Supplemental Table 1: Demographics of the MDS Patient Cohort

variables [No. of Patients (%)		Abbreviations: FAB: French-American-British			
•		blasts in transformation: RAEB: Refractory anemia			
Sex		with excess blasts RARS Refractory anemia with			
Male	40 (60%)	ringed sideroblasts: RA: Refractory anemia: IPSS:			
Female	27 (40%)	International prognosis scoring system.			
^a Age (years)	47 (19-74)	^a Median (range) age at date of transplant			
F theisity		^b Other [.] Paroxysmal nocturnal hemoglobinuria:			
		Polycythemia vera: Essential thrombocythemia:			
	62(93%)	Myelofibrosis with myeloid metaplasia: Myelofibrosis			
African-American	2(3%)	myelosclerosis; Myelodysplasia or myloproliferative			
Hispanic Other	2 (3%)	disorder.			
Other	1 (170)				
EAD Subturno		"Favorable: normal karyotype, isolated –Y, del(5q) or			
	10 (159/)	complex (>3 abnormalities) or chromosome 7			
	10(15%)	anomalies.			
	24(30%)				
RARO	O(12%)	^d Blast percentage at date of transplant			
	9(13%)				
² Other	16 (24%)	^e Lower Risk: RA or RARS; Higher Risk: RAEB, RAEB-			
		T or CMML. Data regarding specific cell counts were			
*Karyotype (IPSS)		not available, thus we were unable to determine the			
Favorable	24 (36%)	overall IPSS scores			
Intermediate	9 (14%)				
Poor	15 (22%)				
Unknown	19 (28%)				
^d Blast Percentage (II	PSS)				
>5%	35 (52%)				
5 - 10%	14 (21%)				
11 - 20%	3 (4%)				
≥21%	5 (8%)				
Unknown	10 (15%)				
	· · ·				
^e MDS Status					
Lower Risk	24 (36%)				
Higher Risk	41 (61%)				
Unknown	2 (3%)				

Supplemental Table 2: MDS cell population frequencies and CD16xCD33 BiKE-induced MDS NK cell function stratified by blast percentage (IPSS)

	^a Blast Percentage (IPSS)						
	<5%	5-10%	11-20%	≥21%	Unknown		
	(n=35)	(n=14)	(n=3)	(n=5)	(n=10)		
% NK cells	2 ± 0.3%	3 ± 1%	0.2 ± 0.1%	2 ± 1%	1 ± 0.3%		
% CD33⁺	28 ± 3%	29 ± 6%	56 ± 12%	23 ± 7%	28 ± 7%		
% MDSC	21 ± 3%	23 ± 4%	38 ± 9%	20 ± 6%	14 ± 3%		
^b PBMC Alone							
% CD107a+	38 ± 3%	33 ± 5%	33 ± 18%	30 ± 6%	42 ± 4%		
% TNF-α⁺	4 ± 1%	5 ± 2%	5 ± 4%	6 ± 4%	4 ± 1%		
% IFN-γ⁺	5 ± 1%	3 ± 0.4%	7 ± 3%	4 ± 1%	2 ± 1%		
°PBMC + HL-60							
% CD107a+	42 ± 2%	42 ± 4%	34 ± 17%	46 ± 3%	45 ± 4%		
% TNF-α⁺	11 ± 2%	12 ± 2%	13 ± 8%	17 ± 4%	16 ± 2%		
% IFN-γ⁺	14 ± 2%	13 ± 2%	9 ± 5%	23 ± 6%	18 ± 3%		

^aBlast percentage at date of transplant

^bCD16xCD33 BiKE induced MDS-NK cell function in the absence of HL-60 targets ^cCD16xCD33 BiKE induced MDS-NK cell function in the presence of HL-60 targets

Supplemental Figure 1: NKT cell frequency and NK cell CD16 expression among MDS patients. (A) Percent of CD56⁺/CD3⁺ NKT cells (normalized to all cell fraction based on the FSC/SSC gate excluding debris). (B) Normal donor and MDS-NK cells were stained with anti-CD45, anti-CD7, ant-CD56, anti-CD3 and anti-CD16 mAb and analyzed by flow cytometry. Representative flow cytometry plots from one normal donor (#14) and one higher risk MDS patient (#31) of percent of CD16⁺ NK cells are shown.

Supplemental Figure 2: DNAM-1, 2B4 and CD2 MDS-NK cell receptor expression. Normal donor and MDS-NK cells were stained with anti-CD45, anti-CD7, anti-CD56, anti-CD3, anti-DNAM-1, anti-2B4 and anti-CD2 mAb and surface receptor expression of DNAM-1, 2B4 and CD2 on NK cells were evaluated by flow cytometry.

IL-12+IL-18 Activation

Supplemental Figure 3: IFN- γ production of MDS-NK cells is lower compared to normal donors after IL-12 and IL-18 activation. PBMC from normal donors and MDS patients were stimulated overnight with IL-12 (10ng/mL) and IL-18 (100ng/mL) and NK cell intracellular IFN- γ production was evaluated via FACS analysis (**P*<0.05).

Supplemental Figure 4: CD33 Expression on lymphocyte populations. Bone marrow (BM) and peripheral blood (PB) from normal donors and MDS patients were stained with anti-CD45, anti-CD7, anti-CD56, anti-CD3 and anti-CD33 and CD33 expression was evaluated by flow cytometry on CD7⁺, T and NK cell populations. Flow cytometry plots are representative of one normal donor and one MDS patient and show CD33 expression on (A) CD56⁻/CD3⁺ T cells and (B) CD56⁺/CD3⁻ NK cells. Aggregate data for CD33 expression on (C) CD7⁺ lymphocytes, (D) T cells and (E) NK cells from normal donors (n=2) and MDS patients (n=5) from BM and PB are shown.

A Normal Donor

Supplemental Figure 5: MDSC gating strategy. PBMC from normal donors and MDS patients were stained with anti-CD45, anti-CD33, anti-CD11B, anti-CD14 and anti-HLA-DR mAbs. (A-B) Gating strategy for the evaluation of MDSC population in normal donors (A) and MDS patients (B). Plots are representative from one normal donor (#3 of 20) and one higher risk MDS patient (#25 of 67) and gate frequency indicates population percent normalized to the all cell fraction based on the FSC/SSC gate excluding debris.

Supplemental Figure 6: MDS-NK cell CD16 expression negatively correlates with MDS-MDSC frequency. PBMC from MDS patients were stained with anti-CD45, anti-CD7, anti-CD56, anti-CD3, anti-CD16, anti-CD33, anti-CD11b, anti-CD14 and anti-HLA-DR mAbs. The correlations between % MDSC (normalized to all cell fraction excluding debris) and % NK cells CD16⁺ among all MDS patients, lower risk MDS patients are presented. Correlation coefficients (r) and statistical significance are indicated in the figure.

Supplemental Figure 7: CD16xCD33 BiKE enhances peripheral blood and bone marrow NK cell function against HL-60 targets. (A) CFSElabeled T cells were cultured for 5 days in basal medium, medium supplemented with 100U/mL IL-2 and CD3 bead activation in the presence or absence (E:T ratio = 1:2) of cytokine-derived MDSC from normal PBMC and proliferation was evaluated via FACS analysis. Histogram plots represent one of six normal donors. (B-D) Mononuclear cells from peripheral blood (PB) and bone marrow (BM) were isolated from normal donors (n=2) and MDS patients (n=5), coated with 10 μ g/mL of CD16xCD33 BiKE or scFv CD16 control, co-cultured with HL-60 targets and NK cell (B) CD107a expression and intracellular (C) TNF- α and (D) IFN- γ production were evaluated via FACS analysis (**P*<0.05, ***P*<0.01).

Supplemental Figure 8: CD16xCD33 BiKE consistently enhances MDS-NK cell function among all age strata. The percent of CD56⁺/CD3⁻ MDS-NK cells (A), total CD33⁺ cells (B) and MDS-MDSC (C) of the all cell fraction was stratified according to age groups (years). (D-E) CD16xCD33 BiKE-induced MDS-NK cell functions (degranulation (CD107a), intracellular TNF- α and IFN- γ production) in the absence of HL-60 targets (D) and in the presence of HL-60 targets (E) were stratified according to age groups. Y-axis of graphs (D and E) represent the percent of NK cells positive for each function listed in graph legend.

10