Supplementary materials for

Activity of nicotinic acid substituted nicotinic acid adenine dinucleotide phosphate (NAADP) analogs in a human cell line: difference in specificity between human and sea urchin NAADP receptors.

Ramadan A. Ali, Tetyana Zhelay, Christopher Trabbic, Timothy F. Walseth, James T. Slama, David R. Giovannucci, and Katherine A. Wall

Contents:

Figure S1. HPLC purification of caged NAADP and UV spectrum of each peak

Figure S2. Structure, ¹H NMR, ¹³C NMR, and HRMS of 5-thiomethylnicotinic acid

Figure S3. Structure and ¹H NMR of 4,5–dimethoxy-2-nitroacetophenone

Figure S4. Structure and ¹H NMR of 4,5–dimethoxy-2- nitroacetophenylhydrazone

Figure S5. Structure, ¹H NMR, and ³¹P NMR of DMNPE-caged NADP

Figure S6. Structure, ¹H NMR, ³¹P NMR, HPLC trace, and HRMS of caged NAADP

Figure S7. Structure, ¹H NMR, ³¹P NMR, HPLC trace, and HRMS of caged 4-methyl-NAADP

Figure S8. Structure, ¹H NMR, ³¹P NMR, HPLC trace, and HRMS of caged 5-methyl-NAADP

Figure S9. Structure, ¹H NMR, ³¹P NMR, HPLC trace, and HRMS of caged 5-amino-NAADP

Figure S10. Structure, ¹H NMR, ³¹P NMR, HPLC trace, and HRMS of caged 5-thiomethyl-NAADP

Figure S1. HPLC purification of caged NAADP and UV spectrum of each peak

Separation of caged NAADP from contaminating NAADP. Left Panel: Caged NAADP was separated from NAADP by chromatography on an AG MP-1 column (BioRad Laboratories, Hercules, CA) using a gradient formed between water and 100 mM aqueous TFA [*Anal. Biochem.* <u>116</u> (1981) 357]. NAADP (Peak #1) eluted before caged NAADP (Peak #2). Right Panel: The identities of the peaks were confirmed by determining their UV spectra. Only Peak #2 showed the long wavelength absorption associated with the caging group. Peak #1 showed the typical UV absorption spectrum of NAADP.

Figure S2. Structure, ¹H NMR, ¹³C NMR, and HRMS of 5-Thiomethylnicotinic acid

Figure S2 continued

Figure S3. Structure and ¹H NMR of 4,5–dimethoxy-2-nitroacetophenone

Figure S4. Structure and ¹H NMR of 4,5–dimethoxy-2- nitroacetophenylhydrazone

Figure S5. Structure, ¹H NMR, and ³¹P NMR of DMNPE-caged NADP

Figure S6. Structure, ¹H NMR, ³¹P NMR, HPLC trace, and HRMS of caged NAADP

Figure S6 continued

Figure S7. Structure, ¹H NMR, ³¹P NMR, HPLC trace, and HRMS of caged 4-methyl-NAADP

Figure S7 continued

Figure S8. Structure, ¹H NMR, ³¹P NMR, HPLC trace, and HRMS of caged 5-methyl-NAADP

Figure S8 continued

Figure S9. Structure, ¹H NMR, ³¹P NMR, HPLC trace, and HRMS of caged 5-amino-NAADP

Figure S9 continued

Figure S10 continued

