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Abstract

This document provides the additional file for the paper “Distilling structure in Taverna scientific workflows:

A refactoring approach”. It describes in details the algorithms designed in the refactoring approach introduced.

Pseudo code of the DownDistillation and Distill procedures

DownDistillation(IN GG[q, v], IN/OUT DSGG: graphs, IN q: node,1

IN/OUT SetAU : set of graphs, IN/OUT ListRed: set of nodes)2

Distill(GG[q, v], DSGG, q);3

ListRed← ListRed ∪ {new reduction nodes of GG[q, v]};4

SetAU ← SetAU ∪ {new autonomous subgraphs of GG[q, v]};5

foreach autonomous subgraph GG[a, b] in SetAU do6

Distill(GG[a, b], DSGG, a)7

end8

End DownDistillation9

Figure 1: Pseudo-code of the DownDistillation procedure
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Additional functions used are introduced here after.

• The following procedure makes use of the function OKTransformation(p,q,GG) which specifies the

conditions for p and q to be merged. It is true iff the following conditions are satisfied:

– p and q are copies of each other;

– p and q are involved in some anti-pattern (A) or (B) in GG;

– for any autonomous subgraph G′ of GG, every time p appears in G′, q appears in G′ too. This

last condition ensures us that we do not remove an anti-pattern by a transformation that would

make an SP-graph becoming non-SP.

• The function SameOrientedPath(p,q,GG) is true iff there is at least a directed path dp in GG such

that p and q belong to dp.

• Visited is a function allowing to mark nodes as visited or unvisited.

Note that, for example, in Figure 5 of the main paper, OKTransformation(9, 11, GG) is false.

The next page provides the complete pseudo-code of the Distill procedure.
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Distill(IN GG: graph; IN/OUT DSGG: graph; IN x: node)1
v ← sink(GG);2
ListRed ← set of reduction nodes of GG;3
SetAU ← set of autonomous subgraphs of GG;4
Visited(GG[q, v]) ← false /* set all the nodes of GG[q, v] unvisited */5
foreach successor p of x in GG do6

/* search for copies of p */
if Visited(p) ← false then7

p1 ← p; flagp ← true;8
while flagp do9

/* flagp allows to consider all the unvisited descendant of p1 if necessary */
Distilled ← false /* Distilled says if some transformation on p1 has been done */10
foreach successor q of x in GG, such that q 6= p1 do11

/* successors of x different from p1 are potentially copies of p1 */
q1 ← q; flagq ← true;12
while flagq do13

/* flagq allows to consider all the unvisited descendant of q1 if necessary */
if Visited(q1)=false and SameOrientedPath(p1,q1, GG)=false then14

if OKTransformation(p1,q1,GG)=true then15
/* q1 is a copy of p1 in some anti-pattern and transformation can be performed */
transformation on DSGG, replacing q1 by mergeq;16
flagq ← false; distilled ← true; /* loop on q is stopped */17

else18
/* no transformation has been done on p1 and q1 */
if outDegree(q1) 6= 1 then19

if there exists a single autonomous subgraph GG[q1, y] in SetAU then20
q1 ← y; /* the loop on q1 is continued with the sink of the unique autonomous21

subgraph */

else22
/* there is no autonomous subgraph GG[q1, y] in SetAU or more than one */
if q1 is a reduction node in Listred then23

/* search for anti-patterns from reduction node q1 */
DownDistillation(GG[q1, v], DSGG, q1, SetAU, ListRed);24
Visited(GG[q1, v]) ← false;25
if outdegree(q1) > 1 then flagq ← false;26

else27
flagq ← false;28
/* q1 is not a reduction node or there is no autonomous subgraph GG[q1, y] in

SetAU the loop on q is stopped */

end29

end30
q1 ← the successor of q1 /* outDegree(q1) = 1 */31

end32

end33
flagq ← false;34

end35

end36

end37
/* while loop on flagp continues*/38
if distilled then39

/* if p1 has been merged with some other node then search for anti-patterns from p1 */
DownDistillation(GG[p1, v], DSGG, p1, SetAU, ListRed);40
Visited(x,mergeq) ← true; /* set all the nodes on all paths from x to mergeq as visited */41

else42
/* p1 has not been merged */
if outDegree(p1) 6= 1 then43

if there exists a single autonomous GG[p1, y] in SetAU then44
p1 ← y;45

else46
flagp ← false;47

end48

else49
let p1 ← the successor of p1 /* outDegree(p1) = 1 */50

end51

end52

end53

end54

end55
EndDistill56

Figure 2: Pseudo-code of the Distill procedure
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