
Distilling structure in Taverna scientific workflows:
a refactoring approach – Additional file

Sarah Cohen-Boulakia∗1,2 , Jiuqiang Chen1,2,3 , Paolo Missier4 , Carole Goble5 , Alan R Williams5

and Christine Froidevaux1,2

1Laboratoire de Recherche en Informatique, CNRS UMR 8623, Université Paris Sud, France
2AMIB group, INRIA Saclay, France
3School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China
4University of Newcastle, United Kingdom
5University of Manchester, United Kingdom

Email: cohen@lri.fr; chenj@lri.fr; paolo.missier@ncl.ac.uk; carole.goble@manchester.ac.uk; alanrw@cs.man.ac.uk;

christine.froidevaux@lri.fr;

∗Corresponding author

Abstract

This document provides the additional file for the paper “Distilling structure in Taverna scientific workflows:

A refactoring approach”. It describes in details the algorithms designed in the refactoring approach introduced.

Pseudo code of the DownDistillation and Distill procedures

DownDistillation(IN GG[q, v], IN/OUT DSGG: graphs, IN q: node,1

IN/OUT SetAU : set of graphs, IN/OUT ListRed: set of nodes)2

Distill(GG[q, v], DSGG, q);3

ListRed← ListRed ∪ {new reduction nodes of GG[q, v]};4

SetAU ← SetAU ∪ {new autonomous subgraphs of GG[q, v]};5

foreach autonomous subgraph GG[a, b] in SetAU do6

Distill(GG[a, b], DSGG, a)7

end8

End DownDistillation9

Figure 1: Pseudo-code of the DownDistillation procedure

1



Additional functions used are introduced here after.

• The following procedure makes use of the function OKTransformation(p,q,GG) which specifies the

conditions for p and q to be merged. It is true iff the following conditions are satisfied:

– p and q are copies of each other;

– p and q are involved in some anti-pattern (A) or (B) in GG;

– for any autonomous subgraph G′ of GG, every time p appears in G′, q appears in G′ too. This

last condition ensures us that we do not remove an anti-pattern by a transformation that would

make an SP-graph becoming non-SP.

• The function SameOrientedPath(p,q,GG) is true iff there is at least a directed path dp in GG such

that p and q belong to dp.

• Visited is a function allowing to mark nodes as visited or unvisited.

Note that, for example, in Figure 5 of the main paper, OKTransformation(9, 11, GG) is false.

The next page provides the complete pseudo-code of the Distill procedure.

2



Distill(IN GG: graph; IN/OUT DSGG: graph; IN x: node)1
v ← sink(GG);2
ListRed ← set of reduction nodes of GG;3
SetAU ← set of autonomous subgraphs of GG;4
Visited(GG[q, v]) ← false /* set all the nodes of GG[q, v] unvisited */5
foreach successor p of x in GG do6

/* search for copies of p */
if Visited(p) ← false then7

p1 ← p; flagp ← true;8
while flagp do9

/* flagp allows to consider all the unvisited descendant of p1 if necessary */
Distilled ← false /* Distilled says if some transformation on p1 has been done */10
foreach successor q of x in GG, such that q 6= p1 do11

/* successors of x different from p1 are potentially copies of p1 */
q1 ← q; flagq ← true;12
while flagq do13

/* flagq allows to consider all the unvisited descendant of q1 if necessary */
if Visited(q1)=false and SameOrientedPath(p1,q1, GG)=false then14

if OKTransformation(p1,q1,GG)=true then15
/* q1 is a copy of p1 in some anti-pattern and transformation can be performed */
transformation on DSGG, replacing q1 by mergeq;16
flagq ← false; distilled ← true; /* loop on q is stopped */17

else18
/* no transformation has been done on p1 and q1 */
if outDegree(q1) 6= 1 then19

if there exists a single autonomous subgraph GG[q1, y] in SetAU then20
q1 ← y; /* the loop on q1 is continued with the sink of the unique autonomous21

subgraph */

else22
/* there is no autonomous subgraph GG[q1, y] in SetAU or more than one */
if q1 is a reduction node in Listred then23

/* search for anti-patterns from reduction node q1 */
DownDistillation(GG[q1, v], DSGG, q1, SetAU, ListRed);24
Visited(GG[q1, v]) ← false;25
if outdegree(q1) > 1 then flagq ← false;26

else27
flagq ← false;28
/* q1 is not a reduction node or there is no autonomous subgraph GG[q1, y] in

SetAU the loop on q is stopped */

end29

end30
q1 ← the successor of q1 /* outDegree(q1) = 1 */31

end32

end33
flagq ← false;34

end35

end36

end37
/* while loop on flagp continues*/38
if distilled then39

/* if p1 has been merged with some other node then search for anti-patterns from p1 */
DownDistillation(GG[p1, v], DSGG, p1, SetAU, ListRed);40
Visited(x,mergeq) ← true; /* set all the nodes on all paths from x to mergeq as visited */41

else42
/* p1 has not been merged */
if outDegree(p1) 6= 1 then43

if there exists a single autonomous GG[p1, y] in SetAU then44
p1 ← y;45

else46
flagp ← false;47

end48

else49
let p1 ← the successor of p1 /* outDegree(p1) = 1 */50

end51

end52

end53

end54

end55
EndDistill56

Figure 2: Pseudo-code of the Distill procedure

3


