Establishment and application of a loop-mediated isothermal amplification (LAMP) system for detection of *cry1Ac* transgenic sugarcane

Dinggang Zhou¹, Jinlong Guo¹, Liping Xu^{1*}, Shiwu Gao¹, Qingliang Lin¹, Qibin Wu¹, Luguang Wu², Youxiong Que^{1*} ¹Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Ministry of Agriculture, Fuzhou 350002, China

² School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Australia.

*Corresponding authors. E-mail: xlpmail@126.com, queyouxiong@hotmail.com

Figure legends

Fig S1. Agarose gel electrophoresis of the plasmid 1Ac0229 PCR products. Lane M: 100 bp DNA ladder. Lanes 1 and 4: ddH₂O (blank control). Lanes 2 and 5: PG0229 PCR products (negative control). Lanes 3 and 6: the plasmid 1Ac0229 PCR products. Lanes 1-3: primers *cry1Ac*-3F and *cry1Ac*-3R. Lanes 4-6: primers F3 and B3.

Fig S2. Effects of 0.80 M betaine on the LAMP reaction. Tubes 1-4: betaine free. Tubes 5-8: 0.80 M betaine. Tubes 1 and 5: ddH₂O. Tubes 2 and 6: FN95-1702 (negative control). Tubes 3, 4, 7 and 8: the plasmid 1Ac0229.

Fig S3. The amplification curves and standard curves obtained in quantitative TaqMan real-time PCR based on the primer pair of *cry1Ac*. In the performed quantitative TaqMan real-time PCR assays, the standard curve formula is y=-3.140 x + 43.622, coefficient of determination ($R^2=0.998$) and amplification efficiency (E=1.082).

Fig S4. LAMP primers and their positions in *cry1Ac* gene sequence.

Figures

301	AGGTTGGAAG GATTGAGCAA TCTCTACCAA ATCTATGCAG AGAGCTTCAG
351	AGAGTGGGAA GCCGAT <u>CCTA CTAACCCAGC TCTCCG</u> CGAG GAAATGCGTA
401	TTCAAT <u>TCAA CGACATGAAC AGCGCCT</u> TGA CCACAGCTAT CCCATTGTTC
451	GCAGTCCAGA ACTACCAAGT TCCTCTTTG TCCGTGTACG TTCAAGCAGC
501	TAATCTTCAC CTCAGCGTGC TICGAGACGT TAGCGTGTTT GGGCAAAGGT
551	GGGGATTCGA TGCTGCAACC ATCAATAGCC GTTACAACGG CCTTACTAGG

Supplementary Tables

Table S1. Estimation of copy number of cry1Ac gene in transgenic sugarcane in quantitative TaqMan real-time PCR.

 Table S2. Cry1Ac protein content in putative cry1Ac transgenic sugarcane by quantitative ELISA detection.

Table S3. The sequence information of LAMP primers used in this experiment.

Tables

Table S1

Lines	Copy number of <i>cry1Ac</i> in single cell (Mean ±SD)
19a-1	21.89±0.68 c
19a-3	28.84 ±4.45 cd
19a-5	21.82±4.74 c
19b-4	8.98±0.55 b
16K-1	75.10±1.47 g
16k-3	31.80±1.89 d
16k-5	9.32±1.44 b
16d-1	110.49±1.32 h
16d-2	60.30±3.56 f
16d-4	128.14±3.20 i
16d-6	46.22 <i>±</i> 2.96 e
20i-2	57.73±3.26 f
20i-4	134.77 ±9.12 j
A-2	-
A-5	-
B-2	1.26±0.09 a
B-5	-

Notes: "---" means undetected; values in the column followed by the same letters means no

significant at P=0.05 level.

Table S2

Lines	Cry1Ac protein/ ng g ⁻¹ Leaf (Mean ±SD)
FN95-1702	0.00 ±0.09 e
19a-1	445.79 ±0.26 c
19a-3	547.45 ±0.10 a
19a-5	501.78±0.44 b
19b-4	42.18±0.36 d
ROC22	0.00±0.05 o
16K-1	16.87 ±0.02 1
16k-3	24.23±0.21 k
16k-5	113.42±0.42 f
16d-1	102.56±0.08 g
16d-2	87.04 ±0.61 i
16d-4	67.30 ±0.49 j
16d-6	3.86±0.17 n
20i-2	90.99±0.28 h
20i-4	6.10±0.09 m
GT96-44	0.00±0.33 p
A-2	0.36±0.33 p
A-5	0.18±0.33 p
GT94-119	0.00±0.33 r
B-2	19.65±0.36 q
B-5	0.18±0.33 r

Notes: the same letter means no significant at P=0.05 level to its corresponding negative

control (FN95-1702, ROC22, GT96-44 and GT94-119).

Table S3

Primer	Position	Primer's sequences(5'- 3')
F3	349-366	AGAGAGTGGGAAGCCGAT
B3	542-559	CGAATCCCCACCTTTGCC
$\mathbf{FID} (\mathbf{F1}_{2} + \mathbf{F2})$	407-428	AGGCGCTGTTCATGTCGTTGA-
$\Gamma IP (\Gamma IC + \Gamma 2)$	367-386	CCTACTAACCCAGCTCTCCG
$\mathbf{D}\mathbf{D}(\mathbf{D}1_{-},\mathbf{D}2)$	479-499	TGTCCGTGTACGTTCAAGCAG-
BIP (BIC+B2)	522-542	CCAAACACGCTAACGTCTCGA