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Appendix

A.1. Description of EM algorithm.

Complete data log likelihood. We consider the complete data log likelihood defined as the like-

lihood assuming R known:

logP (Di, Ri | Zi, θ) = Robsi ∆i{logP (Ti | Ri = 1, Zi, θ) + logP (Ri = 1|Zi, θ)}

+Robsi (1−∆i) {I(1 = Ri) log SurvT,R=1(Ci;Zi, θ)P (Ri = 1 | Zi, θ)

+ I(0 = Ri) log SurvL,R=0(Ci;Zi, θ)P (Ri = 0 | Zi, θ)}

+(1−Robsi ) logP (Li | Ri = 0, Zi, θ)P (Ri = 0 | Zi, θ)

+(1−Robsi )Si∆i log SurvT,R=0(Ci; Profilei, θ)

+(1−Robsi )Si(1−∆i) log SurvT,R=0(Ci; Profilei, θ),
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with SurvT,R=1(c; . . .) = P (Ti > c | Ri = 1, . . .), SurvL,R=0(c; . . .) = P (Li > c | Ri = 0, . . .),

and SurvT,R=0(c; . . .) = P (Ti > c | Ri = 0, . . .).

E-Step. Let θ(k) be the current estimate of θ, then

Q(θ; θ(k)) = E{logP (Di, Ri | Zi, θ) | Di, θ(k)}

= Robsi {∆i logP (Ti | Ri = 1, Zi, θ) + logP (Ri = 1|Zi, θ)}

+Robsi (1−∆i)
{
P (Ri = 1 | Ti > Ci, Zi, θ(k)) log SurvT,R=1(Ci;Zi, θ)P (Ri = 1 | Zi, θ)

+ P (Ri = 0 | Li > Ci, Zi, θ(k)) log SurvL,R=0(Ci;Zi, θ)P (Ri = 0 | Zi, θ)
}

+(1−Robsi ) log{P (Li | Ri = 0, Zi, θ)P (Ri = 0 | Zi, θ)}

+(1−Robsi )Si∆i log SurvT,R=0(Ci; Profilei, θ)

+(1−Robsi )Si(1−∆i) log SurvT,R=0(Ci; Profilei, θ)

where

P (Ri = 1 | Ti > Ci, Zi, θ(k)) =
pi,R1;θ(k)

pi,R1;θ(k) + pi,R0;θ(k)

and

P (Ri = 0 | Li > Ci, Zi, θ(k)) =
pi,R0;θ(k)

pi,R1;θ(k) + pi,R0;θ(k)

;

and

pi,R1;θ(k) = SurvT,R=1(Ci;Zi, θ(k))P (Ri = 1 | Zi, θ(k))

and

pi,R0;θ(k) = SurvL,R=1(Ci;Zi, θ(k))P (Ri = 0|Zi, θ(k)).
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M-Step. The log likelihood can be separated into distinct terms involving the partition

(θC , θT1, θT0, θL) of the parameter space θ as

logP (Di, Ri | Zi, θ) = LθT1
+ LθT0

+ LθL + LθR

where

LθT1
=

∑
i∈{(a)}

logP (Ti | Zi, Ri = 1, θT1) +
∑

i∈{(b)}

ωi1 log SurvT,R=1(Ci;Zi, θT1)

with wi1 =
pR1;;θ(k)

pR1;θ(k) + pR0;θ(k)

LθT0
=

∑
i∈{(c)}

logP (Ti | Li, Zi, Ri = 0, θT ) +
∑

i∈{(d)}

log SurvT,R=0(Ci;Zi, Li, θT0)

LθL =
∑

i∈{(b)}

ωi0 log SurvL,R=0(Ci;Zi, θL) +
∑

i∈{(c),(d),(e)}

logP (Li|Ri = 0, Zi, θL)

with wi0 =
pR0;;θ(k)

pR1;θ(k) + pR0;θ(k)

LθR =
∑

i∈{(a),(b),(c),(d),(e)}

ωir logP (Ri | Zi, θR)

with wir =


pRr;;θ(k)

pR1;θ(k)
+pR0;θ(k)

for i ∈ (b); r = 0, 1 (on “expanded” dataset)

1 otherwise

where the groups (a), (b), (c), (d), and (e) correspond to those in Section 3.

Therefore the M-Step is equivalent to maximizing the terms separately. LθT1
and LθL can

be maximized for any model for which survival analysis maximization can be performed with

weights, and LθR can be maximized for any model for which weighted logistic regression can be

performed. LθT0
can be maximized using numerical optimization methods. We used a Guass-

Seidel algorithm.

A.2. Proof of Result 1. By taking the second derivative of (4; as defined in the paper) and
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defining

I(e(·), θ) = −E
{
Si
∂2

∂θ2
`

dble
sample

|first
phase (Di; θ) | θ

}
,

the latter becomes = −E
{
Si
∂2

∂θ2
`

dble
sample

|first
phase (Di; θ) | Robsi = 0, θ

}
· P (Robsi = 0 | θ)

because a person is double sampled (Si = 1) only if (but not necessarily if) they are observed

dropouts (Robs
i = 0). By iterating the expectation in the latter expression over the variables

Profilei that determine the double-sampling rule, the last expression becomes

= −E
[
E

{
Si
∂2

∂θ2
`

dble
sample

|first
phase (Di; θ) | Robsi = 0,Profilei, θ

}
| Robsi = 0, θ

]
which, by design condition 2, becomes

= E

[
E
{
Si | Robsi = 0,Profilei, θ

}
· E
{
− ∂2

∂θ2
`

dble
sample

|first
phase (Di; θ) | Robsi = 0,Profilei, θ

}
| Robsi = 0, θ

]
= E

{
e(Profilei) δ(Profilei, θ) | Robs = 0, θ

}
,

where the last expression follows from (6; as defined in the paper) since, inside the conditioning

on Robs = 0, the factor (1−Robs) is 1.
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A.3. Proof of Result 2. Using notation defined in the paper, in particular, S(t | Z, θ) :=

P (T > t | Z, θ) and S̃(t | θ) := 1
n

∑
i S(t | Zi, θ),

√
n
[
S̃(t | θ̂)− S(t | θ)

]
=
√
n
[
S̃(t | θ̂)− S̃(t | θ)

]
+
√
n
[
S̃(t | θ)− S(t | θ)

]
=
√
n

[
∂

∂θ
S̃(t | θ)

∣∣
θ=θ̂

(θ̂ − θ)
]

(A.1)

−
√
n

[
∂2

∂θ2
S̃(t | θ)

∣∣
θ=ξ

(θ̂ − θ)′(θ̂ − θ)/2!

]
(A.2)

+
√
n
[
S̃(t | θ)− S(t | θ)

]
(A.3)

with the last equality following from a Taylor expansion of S̃(t | θ) around θ = θ̂, and where

ξ is some vector whose elements ξj are between θj and θ̂j, for elements θj and θ̂j of θ and θ̂,

respectively.

Result 2 is obtained by applying Slutzky’s Theorem to the following two facts:

Fact 1.
√
n
[
∂2

∂θ2
S̃(t | θ)

∣∣
θ=ξ

(θ̂ − θ)′(θ̂ − θ)/2!
]

p→ 0.

Fact 2.
√
n
[
∂
∂θ
S̃(t | θ)

∣∣
θ=θ̂

(θ̂ − θ)
]

+
√
n
[
S̃(t | θ)− S(t | θ)

]
d→ N(0, V (e(·), θ)),

where V (e(·), θ) = Eθ{Sθ(t | θ)′} I(e(·), θ)−1 Eθ{Sθ(t | θ)} + varθ{S(t | Zi, θ)},

and Sθ(t | θ) = ∂S(t | θ)/∂θ.

We now verify the two facts.

Proof of Fact 1. Under regularity conditions, we have the following standard result from

maximum likelihood estimation theory:
√
n(θ̂− θ) d→ N(0, I(e(·), θ)−1). Then n(θ̂− θ)′(θ̂− θ)
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converges in distribution to some chi-squared distribution, and so

(θ̂ − θ)′(θ̂ − θ)
nδ−1

p→ 0

⇒ (θ̂ − θ)′(θ̂ − θ) = op(n
δ−1)

for any δ > 0. Letting δ = 1/2, we have (θ̂ − θ)′(θ̂ − θ) = op(1/
√
n), or equivalently,

√
n(θ̂ − θ)′(θ̂ − θ) p→ 0. (A.4)

Moreover, by the law of large numbers, we have:

∂2

∂θ2
S̃(t | θ)

∣∣
θ=θ̂

p→ E

[
∂2

∂θ2
S(t | Zi, θ)

]
. (A.5)

Therefore applying Slutzky’s Theorem to (A.4) and (A.5), we have that

√
n

[
∂2

∂θ2
S̃(t | θ)

∣∣
θ=ξ

(θ̂ − θ)′(θ̂ − θ)/2!

]
p→ 0.

Proof of Fact 2. We will show that ϕ(Di) and S(t | Zi, θ) − S(t | θ) are asymptotically

independently normal:

√
n(θ̂ − θ) d→ N(0, I((e(·), θ)−1)

and

√
n
[
S̃(t | θ)− S(t; θ)

]
d→ N(0, varθ{S(t | Zi, θ)}) (A.6)
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are asymptotically independent. Further, by the strong law of large numbers, we have:

∂

∂θ
S̃(t | θ)

∣∣
θ=θ̂

p→ Eθ

[
∂

∂θ
S(t | θ)

]
.

Then we obtain Fact 2 by application of Slutzky’s Theorem:

√
n
∂

∂θ
S̃(t | θ)

∣∣
θ=θ̂

(θ̂ − θ) +
√
n
[
S̃(t | θ)− S(t; θ)

]
d→ N(0, V (e(·), θ)),

where V (e(·), θ) = Eθ{Sθ(t | θ)′} I(e(·), θ)−1 Eθ{Sθ(t | θ)} + varθ{S(t | Zi, θ)}, and

Sθ(t | θ) = ∂S(t | θ)/∂θ.

We now verify (A.6) by showing that ϕ(Di) and S(t | Zi, θ) − S(t | θ) are jointly asymp-

totically normal with zero covariance. Using the theory of influence functions, we can express
√
n(θ̂ − θ) from (A.1) in a linearized form as follows:

√
n(θ̂ − θ) =

√
n

1

n

n∑
i=1

ϕ(Di|Zi),

where ϕ(x) = I−1(θ) ∂
∂θ

log f(x|θ). Since ϕ(Di) and S(t; θ, Zi)−S(t; θ) are data from individuals,

we have

√
n

n∑
i=1

 ϕ(Di)

S(t|Zi, θ)− S(t|θ)

 d→ N

 0

0
, V1

 , (A.7)

where

V1 =

 Eθ[ϕ(Di)′ϕ(Di)] cov[ϕ(Di), S(t|Zi, θ)− S(t|θ)]

cov[ϕ(Di), S(t|Zi, θ)− S(t|θ))] varθ{S(t | Zi, θ))

 .
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We now show the covariance term is 0:

cov[ϕ(Di), S(t|Zi, θ)− S(t|θ)] = Eθ{ϕ(Di) · [S(t|Zi, θ)− S(t|θ)]}

= EZ
{
Eθ{ϕ(Di) · [S(t; θ, Zi)− S(t; θ)] |Z}

}
= EZ

{
Eθ{I−1(θ)

∂

∂θ
log f(Di | θ) · [S(t|Zi, θ)− S(t | θ)] |Z}

}
= 0,

where the last equality follows since the score function, ∂
∂θ

log f(Di | θ), has zero expectation

with respect to θ given Z, and the remaining product terms are constant given Z. Therefore

√
n(θ̂ − θ) d→ N(0, I(e(·), θ)−1)

and
√
n
[
S̃(t | θ)− S(t; θ)

]
d→ N(0, varθ{S(t | Zi, θ)})

are asymptotically independent, where I(e(·), θ)−1 = Eθ[ϕ(Di)ϕ(Di)′].
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