## Supplemental Table, Figures, and Figure Legends

Table S1. Anti-tumor memory response in previously vaccinated HSCT recipients.

| Treatment                             | No. with tumor <sup>*</sup> /<br><u>No. injected</u> <sup>†</sup> | <u>% with tumor</u> ‡ |  |
|---------------------------------------|-------------------------------------------------------------------|-----------------------|--|
| Untreated                             |                                                                   |                       |  |
| Non-transplanted                      | 9/9                                                               | 100                   |  |
| E.G7-gp96-lg <sup>§</sup>             |                                                                   |                       |  |
| BM + T cells <sup>  </sup>            | 0/6                                                               | 0                     |  |
| E.G7-gp96-lg + IL-2 <sub>S4B6</sub> § |                                                                   |                       |  |
| BM + T cells <sup>∥</sup>             | 2/14                                                              | 14.3                  |  |

<sup>\*</sup>Mice with progressively growing tumors (sacrificed  $\geq$ 225 mm<sup>2</sup>).

<sup>†</sup>Mice were challenged with E.G7 lymphoma cells subcutaneously  $(1.0 \times 10^6)$ .

<sup>‡</sup>Total rejection rate of HSCT recipients was 90% (18/20).

<sup>§</sup>Transplant recipients were ≥100 d post-HSCT (Figure 4-6).

 $\parallel$ ≥75% CD4<sup>+</sup> and CD8<sup>+</sup>; ≤3% CD19<sup>+</sup> (Materials and methods).



Figure S1. Loss of CD11b<sup>Io</sup> CD11c<sup>hi</sup> DC at the site of vaccination in recipients of Batf3 deficient TCD-BM receiving gp96-Ig secreting tumor cells. Conditioned (9.5 Gy) B6 mice were transplanted with 5.0 x  $10^{6}$  B6 wild-type (B6WT) or Batf3 deficient (Batf3KO) TCD-BM cells and adoptively transferred with 0.5 x  $10^{6}$  CD8<sup>+</sup> T cells specific for OVA<sub>257-264</sub> (OT-I) 5 d later. After a 2 d resting period, recipients were vaccinated intraperitoneally with irradiated (40 Gy) EL-4 lymphoma cells expressing OVA (E.G7) engineered to secrete gp96-Ig (E.G7-gp96-Ig). The peritoneal cavity was analyzed 5 d following vaccination and DC populations were assessed. CD11c<sup>hi</sup> CD11b<sup>Io</sup> F4/80<sup>Io</sup> Gr-1<sup>Io</sup> frequency in the peritoneal cavity; representative dot plots (left), n = 5 (right).



Figure S2. Systemic CD4<sup>+</sup> T cell and Treg levels were marginally changed following IL-2<sub>S4B6</sub> treatment in syngeneic HSCT recipients. Conditioned (9.5 Gv) B6 recipients received B6-CD45.1<sup>+</sup> TCD-BM cells supplemented with 2.0 x 10<sup>6</sup> B6-CD90.1<sup>+</sup> CD4<sup>+</sup> and CD8<sup>+</sup> T lymphocytes obtained from E.G7 lymphoma bearing donors, containing ~1000 tumor-reactive CD8<sup>+</sup> T cells (OT-I). Recipients were inoculated intraperitoneally with 1.0 x 10<sup>5</sup> E.G7 lymphoma cells 1 d post-HSCT to simulate relapse post-transplant. Mice were vaccinated intraperitoneally with irradiated (40 Gy) E.G7 cells secreting gp96-lg 2 d post-HSCT (repeated every 3 d for a total of 5 vaccinations) and received IL-2 pre-bound to anti-IL-2 mAb clone S4B6 (IL-2<sub>S4B6</sub>) 1 d following each vaccination as indicated. (Left) Systemic CD4<sup>+</sup> T cell levels were unchanged following IL-2<sub>S4B6</sub> treatment in syngeneic HSCT recipients.  $CD4^+$  T cell frequency in the peripheral blood; n = 10 from pool of 2 experiments; x: no vaccine, ♦: E.G7, •: E.G7-gp96-lg, ∎: E.G7-gp96-lg + IL-2<sub>S4B6</sub>. (Right) Systemic CD4<sup>+</sup> FoxP3<sup>+</sup> Treg levels were marginally changed following IL-2<sub>S4B6</sub> treatment in syngeneic HSCT recipients. FoxP3<sup>+</sup> frequency within CD4<sup>+</sup> T cells in the peripheral blood utilizing mice expressing red fluorescent protein under control of the FoxP3 promoter as T cell donors; n = pool of 5; x: no vaccine, \*: E.G7, •: E.G7gp96-lg, ∎: E.G7-gp96-lg + IL-2<sub>S4B6</sub>.



Figure S3. Tumor-reactive CD8<sup>+</sup> T cells reached maximal levels in the peripheral blood 2 wk post-HSCT following vaccination and IL-2 therapy. Transplants and tumor inoculation were performed as in Figure S2 and mice were treated as indicated; n = 20 from pool of 4 experiments; **x**: no vaccine,  $\bullet$ : E.G7,  $\bullet$ : E.G7-gp96-Ig,  $\blacksquare$ : E.G7-gp96-Ig + IL-2<sub>S4B6</sub>. The 'no vaccine,' 'E.G7,' and 'E.G7-gp9-Ig' groups from Figure 4B were included as a reference to illustrate the kinetics of expansion with vaccination and IL-2<sub>S4B6</sub>.



Figure S4. Non-complexed, unbound IL-2 in combination with vaccination failed to expand CD8<sup>+</sup> T cells or enhance tumor-reactive CD8<sup>+</sup> T lymphocyte levels. Transplants and tumor inoculation were performed as in Figure S2 and mice were treated as indicated, including IL-2 not pre-bound to anti-IL-2. (Left) Non-complexed, unbound IL-2 in combination with vaccination failed to expand CD8<sup>+</sup> T lymphocytes. CD8<sup>+</sup> T cell frequency in the peripheral blood; n = 5; •: E.G7-gp96-Ig, +: E.G7-gp96-Ig + IL-2, •: E.G7-gp96-Ig + IL-2<sub>S4B6</sub>. (Right) Non-complexed, unbound IL-2 in combination with vaccination failed to expand tumor-reactive CD8<sup>+</sup> T cell frequency in the peripheral blood; n = 5; •: E.G7-gp96-Ig + IL-2, •: E.G7-gp96-Ig + IL-2<sub>S4B6</sub>. Extended analyses of these CD8<sup>+</sup> T lymphocyte frequencies in mice treated with vaccination and IL-2<sub>S4B6</sub> suggested that slightly increased levels were maintained for at least 6 wk post-HSCT, or 1 mo following cessation of treatment.



Figure S5. IL-2<sub>S4B6</sub> in the absence of vaccination markedly expanded CD8<sup>+</sup> T cells, but only elicited a small response by tumor-reactive CD8<sup>+</sup> T lymphocytes. Transplants and tumor inoculation were performed as in Figure S2 and recipients were treated as indicated, including IL- $2_{S4B6}$  in the absence of vaccination. (Left) IL- $2_{S4B6}$  in the absence of vaccination markedly expanded CD8<sup>+</sup> T cells. CD8<sup>+</sup> T cell frequency in the peripheral blood; n = pool of 5; **x**: IL- $2_{S4B6}$ , •: E.G7-gp96-Ig, **u**: E.G7-gp96-Ig + IL- $2_{S4B6}$ . (Right) IL- $2_{S4B6}$  in the absence of vaccination only elicited a small response by tumor-reactive CD8<sup>+</sup> T lymphocytes. Tumor-reactive CD8<sup>+</sup> T cell frequency in the peripheral blood; n = pool of 5; **x**: IL- $2_{S4B6}$ . (Right) IL- $2_{S4B6}$ , •: E.G7-gp96-Ig, **u**: E.G7-gp96-Ig + IL- $2_{S4B6}$ . (Right) IL- $2_{S4B6}$ , •: E.G7-gp96-Ig, **u**: E.G7-gp96-Ig + IL- $2_{S4B6}$ . (Right) IL- $2_{S4B6}$ , •: E.G7-gp96-Ig, **u**: E.G7-gp96-Ig + IL- $2_{S4B6}$ . (Right) IL- $2_{S4B6}$ , •: E.G7-gp96-Ig, **u**: E.G7-gp96-Ig + IL- $2_{S4B6}$ . (Right) IL- $2_{S4B6}$ , •: E.G7-gp96-Ig, **u**: E.G7-gp96-Ig + IL- $2_{S4B6}$ . (Right) IL- $2_{S4B6}$ , •: E.G7-gp96-Ig, **u**: E.G7-gp96-Ig + IL- $2_{S4B6}$ .



Figure S6. CD8<sup>+</sup> T cells markedly expanded following vaccination and IL-2<sub>S4B6</sub> in the absence of transgenic CD8<sup>+</sup> OT-I T lymphocytes. Transplants and tumor inoculation were performed as in Figure S2 utilizing T cell donors with or without transgenic CD8<sup>+</sup> OT-I T cells and recipients were treated as indicated. CD8<sup>+</sup> T cell frequency in the peripheral blood; n = pool of 5; •: E.G7-gp96-lg,  $\circ$ : E.G7-gp96-lg (no OT-I), •: E.G7-gp96-lg + IL-2<sub>S4B6</sub>,  $\Box$ : E.G7-gp96-lg + IL-2<sub>S4B6</sub> (no OT-I). The small increase observed in CD8<sup>+</sup> T lymphocyte frequency in both groups containing CD8<sup>+</sup> OT-I T cells likely represents the presence of the transgenic CD8<sup>+</sup> T cell population.



**Figure S7. IL-2**<sub>S4B6</sub> in combination with vaccination elicits potent effector CD8<sup>+</sup> T cell response. Transplants and tumor inoculation were performed as in Figure S2, but without the addition of CD8<sup>+</sup> OT-I T cells, and recipients were treated as indicated. CD8<sup>+</sup> T<sub>eff</sub> (CD62L<sup>-</sup> CD44<sup>+</sup>) cell frequency in the peripheral blood; n = 21 from pool of 4 experiments; •: E.G7-gp96-lg,  $\blacksquare$ : E.G7-gp96-lg + IL-2<sub>S4B6</sub>.



**Figure S8. Donor CD4<sup>+</sup> T cells were minimally detectable in recipients of purified CD8<sup>+</sup> T cells.** Transplants and tumor inoculation were performed as in Figure S2, but without the addition of CD8<sup>+</sup> OT-I T cells, including groups with TCD-BM supplemented with purified CD8<sup>+</sup> T cells, and mice were treated as indicated. CD4<sup>+</sup> T cell frequency in the peripheral blood; n = 5; •: E.G7-gp96-Ig,  $\circ$ : E.G7-gp96-Ig, (Purified CD8), **•**: E.G7-gp96-Ig + IL-2<sub>S4B6</sub>,  $\Box$ : E.G7-gp96-Ig + IL-2<sub>S4B6</sub> (Purified CD8). The results for 'E.G7-gp96-Ig + IL-2<sub>S4B6</sub>' and 'E.G7-gp96-Ig + IL-2<sub>S4B6</sub> (Purified CD8)' were repeated in an independent experiment.



Figure S9. Kinetics of tumor growth and survival in previously vaccinated HSCT recipients challenged with a lethal number of tumor cells. Previously vaccinated transplant recipients (>100 d post-HSCT; Figures 4-6) were challenged with a lethal number  $(1.0 \times 10^6)$  of tumor cells subcutaneously to determine if anti-tumor memory had been generated by either vaccine strategy. (Left) Kinetics of tumor growth and (right) survival post-challenge; n = 6-14 from pool of 2 subcutaneous challenge experiments; x: Untreated and Non-transplanted (pooled), •: E.G7-gp96-lg (individual),  $\blacksquare$ : E.G7-gp96-lg + IL-2<sub>S4B6</sub> (individual).



Figure S10. IL-2<sub>S4B6</sub> infusion induced expansion of CD8<sup>+</sup> T cells in HSCT recipients immediately prior to *Listeria monocytogenes* challenge. Transplants were performed as in Figure S2 and HSCT recipients were infused with IL-2<sub>S4B6</sub> 3 d post-HSCT and every 3 d for a total of 4 infusions as indicated. CD8<sup>+</sup> T cell frequency in the peripheral blood 2 wk post-HSCT; n = 5 from representative of 2 experiments; **x**: no HSCT, •: HSCT, **=**: HSCT + IL-2<sub>S4B6</sub>.