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S1 Text

S1.1 Derivation of Eq. (1)

The Batchelor-Goulian model, as depicted in Fig. 2B, is described by the
system of ordinary differential equations
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together with the conservation relations for the response regulator (RT ) and
the sensor kinase (HT )
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If the response regulator is in excess (RT ≫ HT ) one can neglect the concen-
trations for the enzyme-substrate complexes in Eq. (S5) (since

[
RR-HKP

]
+[

RRP -HK
]
≤ HT ≪ RT ) so that the conservation relation for the response

regulator (Eq. S5) simplifies to

[RR] ≈ RT −
[
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]
. (S7)

Under steady state conditions the left-hand sides in Eqs. (S1) - (S4) can
be set to zero. For Eqs. (S3) and (S4) this leads to
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where the Michaelis-Menten constants are defined by
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Addition of Eqs. (S2) and (S4) yields
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Similarly, addition of Eqs. (S1) and (S4) yields

kt
[
RR-HKP

]
= kp

[
RRP -HK

]
and, after substituting the expressions in Eqs. (S8) and (S9),
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Finally, replacing [HK] by the expression in Eq. (S10) the factor
[
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cancels on both sides of the equation and one obtains
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By defining the rescaled Michaelis-Menten constants Cp and Ct through Cp =(
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)
Kp and Ct =
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Kt this equation can be written in the form
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which directly leads to Eq. (1) of the main text.
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S1.2 Derivation of Eqs. (2) and (3)

Within the Batchelor-Goulian model (Fig. 2B) the steady state concentration
of the phosphorylated form of the response regulator (RRP ) is determined
by the quadratic equation (Eq. 1 of the main text)

[RRP ]2 − [RRP ] (RT + Cp + Ct) + CpRT = 0 (S11)

which is valid if the concentration of the response regulator is much higher
than that of the sensor kinase (RT ≫ HT ). In the following, approximate
solutions of this equation are derived, which are either valid in the limit
Ct ≪ Cp or in the limit Cp ≪ Ct.

In the first case (Ct ≪ Cp), it is advantageous to introduce the following
dimensionless quantities
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≪ 1 (S12)

through which Eq. (S11) becomes
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)
+ C̄p = 0. (S13)

The solution of this equation is sought in the form

x = x0 + εx1 +O(ε2). (S14)

Inserting this expansion into Eq. (S13) and equating terms of equal order of
magnitude leads, to lowest order (ε = 0), to the quadratic equation
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By definition, x = [RRP ]/RT must remain within the range 0 ≤ x ≤ 1 which
requires to choose the ‘−’ sign in Eq. (S15). Hence, the physiologically
reasonable solution is given by
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The O(ε)-equation

2x0x1 − x0C̄p − x1

(
1 + C̄p

)
= 0

has the solution

x1 =

 − C̄p

C̄p−1

− C̄2
p

1−C̄p

C̄p > 1

C̄p < 1
. (S17)

Combining Eqs. (S16) and (S17) shows that the solution of Eq. (S13) can
be approximated (up to terms of O(ε2)) by
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.

Switching back to original variables using Eq. (S12) yields Eq. (2) of the
main text.

In the limit Ct ≫ Cp, one may rewrite the exact solution of Eq. (S11)
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. (S19)

Using that
√
1− εx ≈ 1− εx/2 for ε ≪ 1, one may then expand the square

root in Eq. (S19) which leads to

x ≈ εC̄t

1 + C̄t(1 + ε)
≈ εC̄t

1 + C̄t

,

where the first approximation (with the ε-term in the denominator) has been
used in Eq. (3) of the main text (after switching back to original variables
using Eq. S18).
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S1.3 Asymptotic analysis of Eq. (15)

To find an approximate solution of Eq. (15) of the main text one may employ
the same expansion as in Eq. (S14). Inserting this expansion into Eq. (15)
leads, to lowest order (ε = 0), to the quadratic equation
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= 0 , (S20)

which has the two solutions
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Its solutions are given by
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where x
(1)
1 and x

(2)
1 are obtained by inserting x

(1)
0 and x

(2)
0 into Eq. (S22),

respectively. From the expression for x
(1)
1 in Eq. (S23) it is apparent that

this solution (and thus x
(1)
0 ) is defined for LT > ET , so that x

(1)
1 > 0.

By combining Eqs. (S21) and (S23), the solution of Eq. (15) can be
approximated (up to terms of O(ε2)) by
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The approximate expression for [EK ], as used in Eq. (16) of the main text, is
obtained from the O(1)-term (LT < ET ) by the replacement x = [EK ]/ET .
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The same replacement, together with ε = Kd/ET , yields the following
expression for [EK ] in the region LT > ET

[EK ] ≈
Kd

1 + [S∗]
K2

ET

LT − ET

. (S25)

Using this expression in the conservation relation for [L] in Eq. (12) of the
main text shows that, in the region LT > ET , the free effector concentration
is given by [L] ≈ LT − ET . This result is intuitively clear: For LT ≥ ET the
converter enzyme becomes saturated by effector molecules since Kd ≪ ET

(by assumption). Hence, increasing LT beyond ET will mainly increase the
free effector concentration. Using [L] ≈ LT − ET in Eq. (10) of the main
text shows that, in the region LT > ET , ultrasensitivity cannot occur since
[S∗] exhibits a simple hyperbolic dependence on LT which is given by

[S∗] ≈ ST

1 + k2
k1

K1

K2

LT−ET

Kd

, LT > ET . (S26)

S1.4 Derivation of Eq. (40)

Eq. (35) of the main text can be written as a quadratic equation
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(
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)
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= 0 (S27)
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To derive an approximate expression for the solution of Eq. (S27), which is
valid under the condition max(Kapp

t , Kp) ≪ RT (Eq. 37), it is advantageous
to introduce the dimensionless quantities

x =
[RRP ]

RT

, K =
Kapp

t

Kp

∼ O(1), ε =
Kp

RT

≪ 1 (S29)

through which Eq. (S27) becomes
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Eq. (S30) has been analyzed previously for the special case K = 1 [1].
Following the same steps as in Ref. [1] it is straightforward to show that, in
the limit ε ≪ 1, the solution of Eq. (S30) can be approximated (up to terms
of O(ε2)) by

x ≈

{
1− ε K

α−1
,

ε α
1−α

,

α > 1

α < 1
. (S31)

Using the definition of α in Eq. (S28) the conditions α > 1 (α < 1) become
LT < L∗

T (LT > L∗
T ) where L∗

T is defined by (cf. Eq. 38 of the main text)

L∗
T =

kapp
t

kapp
t + kp

HT . (S32)

Finally, Eq. (40) in the main text is obtained from Eq. (S31) by using Eqs.
(S28) and (S29), together with the definition of L∗

T in Eq. (S32).
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