Name	Specific sequence	Amplicon size (bp)
TGF-β1-Exon3-F	CTAGGCTAGCTATAGCAACAATTCCTGGCG	88
TGF-β1-Exon3-R	AGCTAAGCTTAGCCACTCAGGCGTATCAGTGGGGGTCA	
TGF-β1-Exon3-mutation-R	AGCTAAGCTT <u>ACGGAG</u> T <u>GA</u> GGCGTATCAGTGGGGGTCA	

Table S1. Primers for Recombinant constructs vectors

Note: the mutation sites were emphasized by underline.

	Saline D14	Angli D14			
		Angli	Vector	miR-29b	
IVS;d(mm)	0.63 <u>±</u> 0.07	1.01±0.14***	1.00±0.11***	0.83 <u>+</u> 0.16* [#]	
LVID;d(mm)	3.83±0.52	3.33±0.52*	3.81±0.25	3.80±0.31	
LVPW;d(mm)	0.81±0.08	0.85±0.33*	0.89 <u>+</u> 0.10*	0.88±0.09	
IVS;s(mm)	1.06±0.07	1.40±0.15***	1.46±0.19***	1.25±0.10*** [#]	
LVID;s(mm)	2.43±0.38	2.15±0.30	2.23±0.28	2.49±0.30	
LVPW;s(mm)	1.08±0.17	1.19±0.21	1.27 <u>+</u> 0.15*	1.12 <u>+</u> 0.06 [#]	
EF(%)	65.91±1.80	58.78±2.02***	58.44±2.71***	61.98±3.42* [#]	
FS(%)	35.08±4.64	32.40±3.71	31.84±3.60	35.74±2.25 [#]	
LV Mass(mg)	100.58±11.30	126.34±16.82***	128.60±10.05***	118.07±9.07* [#]	

Table S2. Over-expression of miR29b improves cardiac function at day 14 after AnglI infusion

IVS;d= Diastolic interventricular septal wall thickness; LVID;d= Diastolic left ventricular diameter;

LVPW;d= Diastolic left ventricular posterior wall thickness; IVS;s= Systolic interventricular septal wall thickness; LVID;s= Systolic left ventricular diameter; LVPW;s= Systolic left ventricular posterior wall thickness;

EF=Ejection fraction; FS=Shortening fraction.

* *P*<0.05; ** *P*<0.01; ****P*<0.001 when compared with saline.

P<0.05; ## *P*<0.01; ### *P*<0.001 when compared with Vector control.

	Salina D29	Angli D14	Angll D28		
	Sallie Dzo		Angli	Vector	miR-29b
IVS;d(mm)	0.62 <u>+</u> 0.05	1.02±0.15***	1.25±0.17***	1.15±0.12***	0.91±0.11*** ^{###}
LVID;d(mm)	3.78 <u>±</u> 0.25	3.31±0.50*	3.22±0.39***	3.25±0.46*	3.36±0.32*
LVPW;d(mm)	0.86±0.09	0.89±0.36	0.99±0.06***	1.03±0.28	1.02±0.25
IVS;s(mm)	0.98±0.10	1.38±0.12***	1.59±0.10***	1.52±0.13***	1.31±0.19*** [#]
LVID;s(mm)	2.40±0.40	2.19±0.40	2.05±0.31	2.07±0.27	2.30±0.16
LVPW;s(mm)	1.07±0.11	1.24±0.16*	1.44±0.14***	1.46±0.20***	1.28±0.17*
EF(%)	66.71±6.11	57.02±1.78***	42.24±3.05***	41.41±0.40***	58.76±4.90** ^{###}
FS(%)	36.51±4.71	32.09±2.97*	30.55±3.42*	31.72±1.09*	34.67±4.16
LV Mass(mg)	102.04±11.98	128.65±17.26***	133.58±10.79***	130.96±9.83**	120.39±8.82*** [#]

Table S3. The restored miR-29b improves cardiac function in established hypertensive cardiopathy

Abbreviation seen Table S2.

* *P*<0.05; ** *P*<0.01; ****P*<0.001 when compared with saline control.

P<0.05; ## *P*<0.01; ### *P*<0.001 when compared with empty vector control.

Figure S1. Effect of AnglI and overexpression or knockdown of pre-miR-29b on miR-29a and miR-29c expression by cardiac fibroblasts. (CFs) (a) Effect of overexpressing pre-miR-29b on AngII (1 μ mol/L)-induced downregulation of miR-29a and miR-29c by CFs. (b) Effect of knocking down pre-miR-29b on AngII (1 μ mol/L) -induced downregulation of miR-29a and miR-29c by CFs. Results show that addition of AngII downregulates miR-29a and miR-29c in CFs, which is not altered by overexpressing (Ove29b) or knocking down (KD29b) pre-miR-29b. Each bar represents mean ± SEM for 4 independent experiments. *** *P*<0.001 when compared with the empty vector (EV) group.

a. Systolic blood pressure

b. Masson's trichrome

Figure S2. Over-expression of miR-29b inhibits Angll-induced cardiac fibrosis without effect on the blood pressure at day 14. (a) Systolic blood pressure. (b) Masson trichrome staining, showing green fibrotic tissues within myocardium. Data represent mean \pm SEM for six mice. *** *P*<0.001 compared with baseline at day 0. Scale bar, 50 μ M.

Figure S3. Effect of AnglI and overexpression of pre-miR-29b on miR-29a and miR-29c expression in the hypertensive heart. (a) Effect of overexpression of pre-miR-29b on AnglI-induced downregulation of miR-29a and miR-29c in a mouse model of hypertension at day 14. (b) Effect of overexpression of pre-miR-29b on AnglI-induced downregulation of miR-29a and miR-29c in a mouse model of hypertension at day 28. Note that chronic AnglI infusion downregulates miR-29a and miR-29c expression in the hypertensive heart, which is not altered by overexpression of pre-miR-29b. Each bar represents mean \pm SEM for 6 animals. *p<0.05, **p<0.01, *** *P*<0.001 when compared with the saline-treated mice. EV, empty vector control.

a. Systolic blood pressure

b. Masson's trichrome

Figure S4. Therapeutic effect of miR-29b on the established hypertensive heart disease over days 14-28 after Angll infusion. (a) Systolic blood pressure. (b) Masson's trichrome staining shows that miR-29b treatment at day 14 after AnglI infusion blocks progressive cardiac fibrosis. Data represent the mean \pm SEM for six mice. *** *P*<0.001 compared with baseline at day 0. Scale bar, 50 μ M.

Figure S5 Therapeutic effect of miR-29b on cardiac collagen I and α-SMA⁺ myofibroblast accumulation in established hypertensive cardiac disease at day 28 after Angll infusion.

(a) Immunohistochemical analysis of collagen I (Col.I) and α -SMA⁺ myofibroblast accumulation. Note that a-SMA+ myofibroblasts are illustrated in the insert. (b) Quantitative analysis of collagen I and α -SMA⁺ myofibroblast accumulation. Each bar represents mean ± SEM for six mice. ** *P*<0.01, *** *P*<0.001 compared with saline (SL); # *P*<0.05, ### *P*<0.001 compared with empty vector-treated (EV); §*P*<0.05 compared with day 14 disease animals before miR-29b treatment. A, arterioles. Scale bar, 100 μ M.

a. Inhibitory effect of miR-29b on TGF- β /Smad signaling at day 14 after Angll infusion

b. Therapeutic effect of miR-29b on TGF-β/Smad signaling at day 28 after Angll infusion Angll (D28)

Figure S6. miR-29b treatment inhibits Angll-induced activation of TGF- β /Smad signaling in hypertensive cardiac disease. (a) Effect of miR-29b treatment over days 0-14 on TGF- β 1 expression and phospho-Smad2/3 nuclear location in Angll-induced hypertensive heart. (b) Effect of miR-29b treatment over days 14-28 on TGF- $\beta\beta$ 1 expression and phospho-Smad2/3 nuclear location in Angll-induced hypertensive heart. Data represent for groups of 6 mice. Scale bar, 50 μ M.

a. Effect of miR-29b on phosphorylation of ERK1/2 at day 14

b. Effect of miR-29b on phosphorylation of ERK1/2 at day 28

(a) miR-29b treatment from day 0 to day 14 with continuous AngII infusion. (b) miR-29b treatment in the established hypertensive heart disease from day 14 to day 28 with continuous AngII infusion. Each bar represents mean \pm SEM for six mice. * *P*<0.05, ** *P*<0.01 compared with saline (SL); # *P*<0.05 compared with empty vector-treated (EV).

Figure S8. The AnglI-Smad3-miR-29 regulatory circuit in cardiac fibrosis. AnglI mediates cardiac fibrosis by activating Smad3 to down-regulate miR-29 expression via both TGF- β -dependent and independent mechanisms. In contrast, over-expression of miR-29 can inhibit AnglI-induced cardiac fibrosis by directly targeting the collagen matrix synthesis and indirectly by suppressing TGF- β /Smad3 signaling.

Figure S9. Characterization of primary culture of cardiac fibroblasts (CFs). (a) Morphology; (b) vimentin expression detected by immunofluorescence; (c) vimentin expression detected by flow cytometry. Data represent 4 independent experiments. Scale bar, 20 μM.