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1 The PUmPER Framework

PUmPER (Phylogenies Updated PERpertually) works with iterations that com-
bine two different stages: MSA (Multiple Sequence Alignment) construction
and ML (Maximum Likelihood) Phylogenetic Inference. In this Section, we
provide some additional details on each stage.

Both stages are executed sequentially within each iteration. The first
iteration (see Figure 1) is called initial iteration, and starts the phylogenetic
inference from scratch. Update iterations (see Figure 2) extend alignments
and trees from previous iterations.

PUmPER can automatically update reference alignments and phylogenies
by new sequence data, once the data become available on GenBank. This
is helpful for commonly used datasets such as rbcL for seed plants, which
has been used for broad scale phylogenies since [1]. As we show in our
evaluation in Section 3, our tree update algorithm does not only allow for
extending phylogenies at a lower cost (in terms of energy and man hours),
but it also yields equally good likelihood scores as de novo tree inferences
that are conducted from scratch.

PUmPER can be used to run either standalone on a single server or make use
of an external cluster to offload the tree searches. Furthermore, it may make
use of PHLAWD to generate alignments, or assume alignments are provided
by the user. Since the exact requirements are different for each configura-
tion, we provide specific examples for configuration and usage for each use
each use case at the PUmPER repository (https://github.com/fizquierdo/
perpetually-updated-trees). We also provide an installer and tutorials
that should help the user to get started with PUmPER.

1.1 MSA Construction/Extension with PHLAWD

We briefly describe the basic PHLAWD [9] procedure here. PHLAWD requires
the user to supply a configuration file that specifies for which organisms (as
defined by the NCBI taxonomy) and which gene region(s) the dataset shall
be constructed. The user can identify the focal gene region by supplying a
set of exemplar sequences. These sequences are used for pairwise alignments
and homology assessment. Additionally, the user can provide search terms
that will be compared against the description of the sequences in the Gen-
Bank database to limit the scope of the sequence search. These are used in
a Smith-Waterman procedure that filters sequences that are too dissimilar
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compared to the exemplars. Using the remaining sequences, PHLAWD attempts
to construct MSAs. If the sequences included in the MSA are too divergent
to construct a reliable MSA, PHLAWD splits up these sequences based on a
guide tree, the default of which is the NCBI taxonomy. These subsets are
initially aligned independently, then profile alignments are used to align the
subsets based on the guide tree.

We have extended PHLAWD to facilitate the generation of simulated MSAs.
Under simulation mode, the user can supply sequences (as an alternative to
GenBank downloads), and guide-trees (as an alternative to the NCBI taxon-
omy). We also changed the underlying PHLAWD file organization. Previously,
PHLAWD stored all the intermediate alignments and other information in flat
files. Now all files produced by a PHLAWD run are stored in a SQLite database
file. The database stores sequences that have been retrieved from GenBank
and included in the MSA, and/or sequences that have been added by the
user(s).

When PHLAWD has already been executed once (initial iteration) and new
sequences are added to the SQLite database, PHLAWD can be executed in
update mode (updatedb option). Initially, the sequences of each new taxon
are aligned to the closest existing subalignment. Then, PHLAWD executes
profile-profile alignments in the same order as in the original run.

During an update iteration, each PHLAWD instance is extended indepen-
dently. The end result of a PHLAWD stage, be it within a initial or update
iteration, is a supermatrix stored in phylip format, and is used as input data
by the subsequent phylogenetic inference stage. Since these two stages re-
main decoupled, it is straight-forward to replace PHLAWD by an alternative
MSA construction method.

1.2 Phylogenetic Inference

The second stage of every iteration is the phylogenetic inference of a set of
trees based on the most recent MSA. The number of independent phyloge-
netic tree searches conducted at each iteration depends on two user param-
eters: the parsimony parameter (p), and the size of the tree set (b) that
shall be selected and kept in the end. We denote the values of p and b

for iteration i as p(i) and b(i). In the initial iteration i := 0, PUmPER gen-
erates p randomized stepwise addition order parsimony starting trees (i.e.,
Parsimonator is invoked with p distinct random seeds). In an update itera-
tion i > 0, given an extended MSA and a set of selected ML trees (from the
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preceding iteration), p(i) denotes the number of comprehensive randomized
stepwise addition order parsimony starting trees that PUmPER generates from
the tree set of iteration i−1. Thus, PUmPER invokes Parsimonator to extend
the b(i − 1) trees from the preceding iteration. In each call, Parsimonator
generates p(i) distinct comprehensive parsimony trees from the same pre-
ceding (non-comprehensive) ML tree. Subsequently, PUmPER optimizes each
comprehensive parsimony starting tree topology under ML with ExaML [11]
or RAxML-Light [12]. Thus, the total number of ML searches conducted
per iteration is p(0) for the initial iteration (i = 0), and p(i) · b(i− 1) for all
consecutive iterations (i > 0). By default, PUmPER will try to run ExaML.
Raxml-Light will be used if ExaML is not installed. The choice of the spe-
cific RAxML-Light version (e.g., SSE3 versus AVX vectorization, Pthreads
versus MPI parallelization) depends on the available hardware. Once all
ML searches have been completed, PUmPER scores the p(i) · b(i − 1) topolo-
gies with standard RAxML [10] (-f J option) under the Γ model of rate
heterogeneity [13]. This option also computes SH-like branch support val-
ues as described in [3]. Then, PUmPER selects the b(i) best-scoring ML tree
topologies, which will then be used as starting trees for iteration i+ 1.

2 Implementation

2.1 Automated Update Iterations

PUmPER starts an update iteration if (i) the alignment from the previous
iteration has been extended and (ii) the phylogenetic analyses of the previous
iteration have been completed. PUmPER can run a cron job that periodically
checks if the two conditions are met. The MSA extension using PHLAWD is
automated via another cron job that periodically (default: once per week)
queries GenBank and launches PHLAWD to extend the MSA if a minimum
number of new sequences (default: 100) have become available.

2.2 Using a External Cluster to offload Tree Searches

By using cluster-specific configuration files and batch scheduler templates,
the local server creates and submits batch scripts for executing the phy-
logenetic searches. When all searches have been completed, the batch job
transfers the results back to the local system. The ML searches may run for
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a long time and require (multiple) restarts from a checkpoint file. ExaML
and RAxML-Light offer such a checkpoint and restart capability, which al-
lows for conducting a single tree inference in multiple steps if the run time
exceeds the cluster queue limits. RAxML-Light also implements the mem-
ory saving techniques described in [4] and [5], which are useful if memory
requirements are too large.

We have successfully used the PUmPER framework with two widely-used
submission engines: SGE and SLURM. It is straightforward to adapt the current
template files to other schedulers. Note that, because cluster setups, security
policies, queuing system configurations etc., are different for each individual
system, deploying the PUmPER framework in conjunction with a cluster using
SGE or SLURM might still need manual configuration.

2.3 Custom iPlant setup

In our testing and development environment, we used a dedicated server
to control the workflow on a remote cluster. This server, Wooster, is a
dedicated virtual machine (VM) provided by iPlant collaborative ( http://
www.iplantcollaborative.org/) to manage the production of perpetually-
updated trees. It was configured with 8 Intel Westmere cores and 16 GB of
memory. The processes running on this local virtualized server are relatively
lightweight.

There were two clusters available. Both are systems at the Texas Ad-
vanced Computing Center (TACC), and are part of the XSEDE (Extreme
Science and Engineering Discovery Environment) program. We used the
Linux cluster Lonestar during the development phase of the cluster com-
puting component. The Lonestar cluster is composed of just under 2,000
compute nodes each with two 6-core Intel Westmere processors and 24 GB
of RAM. Lonestar uses the Sun Grid Engine (SGE) batch facility to sched-
ule jobs and allows users to connect directly via ssh. This batch scheduling
facility along with the use of ssh for remote commands allows the use of a
locally managed master server, in this case Wooster, to distribute the com-
putationally intensive tasks. By using template files to describe the cluster
and the respective batch system, we have developed the cluster component
to be portable to most HPC systems.

Since January of 2013, a newer, more powerful cluster in TACC named Stam-
pede is available to iPlant via an XSEDE project. Stampede is composed of
6,400 nodes, each with two 8-core Intel Sandy Bridge processors, 32 GB of
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RAM and a Xeon Phi Coprocessor. Although, RAxML, ExaML, RAxML-
Light, and Parsimonator, do not yet take advantage of the Xeon Phi, the
RAxML family of codes do contain AVX optimizations to take advantage of
the Sandy Bridge processors. Stampede differs from Lonestar in a few areas
that require changes to the template file.

The cluster and batch template files were ported from Lonestar to Stam-
pede in under an hour. Since we originally developed the cluster file and
batch template files for use on Lonestar and the SGE system, we had to
modify them to run on the newer system, Stampede. This is easily done for
the cluster file, which contains a description of the compute node resources
and the path to the appropriate binaries. Below is an example of a cluster
template file for Stampede.

# Info about cluster

cores_per_node: 16

mem_per_node: 31000

#Project required for batch scheduler

project: TG-MCB110022

submission: slurm

# Installed binaries, absolute paths in remote machine

parsimonator: ~/remote/wooster/bin/parsimonator-AVX

raxmllight: ~/remote/wooster/bin/raxmlLight-AVX

raxmllight_MPI: ~/remote/wooster/bin/raxmlLight-MPI-AVX

raxmllight_pthreads: ~/remote/wooster/bin/raxmlLight-PTHREADS-AVX

raxmlHPC_pthreads: ~/remote/wooster/bin/raxmlHPC-PTHREADS-SSE3

Since most of the job control logic is integrated into the local server rather
than the scheduler, the batch script templates are simple and can easily be
ported to most batch scheduling systems. The only part that must be ported
are the batch directives. An example is given below of the SLURM directives
required to run the RAxML-Light component of the framework.

#SBATCH -J raxmllight_<%=params[:exp_name_run_num]%>

#SBATCH -d singleton # ensures that each job with this name

# will only run one at a time

#SBATCH -n <%=params[:num_tasks]%>

#SBATCH -p normal
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#SBATCH -o raxmllight_<%=params[:exp_name_run_num]%>.o%j

#SBATCH -e raxmllight_<%=params[:exp_name_run_num]%>.o%j

#SBATCH -t 24:00:00

#SBATCH -A <%=params[:project]%>

The local server sets the params variables to launch individually config-
ured jobs. The only requirement of the scheduler is that it should be able
to handle a simple job dependency in which jobs of the same name are run
consecutively. The logic of staging input files and starting or restarting the
RAxML-Light component is handled in the body of the batch file and should
not change from system to system.

In our TACC setup, at the end of each iteration the best tree is uploaded
to the iPlant collaborative tree visualization system, which uses Phyloviewer
(publicly available at http://portnoy.iplantcollaborative.org/) to cre-
ate a tree visualization on the iPlant server, Portnoy, with a link to the latest
tree.

The most up-to-date tree from Table 2 is available at: http://portnoy.
iplantcollaborative.org/view/tree/d0c35df3256337f1a8649af09d1469ee.

and the latest best tree from Table 1 in: http://portnoy.iplantcollaborative.
org/view/tree/10b17429d13160ac1cd07e30bb42fd9b

3 Evaluation and Results

We tested our framework with simulated and real biological datasets. For
each experiment (e.g., different clade or gene), we executed several iterations.
For each update iteration, we also executed a control run which we denote
as scratch iteration. A scratch iteration behaves like an initial iteration,
that is, it builds the MSA from scratch on all sequences. It also executes
the same number of independent ML tree searches as the update iteration,
but without using previous topologies. We used the CONSEL package [8]
to statistically assess if update and scratch iterations yield topologies with
significantly different likelihood scores.

3.1 Biological examples

We have constructed two biologically relevant datasets for testing the per-
petual tree server. The first dataset consists of the rbcL gene region for the
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clade of land plants (Embryophyta). The second dataset consists of the 18S
ribosomal region for the clade Eukaryota. Identity and coverage are used
by PHLAWD to determine what sequences are similar enough based on Smith-
Waterman scores. We used values of 0.5 for rbcL and 0.4 for 18S. These
numbers were based on plots of identity and coverage using the seqquery

command in PHLAWD. In order to simulate the update procedure on real data,
each of these two datasets was created for sequences available before January
2008, before January 2010, and before September 2012. Table 1 and Table 2
show the average ML scores for three update iterations. Each update iter-
ation was run with parameters p := 3, b := 10, resulting in a total of 30
independent ML searches. We concatenated all resulting trees from scratch
and update iterations based on the same biological real MSA, and used the
CONSEL package [8] to asses the confidence of phylogenetic tree selection,
that is, which trees were statistically significantly better in terms likelihood
scores. The confidence set according to the approximately unbiased (AU)
test (p-value p := 0.05) included in all cases topologies from both the scratch
and update iterations.

3.2 Simulated Data

We used INDELible [2] to generate a simulated dataset with 9097 taxa on a
tree inferred on the rbcL gene for Viridiplantae. We used the simulated se-
quences and the underlying true tree as guide tree to asses the iterative MSA
update procedure in PHLAWD. From the 9079 existing sequences in the simu-
lated alignment, we selected 4000 at random as user sequences to generate
the initial PHLAWD-based MSA. The remaining sequences were randomly dis-
tributed in 3 update blocks of 1345, 1396, and 2329 sequences. Each update
block was used a user-sequences to extend the MSA, generating extended
MSAs of 5345, 6741, and 9079 taxa. We pruned the true tree accordingly
such that for each iteration, a corresponding, true tree was available. We used
these pruned true trees to determine the topological accuracy of the inferred
trees (at each iteration) using the Robinson-Foulds distance [7], denoted as
RF-distance. As before, each iteration included a total of 30 independent
ML searches. We observed that starting from extended topologies (update
iterations) does neither increase nor decrease topological accuracy (see Ta-
ble 3).
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4 Conclusion and Future Work

We have presented and made available a framework named PUmPER, which
can be used to maintain and perpetually update phylogenetic trees. PUmPER
can either operate in stand-alone mode on a single server, but also offload
computationally expensive ML searches to an external cluster. The per-
petually updated phylogenies can be computed slightly faster and are not
significantly (in the statistical sense) worse nor better than phylogenies that
are inferred from scratch.

The PUmPER framework offers the required flexibility to set up automated
perpetual phylogenetic analyses such as, for example, the simultaneous per-
petual inference of gene/species trees using multi-gene and single-gene infer-
ence.

Future development plans include developing a web-service to facilitate
use of the automated update pipeline to a broader community. The frame-
work modules can be easily adapted to fit a Model-View-Controller (MVC)
based web application. In this context, the user could customize a per-
petually updated phylogenetic analysis (genes, taxonomic group, number of
phylogenies) and visualize the resulting trees from a web browser. Finally,
we also intend to integrate the recently introduced approximation techniques
for computing bootstrap values [6], which have already been integrated into
standard RAxML, and will be available in the near future in ExaML.
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Figure 1: Initial iteration: An initial alignment is built for sequences covering
a given clade and description search term (gene). Parsimony starting trees
are used for Maximum likelihood searches. The best trees are collected.

Figure 2: Update iteration: The alignment is extended and previous trees
are re-used to continue searching in ML space with a set of different starting
trees.
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Iteration Taxa Sites Avg LH (30) Avg LH (10) Runtime(h) Avg Branch support
2008 12072 1437 -848794.80 -848745.23 46.55 67.78
2010 16962 1427 -1005824.25 -1005762.81 68.36 64.25

2010 scratch 16962 1427 -1005931.37 -1005863.32 70.89 64.26
2012(Sept) 21791 1424 -1108161.66 -1107598.42 93.40 59.56

2012(Sept)scratch 21791 1424 -1108243.29 -1107774.80 97.42 59.46

Table 1: Original run and two updates of the rbcL datasets. Average ML score at the end of each iteration
(averaged over all 30 trees and the 10 best trees) and overall run time of all searches. The branch support is
the average of SH-like support values on the best tree. The running time is the sum of the 30 ML searches.
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Iteration Taxa Sites Avg LH (30) Avg LH (10) Runtime(h) Avg Branch support
2008 14634 2363 -1950468.79 -1950281.56 74.16 70.24
2010 18480 2214 -2340314.06 -2340142.38 88.73 68.73

2010 scratch 18480 2214 -2340563.92 -2340260.37 94.08 68.59
2012(Sept) 23298 2110 -2782234.35 -2781965.38 116.48 68.13

2012(Sept)scratch 23298 2110 -2782132.94 -2781959.11 124.23 68.00

Table 2: Original run and two updates of the 18S datasets. Average ML score at the end of each iteration
(averaged over all 30 trees and the 10 best trees) and overall run time of all searches. The branch support is
the average of SH-like support values on the best tree. The running time is the sum of the 30 ML searches.
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Iteration Taxa Sites Avg LH (30) Avg LH (10) RF (true tree) Runtime(h) Avg support
0 4000 1500 -589036.97 -589035.58 0.146 2.92 77.63
1 5345 1500 -715683.68 -715682.66 0.163 7.46 76.14

1 scratch 5345 1500 -715682.75 -715681.41 0.162 7.89 76.16
2 6741 1500 -838437.33 -838436.48 0.176 6.21 74.72

2 scratch 6741 1500 -838440.38 -838438.06 0.174 8.17 74.73
3 9079 1500 -1033499.23 -1033498.23 0.184 10.10 73.12

3 scratch 9079 1500 -1033498.15 -1033495.85 0.185 19.27 73.12

Table 3: Original run and three simulated updates of the simulated datasets. Average Likelihood the end
of each iteration (30 total trees and 10 best trees) and total run time of all searches. The branch support
are the average of SH-like support values of the best tree. The running time is the sum of the 30 maximum
likelihood searches.
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