscience.com/journals/cc/article/28107

1	Titl	e:

2	An oocyte-specific ELAVL2 isoform is a translational repressor ablated from meiotically
3	competent antral oocytes.
4	
5	Authors:
6	Katerina Chalupnikova ¹ , Petr Solc ² , Vadim Sulimenko ¹ , Radislav Sedlacek ¹ , and Petr Svoboda ¹
7	
8	APPENDIX
9	
10	affiliations:
11	¹ Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083,
12	Prague, Czech Republic
13	² Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic,
14	Rumburska 89, Libechov CZ-27721, Czech Republic
15	
16	Address for correspondence: svobodap@img.cas.cz

18 MATERIAL AND METHODS

19 Plasmids

- 20 HA-ELAVL2^{oo} plasmid was prepared by amplifying *Elavl2^o* cDNA using primers
- F_Xho_HuB1_SV40 and R_Not_HuB361_SV40 (in the Table A1) and inserting the PCR
- 22 product between Xba I and Not I sites of pSV40-HA vector (a plasmid map is available on
- request). NHA-ELAVL2^{oo} plasmid was prepared by inserting an annealed linker carrying the
- 24 lambda phage N-peptide sequence in the AgeI site upstream of HA tag.
- 25 Renila luciferase (RL) reporter is phRL-SV40 plasmid (Promega). RL-3'Ctcf was constructed by
- 26 inserting PCR-amplified between XbaI and NotI sites of phRL-SV40. Primers
- 27 F_3UTR_Ctcf_XbaI and R_3UTR_Ctcf_NotI (in the Table A1) were used for amplification
- 28 3'UTR Ctcf from cDNA of mouse NIH3T3 cells. RL-5BoxB plasmid was previously described
- by Pillai et al.¹ and was provided by Witold Filipowicz (FMI, Basel, Switzerland). The firefly
- 30 luciferase (FL) control plasmid is pGL4.10 (Promega).
- mCherry and Elavl²⁰-mCherry plasmids were prepared by replacing HA tag with in SV40-HA
- 32 and HA-ELAVL2^{oo} vectors by mCherry tag. mCherry cDNA was amplified from mCherry-pYX
- 33 plasmid (a kind gift from P. Solc).
- 34 The pZP3-Elavl2-IR transgenic construct (Figure 4A) was made by inserting an inverted repeat
- 35 (IR) generated from coding sequence of *Elavl2* (exons 4-7) into the XbaI site of the ZP3 cassette
- 36 for transgenic RNAi as described previously 2 . The inverted repeat was constructed by ligating
- PCR products in vitro according to the published protocol². As indicated in Figure 4A a potential
- 38 polyA signal sequence (AATAAA) in sense arm of the inverted repeat was mutated to AACAAA

- 39 using QuickChange II XL Site-Directed Mutagenesis Kit (Stratagene). Preparation of the
- 40 transgene for microinjection was performed as previously described 2 .
- 41 All plasmids were validated by sequencing. Primers and oligomers used for plasmid construction
- 42 are listed in Table A1.

43

44 FIGURE LEGENDS

45 Figure A1

Elavl2 splicing is generally complex. (A) A scheme of possible *Elavl2* alternative splicing 46 variants in oocytes and positions of used primers in real-time PCR analyses. The frequency of 47 oocyte-specific *Elavl2* splicing variants was determined from the next generation sequencing data 48 ³. Mouse *Elavl2* gene is expressed from chromosome 4. (TSS1-4 – transcription start site 1-4; P1-49 **3.fwd** – forward primer Promoter 1-3; **UTR.rev** – reverse primer UTR; **common.fwd** – forward 50 primer common for all tested transcription variants; **skipped exon.rev** – reverse primer skipping 51 the second to last exon) (B) All possible ELAVL2 isoforms translated from several *Elavl2* 52 splicing variants. Note that the isoform with a start codon ATG1 is almost not present in high-53 throughput sequencing data from mouse oocvtes. (C) There are three possible ELAVL2 54 55 isoforms in oocytes. They are generated from at least four *Elavl2* transcript variants. Three 56 contain different 5'UTRs spliced to the same exon with the start codon (ATG3) and one has special either 5'UTR and the start codon (ATG2). The shortest oocyte-specific isoform marked in 57 this paper as an ELAVL2^O comes from ATG3 and has truncated "hinge" region. 58 59 Figure A2 (A) Both HA- and NHA-tagged ELAVL2⁰ proteins predominantly localize in the cytoplasm 60 in transiently transfected HeLa cells. α -ELAVL2 (green) and α -HA (red) antibodies were used 61 for immunofluorescent staining. DNA staining (DAPI) is in blue. Images were taken by a 62 confocal microscope. Scale bar = $10 \mu m$. (B) Reduced amounts of NHA-ELAVL2^O keep 63

64 showing RL-5BoxB signal repression. NIH 3T3 cells were co-transfected with constructs

65	expressing the RL-5BoxB, FL, and tagged ELAVL2 ^O proteins in indicated plasmid amounts. The
66	graph represents relative <i>Renilla</i> activity normalized to FL (R.L.A., mean \pm s.e.m.).
67	Figure A3
68	(A) <i>Elavl2⁰</i> transcript variant expression in three TG mouse lines. Real-time PCR data
69	represent <i>Elavl2</i> expression normalized to <i>Hprt1</i> (mean \pm s.e.m., n = 3). <i>Elavl2</i> expression was
70	set to 1 in oocytes isolated from WT animals. (B) <i>Elavl2</i> knock-down in three transgenic
71	mouse lines. ELAVL2 is successfully down-regulated only in one transgenic mouse line –
72	tg1629 as shown on depicted Western blot. Tubulin was used as a loading control.
73	

74 **REFERENCES:**

- Pillai RS, Artus CG, Filipowicz W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 2004; 10:1518-25.
- 2. Svoboda P, Stein P. RNAi experiments in mouse oocytes and early embryos. Cold Spring
 Harb Protoc 2009; 2009:pdb top56.
- 79 3. Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata
- 80 K, Andrews SR, Kelsey G. Dynamic CpG island methylation landscape in oocytes and
- preimplantation embryos. Nat Genet 2011; 43:811-4.
- 82

Figure A2

Figure A3

name	sequence	product length (bp)	note				
pZP3-ElavI2-IR transgenic construction							
Elavl_2_long.fwd	CTATGGATCCTGGAAACACAACTGTCTAATGGGC	520	Long arm IR				
Elavl_2_short.fwd	CCCAAGGATCCGGTCCAACCACTGTAAACAACAA	460	Short arm of IR				
Elavl_2.rev	TACCTTCTAGAAAACCCTACACCCCTTGATATGC						
Elavl_2_mutg.fwd	GAGACTTCAAACCAAAACAACAAAAGTTTCCTATGCTCGCCC						
Elavl_2_mutg.rev	GGGCGAGCATAGGAAACTTTTGTTGTTTTGGTTTGAAGTCTC		Mutation of a potential polyA signal sequence				
pZP3-ElavI2-IR (inverted repeat) detection							
ZP3-EGFP_GT_fwd	CGGGATCACTCTCGGCAT	557					
ZP3-ELAVL2-IR_GT_rev	CACAACTGTCTAATGGGCCAAC	001					
	Plasmid constraction						
Fw_HuB_cDNA2	ATGGAAACACAACTGTCTAATG	1044	ElavI2 ⁰ cDNA from oocytes for TOPO-II-TA cloning				
Rv_HuB_cDNA	TTAGGCTTTGTGCGTTTTGTTTG	1044					
F_Xho_HuB1_SV40	GCACTCGAGATGGAAACACAACTGTC	1066					
R_Not_HuB361_SV40	TAAGCGGCCGCAATTAGGCTTTGTGCG	1000	Inserted in SV40-HA between Xbal and Notl				
s_N-peptid_Agel as_N-peptid_Agel	CCGGTATGGACGCACAAACACGACGACGTGAGCGTCGCGCTG AGAAACAAGCTCAATGGAAAGCTGCAAACCCACCGCTCGAGA CCGGTCTCGAGCGGTGGGTTTGCAGCTTTCCATTGAGCTTGTT TCTCAGCGCGACGCTCACGTCGTCGTGTTTGTGCGTCCATA	90	Oligomers for N-peptid insertion				
F_mCHERRY_Agel	ATTACCGGTACCATGGTGAGCAAGGGCGAGGAG		Exchange of HA tag for mCHERRY in SV40-HA vector				
R_mCHERRY_EcoRI	ATTGAATTCCTTGTACAGCTCGTCCATGCCG	1431					
F_3UTR_Ctcf_Xbal	TTTTCTAGAGCAACAGCCATCATTCAGGTCG	1500	Insected in abDL SV40 between Ybel and Netl				
R_3UTR_Ctcf_NotI	TTTAGCGGCCGCGCCTGTTAATCCGTTATGATTTATTAG	1500	Inserted in prike-SV40 between Xbar and Noti				
qPCR primers							
Fw_HuBall_2	TCTTGTCGACCAGGTCACTG	106	Elavl2 common primers				
Rv_HuBall_2	AGGTTTCTGGCCATTTAGGC	100					
UPL_Fw_HuB1	GCAATATGAGGTTGCTGTGC	109	Elavl2 P1				
UPL_Rv_HuB1	CAGTTGTTGTTTACAGTGGTTGG	100					
F_ELAVL2_v3	GTTCCGTCGTGTTCCAGTC	120	Eloy(2 D2				
R_ELAVL2_v3	TTCCATGGCAGCAATTACCT	129	Elaviz Fz				
F_ELAVL2_v4	GCAGCTTCTTGCTCATCCTT	07	Eloy/2 B3				
R_ELAVL2_v4	TGGCAGCAATTACCTGCTTT	97	Elaviz P3				
Fw_HuB3	TCTTGTCGACCAGGTCACTG	260	Elou/2 akinpad ayam				
Rv_HuB3	TTGGAGAAAACCTACTAAAACGC	200	Elaviz skipped exom				
Hprt1_QPCR_Fwd	GTCCCAGCGTCGTGATTAG	224	Houskeeping gene				
Hprt1_QPCR_Rev	CAGCAGGTCAGCAAAGAAC	224					
RL_Fwd	CAGATTGTCCGCAACTACAACGCC	165	No intron openning				
RL_Rev	CTTACCCATTTCATCTGGAGCGTC	105	No intron spanning				
FL_Fwd	GCTACAAACGCTCTCATCGACAAG	90	No intron spanning				
FL_Rev	GTATTTGATCAGGCTCTTCAGCCG	90	No intron spanning				