Supplementary information on the kFM-index

Supplementary algorithms

Previous vertex position computed from the next stored values

In the article, the algorithm for computing p(a, ) from the preceeding stored position is presented.
The following algorithm is similar, but computes p(a, %) from the next stored position.

Algorithm 1 Compute arbitrary p(a,?) from next stored value

function p(a, 1) >a€, i€{0,...,n}
if 4 = 0 then return psiore(a,0) end
j ot > stored position j =i, >4
P < pstore(a, ) > stored value

while not f;_; do j < j—1end
if j < i then return p end
hasEdge <+ false
loop
if f; then > new vertex group
if hasEdge then p + p — 1 end
if j < i then return p end
hasEdge < false
end if
if a € E; then hasEdge < true end
JjJj—1
end loop
return p
end function

The main advantage of this algorithm comes when it is combined with the original one, which
computes p(a,i) based on the previous stored value, picking either algorithm based on which has
the closer stored value. This reduces the average distance to the stored value by a factor of two,
thus allowing ¢ to be twice has high without additional computational costs.

Improved PREMERGE function

The PREMERGE function is presented in the article in a simple, straight forward way. However,
there are a number of special cases in which the computations can be done more efficiently. When
ap = fp is encountered, what remains is to insert the interval of vertices [a4,S4), which does
not require computing all four p values. Another similar case is when the A and B intervals both
contain exactly one vertex.

The following is a version of PREMERGE where these two cases are handled separately.

Algorithm 2 Prepare merge: recurse over A intervals
function PREMERGE(l, a4, 84, aB, B)

if a4 = B4 then exit end > A interval is empty

if ap = fp then > B interval is empty
for ia = aa to Ba — 1 do PREINSERTA(I,i4,ap) end
exit

end if

if a4+ 1= L4 and ap + 1 = B then > since vertices
PREMERGESINGLES(l, aa, aB)
exit

end if

if [ =1 then group[aa + agl,. .., group[fa + Br — 2] + true end > vertex group

fora=0to oc—1do > prefixing letter
PREMERGE(l — 1, pa(a, aa), pa(a, Ba), ps(a, aB), ps(a, BB))

end for

end function




The case | = 0 will always be handled by one of these rules and handled in the either of the
two new functions.

Algorithm 3 Prepare merge: insert individual A vertices
function PREINSERTA(l,i4,iB)
if [ =0 then
isAfia + iB] « true
exit
end if
for a € ¥ do
if a € E;i‘4 then PREINSERTA(l — 1, pa(a,i4)) end
end for
end function

Algorithm 4 Prepare merge: merge single vertices

function PREMERGESINGLES(l,%4,iR)
if [ =0 then
isAlia +iB] < true
samelia] + true
exit
end if
if [ =1 then grouplia + ig] + true end
for a € ¥ do
if a € B/, then
if a € B, then PREMERGESINGLES(I — 1, pa(a,ia), ps(a,ip)) end
else PREINSERTA (I — 1, pa(a,ia), pr(a,in))
end if
end for
end function

In both functions, the data required to make the computations, like F;, can be looked up in
one operation, which saves a little time. The most critical aspect, however, is that the number of
calls to p is reduced.

Algorithm for generating uniquely determined paths

The first step in finding the uniquely determined paths is to identify the non-simple, or complex,
vertices: i.e. those that do not have in-degree and out-degree both equal to one.

Algorithm 5 Prepare merge: merge single vertices
function NONSIMPLEVERTICES
mark < array|[n|(false, ..., false)
Egroup — ®§ Edual —
fori=0ton—1do
Edual — Edual U (Egroup N Ez)
Egroup <~ Egroup U Ez
if f; then
for a € Equa do mark[p(a,i)] < true end
Egroup — ®§ Edual —
end if
end for
return mark
end function

Starting with the list of non-simple vertices, for each in-edge to a non-simple vertex, start
backtracking until another non-simple vertex is reached. For each such in-edge, that path is
uniquely determined, and thus all uniquely determined paths are generated. Some of these paths
math start and end in final-completing vertices, and thus represent a suffix of length less than k:
these may be excluded when the string representation of the path has been produced.



Parallel bit-processing for computing previous vertex position

The algorithm presented in the article, and implemented in the Java program, uses single bit
operations to compute p(a,?) from stored values psiore(@,i,) Where 0 = i < --- < ic = n are the
stored positions with steps at most q.

For a computer with word size w, i.e. w = 64 for 64 bit computers, it is possible to process w bits
of information in parallel. This can provide substantial speed up relative to single bit operations:
both because of the number of computational operations, and by having the data required for the
computations packed into single words rather than read from memory one vertex at a time.

The present Java implementation stores the o + 1 bits of information per vertex in one block,
which for DNA with ¢ = 4 results in 12 such blocks being stored in each 64 bit word. The present
implementation reads one vertex at a time without exploiting that fact consecutive vertices are
likely to be stored in the same word.

For efficient parallelisation of bit operations, it is better to reorganise the data storage so that
the w bits of data that should be parallel processed are stored in a single word. For this, we use
o + 1 separate words for storing data for each of the letters and for the vertex group end flags.
For computing p(a,?), we would then need to read one word containing data for n(a, j) for some
interval of j that contains ¢, and one word with the corresponding vertex group data f;.

In order to ensure all vertex groups are stored within a single word, not split across words,
some margin needs to be added: instead of blocks of length w, blocks of length v = w — 0 4+ 1 are
used. We then store data in words £(@7) = ffja;? e 5(()(”) and ¢(") = ¢8’21 e d)éT), where fj(»a’r)

and ¢§-T> represents the individual bits:

6](.(“7') =nla,rv+w—o0—j), (by) = frutw—o—j Wherea € X, 7 =0,...,w—1 (1)
where any bits outside the range of definition are set to 0. This makes

E(a,r) zp(a,ry—a+1)...p(a,r1/)...p(a,r1/—|—l/—1), ¢(T) :fru—a+1--~fru---f7"l/+l/—1 (2)

so that for any set group end flag f,,4; with j > 0 we ensure the entire vertex group is included
in £(@7). When computing p(a,i), we select r = [i/v| to ensure that i = rv 4 j for some j €
{0,...,v =1}

The core algorithm takes the in-edge flags £(*™) and vertex group end flag $(") and computes
a word x where set bits represent the vertex groups that contain and a in-edge. Starting with the
stored value pstore(a, (r + 1)v), we can then subtract the number of vertex groups that contain an
a in-edges, from the group containing i to the end of the block.

Algorithm 6 Whole word parallel computation of p(a,4) from next stored value

function p(a, 1) >a€ i€{0,...,n}
r< |i/v]; j< ¢ modv >rv+j=1
@y ¢ §=not ¢ > ¢ is the bitwise complement of ¢

x < & and ¢ > process last vertex in each group
loop 0 — 1 times > ensure all other vertices in group are processed

€ < (¢ and @) shift —1 > delete processed vertices and shift one position

X < x or (£ and ¢) > process next vertex in each group

end loop > x now contains bits set for each group containing an a in-edge

p < bitcount(x shift + (o — 1+ 7)) > count groups starting at position j within block

return pstore(a7 (T + 1)”) -D
end function

Note that the logical operations are performed bitwise, and the shift operator x shift ¢ shifts
the bits of x ¢ positions to the reft or —q positions to the right: e.g. x shift —1 =0x,-1...x1-
The bitcount function exists as a single word operation with low-level implementation in e.g. Java.

For faster memory access, we suggest storing the £ and ¢ data so that £(®™) and ¢ for a
single 7 are located on the same area of memory: e.g. M(gy1)r1a = £@") where a = 0,...,0 — 1
represents the letters and M(,41)r40 = #("). The reason for this is that CPU optimisations like
prefetching and caching can make access to words stored successively in memory much faster than
random access.

For DNA sequences processed on a typical 64 bit computer, 0 = 4 and w = 64, and the block
size ¥ = 61 can be used. The maximal block size referred to in the article then becomes ¢ = 61,
and so this requires (4 + 1) x 64/61 bit of information for storing the main data, and 4 x 8/61 bit
for pstore since lgg + 1+ 1g(n/q)/64 < 8. In total, that is 5.77 bit per vertex.



The computational complexity of computing arbitrary p(a,) is O(c) due to the need to cover
the maximal number of vertices in a vertex group. As in the article, this assumes that n < 2¢:
when this limitation is broken, the number of computational steps required whenever any position
value is involved will increase by a factor of (Ign)/w. In that respect, the computational complexity
of algorithm 6 is O(c + (Ign)/w) as n increases. The bitcount function has complexity O(lgw),
but will still tend to be a single CPU operation. Thus, apart from these technical assumptions,
the complexity remains O(o) which given a fixed o is constant time.

However, the apparently significant improvement from a time complexity O(q) algorithm, pre-
sented in the article and implemented in the Java program, to a complexity O(o) algorithm may be
less significant than the numbers indicate for moderately sized g. As noted above, random memory
access is much slower than sequential memory access, and although the complexity increases with
increasing ¢, benchmarking of the implementation indicated limited gain from reducing ¢ much
below 32. If we compute a baseline time required by extrapolating to ¢ = 1, i.e. where all of p is
stored, we find that the time used with ¢ = 32 is roughly twice the baseline time, and at ¢ = 64
it is three times the baseline time. This may in part be due to the time required for random
memory access, and will most likely not be reduced by improvements in the algorithm. Thus, the
bit-parallelised algorithm may be expected to be three times as fast as the present one for g =~ 64,
and twice as fast than ¢ ~ 32 although with slightly less memory consumed. As the algorithm
requires a different organising of the data and reduced generality, it has not been implemented in
the Java program.



