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Automated Identification of Subcellular Organelles by Coherent Anti-
Stokes Raman Scattering
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ABSTRACT Coherent anti-Stokes Raman scattering (CARS) is an emerging tool for label-free characterization of living cells.
Here, unsupervised multivariate analysis of CARS datasets was used to visualize the subcellular compartments. In addition, a
supervised learning algorithm based on the ‘‘random forest’’ ensemble learning method as a classifier, was trained with CARS
spectra using immunofluorescence images as a reference. The supervised classifier was then used, to our knowledge for the
first time, to automatically identify lipid droplets, nucleus, nucleoli, and endoplasmic reticulum in datasets that are not used for
training. These four subcellular components were simultaneously and label-free monitored instead of using several fluorescent
labels. These results open new avenues for label-free time-resolved investigation of subcellular components in different cells,
especially cancer cells.
INTRODUCTION
Microscopic imaging of cellular compartments based on
various spectroscopic signals is a topic of wide interest.
The most common methods for imaging the subcellular or-
ganelles are fluorescence microscopy, electron microscopy,
and cryoelectron microscopy. Several difficulties are
encountered with fluorescence microscopy such as exten-
sive sample preparations and photobleaching. Furthermore,
the fluorescent label may be toxic or perturbative and
change the biochemical properties of the specimen. The
electron microscopic methods are invasive and also require
extensive sample preparation and they are not suitable for
live cell imaging under physiological conditions.

There is growing interest in applying label-free imaging
methods such as autofluorescence (1) and second harmonic
generation (2) without introducing any external labels or
dyes. However, these techniques are limited to relatively
few specific molecular signatures. On the other hand, vibra-
tional microscopy including infrared absorption and Raman
scattering have been used as label-free imaging methods
based on the identification of molecular vibrations that are
characteristic of distinct functional groups (3–12). In cells,
vibrational fingerprints arise from the functional groups of
proteins, nucleic acids, lipids, phospholipids, and carbohy-
drates, which are the basic building blocks of cells. Thus,
vibrational microscopy probes the molecular composition.
Infrared microscopy has a limited spatial resolution
(~10 mm at 1000 cm�1) due to its long wavelengths, whereas
Ramanmicroscopyhashigher spatial resolutiondue to shorter
excitation wavelengths. Therefore, Raman microscopy is
superior for spatial resolving of subcellular components.
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Several methods based on Raman scattering have been
applied for label-free cell imaging (5,13,14). For instance,
it has been shown that spontaneous Raman microscopy
may resolve subcellular organelles such as the nucleus or
chromatin (4,9) and lipid droplets (7,8,15). Raman imaging
of mitochondrial distribution in cells was also reported by
Matthäus et al. (5), who presented a combination of Raman,
fluorescence, and multivariate analysis. The authors used
visible excitation, and surprisingly, the Raman data were
free of autofluorescence. In addition, Klein et al. (16)
demonstrated recently the Raman imaging of nucleus, mito-
chondria, endoplasmic reticulum, and Golgi apparatus in an
LN-18 glioma cell-line using immunofluorescence as a
reference. However, the authors only used unsupervised
methods for the data evaluation, and the simultaneous iden-
tification of several subcellular organelles by Raman micro-
scopy, to our knowledge, has not yet been reported.

Coherent anti-Stokes Raman scattering (CARS) is a
variant of Raman microscopy. It is a nonlinear optical
four-wave mixing process, which is resonantly enhanced
if the frequency difference between pump and Stokes
waves matches a vibrational resonance of the specimen.
Because of its coherency, CARS produces a strong and
directed signal compared with spontaneous Raman.
When coupled to laser scanning microscopes, CARS imag-
ing can be performed at a speed up to a video rate
(13,14,17–19). Most of the CARS applications in cell
biology were investigations of lipids that play a pivotal
role in biological membranes (20–23). CARS detects lipids
in cells due to their high local concentration. The abundant
C-H2 contents in lipids cause a strong CARS signal near
2850 cm�1. CARS microscopy has also been used to probe
live cells undergoing mitosis and live cells in interphase
(24). In addition, a combination of spontaneous Raman mi-
crospectroscopy, CARS, and fluorescence imaging was
http://dx.doi.org/10.1016/j.bpj.2014.03.025
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used to investigate the macromolecular organization of the
nucleus through the cell-cycle (24).

Several studies have combined coherent Raman imaging
of cells and tissues with unsupervised multivariate analyses
such as principle component analysis (PCA), nonnegative
matrix factorization (NMF), and multivariate curve resolu-
tion (25–30). For instance, PCA of CARS datasets was
used to classify individual mesenchymal stem cells into ad-
ipocytes, osteoblasts, and undifferentiated stem cells groups
(30). In addition, Pohling et al. (26) have shown that PCA of
CARS spectra can be used to differentiate between plant
cellular components. However, the ability of CARS micro-
scopy to set a supervised classifier that can be used for auto-
mated and simultaneous identification of several subcellular
organelles in a bioinformatics approach has not yet been
established.

Here, we report CARS hyperspectral images of MIA
PaCa-2 pancreatic cancer cells generated via unsupervised
multivariate methods such as hierarchical cluster analysis
(HCA). We also demonstrate the feasibility of using
CARS coupled with HCA to colocalize the subcellular or-
ganelles by comparing the HCA images with those obtained
using immunofluorescence staining. With these data, a su-
pervised learning algorithm based on the ensemble method
‘‘random forest’’ as a classifier was trained and used, for the
first time to our knowledge, to identify simultaneously and
automatically the nucleus, nucleolus, lipid droplets, and
endoplasmic reticulum.
MATERIALS AND METHODS

Cell culture

Human pancreatic cancer MIA PaCa-2 (CRL-1420) and colorectal adeno-

carcinoma HT29 (HTB-38) cells were obtained from the American Type

Culture Collection (Manassas, VA). The cells were grown in Dulbecco’s

modified Eagle’s medium (Invitrogen, Carlsbad, CA) supplemented with

10% fetal bovine serum (Invitrogen) and 0.1% penicillin/streptomycin,

incubated at 37�C in 10% CO2 atmosphere. The cells were plated out on

glass coverslips (Menzel Glas, Braunschweig, Germany) for 1 day, fixed

with 4% paraformaldehyde (VWR International, Darmstadt, Germany),

and subsequently submerged into phosphate-buffered saline (PBS;

Invitrogen).
Confocal Raman microscopy

Raman micro-spectroscopy was acquired using a confocal Raman micro-

scope (Alpha300AR; WITec, Ulm, Germany) as described in details given

previously in Mavarani et al. (11) and El-Mashtoly et al. (31).
CARS data acquisition

The CARS-images were obtained using a commercial setup consisting of a

picosecond-pulsed laser system that generates two synchronized beams col-

linearly aligned in an inverted confocal microscope (TCS SP5 II CARS;

Leica Microsystems, Heidelberg, Germany). A fraction of the fundamental

light of an Nd:YVO4 (HighQ Laser, Rankweil, Austria) at 1064 nm is

directly coupled into the microscope and used as a Stokes beam in the
CARS imaging process. The frequency-doubled output (532 nm) is used

to synchronously pump an optical parametric oscillator (picoEmerald;

APE, Berlin, Germany), which is tunable in the range of 780–960 nm.

The laser beams are focused into the sample using an HCX IRAPO L water

immersion objective (40�/1.1 W CORR; Leica Microsystems). The epi-

and forward-detected CARS signals are measured simultaneously, via

non-descanned detectors. In this study, we will present only the forward-

CARS signals.

The mean laser power was measured at the sample position and found to

be 28 and 21 mW at 816 and 1064 nm, respectively. The power was kept

stable during the wavelength tuning of the laser. A typical pixel dwell

time of 200 ms per scan was selected (51 s per image, 512 � 512 pixels

covering up to 150 � 150 mm sample area, pixel resolution 200–

300 nm). The total time needed to collect a CARS hyperspectral image is

~50 min, which is much faster than the corresponding spontaneous Raman

measurement (~5 h) with the same pixel resolution (16). Even faster CARS

measurements can be achieved by measuring selected wavelengths only.

The CARS hyperspectral images of cells were measured between 826–

806 nm, corresponding to a vibrational range of 2700–3000 cm�1 with

~5 cm�1 spectral resolution. In case of live cell imaging, the CARS hyper-

spectral dataset is measured (2800–3000 cm�1) within 17 min (17 s per im-

age, 512 � 512 pixels covering at ~150 � 150 mm sample area, pixel

resolution 200–300 nm).
Immunofluorescence staining and imaging

The formalin-fixed cells were permeabilized with 0.2% Triton X-100 for

5 min at room temperature. After washing with PBS, cells were blocked

with 1% bovine serum albumin for 30 min. The primary antibodies were

incubated overnight at 4�C. Rabbit monoclonal anti-Calnexin (Jackson Im-

munoResearch, West Grove, PA), mouse monoclonal anti-Syntaxin 6 (BD

Biosciences, Franklin Lakes, NJ), and anti-COX IV (Abcam, Cambridge,

UK) antibodies were used for endoplasmic reticulum, Golgi apparatus,

and mitochondria, respectively. Excess antibodies were removed by

washing three times with PBS, followed by the incubation of the secondary

antibodies for 1 h at room temperature. The secondary antibodies conju-

gated to TRITC (tetramethyl rhodamine) and FITC (fluorescein) from Jack-

son ImmunoResearch were used. Excess antibodies were removed by again

washing three times with PBS. Cells (living or fixed) were incubated with

DRAQ-5 (1,5-bis{[2-(di-methylamino)ethyl]amino}-4,8-dihydroxyanthra-

cene-9,10-dione; Cell Signaling Technology, Danvers, MA) or LD540

(4,4-difluoro-2,3,5,6-bis-tetramethylene-4-bora-3a,4a-diaza-s-indacene)

for 10 and 30 min, respectively, followed by washing with PBS.

Fluorescence measurements were performed all the time sequentially on

double- or triple-stained specimen with a confocal laser-scanning micro-

scope (TCS SP5 II; Leica Microsystems) using an HCX IRAPO L (25�/

0.95 W) water immersion objective (Leica Microsystems). To enable an

optimal match with CARS images, stacks of fluorescence images were re-

corded and the distance between each layer was 0.5 mm.
Data analysis

The raw data and image processing was implemented in the software MAT-

LAB Ver. 8.1 along with the Image Processing and Statistics Toolboxes

(The MathWorks, Inc., Natick, MA). To obtain representative spectra for

different cellular compartments, a colocalization approach motivated by

fluorescence colocalization statistics was employed (32). Hereby a best-

matching cluster is identified in a hierarchical clustering of the normalized

spectral image data (S.D. Krauss, D. Petersen, D. Niedieker, E. Freier, S.F.

El-Mashtoly, K. Gerwert, and A. Mosig, unpublished). Therefore, HCA im-

ages of CARS spectra were manually overlaid with the corresponding fluo-

rescence images. For every possible combination of a cluster and a

fluorescence color channel, the degree of colocalization is calculated ac-

cording to Pearson’s correlation coefficient (PCC) (32–34) and the cluster
Biophysical Journal 106(9) 1910–1920
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with the highest PCC value was kept. After that, 100 thresholds were tested

on the fluorescence from 1 to 100% intensity, and the image was binarized

with the threshold showing the highest correlation with the best matching

cluster from the HCA. Spectra were used for training of a random forest

method from image positions whenever the fluorescence intensity was

above the threshold value and was covered by the best matching cluster.
Supervised classification by random forest
method

The comparison of different datasets is disturbed by intensity fluctuation of

the laser system caused by tuning the pump laser and requires a correction.

The CARS signal intensity is proportional to the third order of the suscep-

tibility c, the Stokes laser intensity, and the square of the pump laser inten-

sity. Disregarding the nonresonant background, intensity fluctuations can be

handled as an additive factor of the logarithmic signal intensity. The inten-

sity of the laser can be measured directly or can be reconstructed by an in-

ternal standard, which, in this case, is the PBS buffer around the cell. The

logarithmic mean spectrum of the buffer was subtracted from the logarith-

mic hyperspectral dataset. Afterwards, the data was reexponentiated. The

SNR was enhanced by a Gaussian filter in image space with a window

size of 3 � 3 pixels.

The spectral data was automatically classified by the random forest

method (35). Training spectra were acquired from the colocalization step

by selecting the spectra from the overlap of the best matching cluster and

the fluorescence. The training spectra for lipid droplets were selected based

on the spectral image at 2850 cm�1 if the fluorescence staining for lipid

droplets was not performed. The classification was performed on vector-

normalized spectral datasets after the correction of the laser fluctuation

and was validated by estimating the colocalization with the corresponding

fluorescence image.
RESULTS AND DISCUSSION

Label-free Raman imaging of pancreatic cancer
cells

Fig. 1 depicts the Raman results of MIA PaCa-2 cells. Fig. 1
A displays a univariate image based on the integrated Raman
intensities of the C-H stretching vibration (2800–
3100 cm�1). This image shows the nucleus in the middle
Biophysical Journal 106(9) 1910–1920
of the cell, three nucleoli within the nucleus, and lipid drop-
lets in the cytoplasm. Fig. 1 B displays the automated
computed HCA, which is an unsupervised clustering method
and used to generate an index-colored image from the
Raman hyperspectral dataset. An algorithm is searching
for similar spectra and merges them into a new object desig-
nated as a cluster. The merging process is repeated until all
Raman spectra are combined into a small number of clusters
and each cluster is assigned a color, constructing an index-
colored image based on spectral similarity (36). HCA in
Fig. 1 B was performed on the spectral range of 1200–
1800 and 2800–3100 cm�1. These regions exhibit the most
predominant bands of amino acids, protein backbones, nu-
cleotides, nucleic acid backbones, carbohydrates, and lipids.
It contains sufficient spectral information to provide excel-
lent clustering results (36,37). Sixteen clusters were chosen
to reproduce the position of nucleus with nucleoli, as well
as several regions within the cytoplasm, reflecting different
compositions of the cytoplasmwith various subcellular com-
ponents. Alternatively, HCA was also performed on either
the 1200–1800 cm�1 (Fig. 1 C) or 2800–3100 cm�1 regions
(C-H stretching, Fig. 1 D). The results are similar to those of
Fig. 1 B, implying that the different spectral ranges (Fig. 1,
B–D) at which HCA is performed are sufficient to produce
excellent and comparable clustering results. However, the
minor differences in Fig. 1, B–D, might originate from the
contribution of different spectral regions.

Fig. 1 E shows the mean cluster spectra of only a few sub-
cellular organelles, where morphology and topology of their
representative clusters clearly suggest that they are associ-
ated with cytoplasm (a), nucleus (b), nucleoli (c), and lipid
droplets (d). The most pronounced Raman bands result from
the C-H stretching vibrations among 2850 and 3020 cm�1,
the carbonyl stretching (amide I) located at ~1662 cm�1,
C-H and CH2 bending deformations at 1450 cm�1, amide
III of the peptide linkages between 1200 and 1400 cm�1,
FIGURE 1 Hierarchical cluster analysis of

Raman dataset. (A) Raman image reconstructed

from the C-H stretching intensity. HCA is performed

in the following ranges: (B) 1200–1800 and 2800–

3100 cm�1; (C) 1200–1800 cm�1; and (D) 2800–

3100 cm�1. The morphology and topology of

some clusters suggest that they are associated with

the cytoplasm (green), nucleus (blue), nucleoli

(brown), and lipid droplets (red). Other clusters in

panels B–D cannot be assigned in this manner. (E)

The mean cluster Raman spectra are also shown.
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and the ring-breathing mode of phenylalanine at 1008 cm�1

(5,38,39).
Spectrum d is significantly different from the others with

strong intensity. Note that, due to normalization, the strong
intensity is not seen in Fig. 1 E. By comparing the mean
cluster spectrum d with the lipid and phospholipid spectra
(7,40–42), it is clear that the spectrum d arises from high
lipid or phospholipid content. The high C-H stretching in-
tensities in the spectral range of 2850–2935 cm�1 are due
to long alkane chains. Only the spectrum of lipid droplets
(d) exhibits a Raman band at 1750 cm�1, which is assigned
to the C¼O stretching vibration of the ester form of fatty
acids, probably triglyceride (which is the dominant compo-
nent of lipid droplets).

The above results indicate that Raman microspectroscopy
coupled with HCA has a potential for the label-free identi-
fication of subcellular compartments of MIA PaCa-2 cells.
This is in agreement with previous studies that had shown
the distribution of lipid droplets and mitochondria in
Caco-2 and HeLa cells, respectively (5,15). In addition,
the 1750 cm�1 band can be used as a marker-free band
for imaging of lipid droplets.
Hierarchical cluster analysis of CARS datasets as
an unsupervised method

Lipids are rich in C-H2 groups and have high local concen-
trations. In addition, the CARS signal is proportional to the
square of the concentration of the specimen (43). Thus,
lipids cause a very strong CARS signal at 2850 cm�1, and
imaging of lipid droplets in cells is the most common appli-
cation of CARS microscopy (13,17,19,44). Fig. 2 A depicts
the CARS image taken at 2850 cm�1 of the MIA PaCa-2
cells. It is obvious that lipid droplets significantly emit a
stronger CARS signal compared to the other cellular com-
partments. Fig. 1 E indicates that lipid droplets (spectrum
d) exhibit a Raman band at 1750 cm�1, which is assigned
to the C¼O stretching vibration of the ester form of fatty
acids. Thus, we have performed CARS imaging taken at
FIGURE 2 Hierarchical cluster analysis of CARS dataset. (A) CARS im-

aging taken at 2850 cm�1 of the MIA PaCa-2 cells. (B) HCA of CARS data-

set of MIA PaCa-2 cells. Spectra were normalized in the 2700–3000 cm�1

region and HCA was performed on the same spectral range. The

morphology and topology of some clusters suggest that they are associated

with the cytoplasm (yellow), nucleus (green), nucleoli (brown), and lipid

droplets (pink). Other clusters in panel B cannot be assigned in this manner.
both 2850 and 1750 cm�1 and the results are depicted in
Fig. S1 (see the Supporting Material). Identification of these
bright spots as lipid droplets was confirmed by confocal
fluorescence microscopy, which was performed subsequent
to CARS data acquisition. Results of CARS imaging of lipid
droplets taken at 2850 cm�1 are consistent with those of pre-
vious studies (13,45); however, to the best of our knowl-
edge, we have shown for the first time that the C¼O
stretching vibration of the ester form of fatty acids can
also be used as a label-free marker for imaging the lipid
droplets by CARS microscopy.

The HCA of the spontaneous Raman spectral dataset
(Fig. 1) has shown that it is a powerful method to visualize
different cellular components and that the spectral region of
2700–3000 cm�1 is sufficient to produce good clustering re-
sults. These results were encouraging to perform HCA on
CARS datasets in the C-H stretching region only. Restric-
tion to this region has an additional advantage that the
broad Raman band of the glass coverslips, on which cells
are grown, does not interfere (16).

In CARS measurements, the pump wave was tuned
several times between 826 and 806 nm, corresponding to
a vibrational range of 2700–3000 cm�1 with ~5 cm�1 spec-
tral resolution. CARS datasets were obtained with a pixel
resolution of 200–300 nm. The region of interest was
selected by masking the area outside cells to reduce the
number of spectra. The data were vector-normalized in
the 2700–3000 cm�1 range and HCA was performed in
the same spectral range. Fig. 2 B displays the HCA of a
CARS dataset of MIA PaCa-2 cells. Twenty-four clusters
were chosen to reproduce the position of the nucleus with
nucleoli and lipid droplets, as well as reflecting the compo-
sitions of the cytoplasm with several organelles.

Recently, PCA and NMF analyses of CARS datasets were
used to visualize cellular components (26,29,30). Further,
this study shows the potential of HCA of CARS datasets
in visualizing several subcellular organelles and opens an
avenue toward their label-free identification. An advantage
of HCA over other clustering methods is that it clearly visu-
alizes several cellular components, as shown very recently
for the HCA of spontaneous Raman dataset (31).
Automatic identification of subcellular organelles

In this study, we believe that we have established, for the first
time, a supervised algorithm for automated identification of
pancreatic cancer subcellular organelles by using label-free
CARS imaging based on the random forest method as a clas-
sifier. Basically, the data analysis involves two stages as de-
picted in Fig. 3, i.e., the training and validation stages.
Training stage

The aim of the training phase is to obtain representative
spectra for different cellular compartments to train a
Biophysical Journal 106(9) 1910–1920



FIGURE 3 Workflow for spectral image classifier.

The procedure consists of two stages—training (left

side) and validation (right side) stages.
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supervised classifier. Therefore, the dissimilarity of the
normalized space-resolved CARS spectra is determined by
HCA.

The PCC value of each combination of the spectra is
calculated and a hierarchy of clusters is built up by the
use of Ward’s method. In this hierarchy of clusters, an algo-
rithm searches for the cluster best matching with the fluores-
cence image of the corresponding organelle. This is because
the standard method in life sciences for imaging the subcel-
lular organelles and their dynamics is fluorescence micro-
scopy (46). Figs. 4 and 5 show the colocalization of
several organelles in the HCA results.
FIGURE 4 Colocalization of the nucleus and lipid droplets. (A) Fluores-

cence imaging of the nucleus and lipid droplets. (B) HCA of CARS dataset.

Overlaid images of lipid droplets and the nucleus fluorescence (red) from

panel Awith their corresponding HCA clusters (green) from panel B are dis-

played in panels C and D, respectively. (yellow) Overlapping regions. (D,

inset) Overlay region of the nucleolus between the fluorescence (red) and

HCA (green).)
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Fluorescence staining was carried out on the lipid drop-
lets and the nucleus after CARS measurements and the re-
sults are depicted in Fig. 4 A. In this study, we used
DRAQ-5 to stain the nucleus as well as nucleolus (47),
and LD540 fluorescent dye for lipid droplets (48). Lipid
droplets are displayed in olive, whereas the nucleus is shown
in blue. It is noted that the nucleolus gives stronger fluores-
cence intensity than the nucleus; the regions above the
threshold in the nucleus fluorescence images are classified
as nucleolus. Best matching clusters from HCA results ac-
cording to the overlap with the fluorescence are shown in
Fig. 4 B. Fig. 4, C and D, illustrates the overlay of the
HCA clusters (green) with their corresponding fluorescence
channels (red) for the lipid droplets and the nucleus, respec-
tively, and the regions of agreements are shown in yellow.

The overlapping regions fit well and the PCC values were
calculated to be ~0.6 for lipid droplets and ~0.78 for the nu-
cleus. Fig. 4 D (inset) also displays similar overlay for the
nucleolus and good agreement is observed with a PCC value
at ~0.69. The blue, cyan, and olive clusters in the HCA
(Fig. 4 B) are assigned to the nucleus, nucleolus, and lipid
droplets, respectively. In addition, the mean CARS spectrum
of lipid droplets has a maximum peak at 2850 cm�1 (see
Fig. S2), which is in agreement with previous results
(13,45).

In a previous spontaneous Raman study (16), the con-
structed fluorescence images based on selected Raman spec-
tral features in the 80–3040 cm�1 regime contain
contributions from a broad glass band near 1100 cm�1.
This band obscures the DNA band at ~1094 cm�1 (39),
and it creates artifacts in the spectral images, especially
for the nucleus and nucleolus. The constructed images de-
pict regions within the nucleus with strong signal, which
were absent in the fluorescence. These regions were



FIGURE 5 Colocalization of the endoplasmic re-

ticulum, Golgi apparatus, and mitochondria. (A1–

C1) Fluorescence images of the nucleus (blue),

endoplasmic reticulum (A1), Golgi apparatus (B1),

and mitochondria (C1). (A2–C2) HCA of CARS da-

tasets. (A3–C3) Overlaid images of endoplasmic re-

ticulum, Golgi apparatus, and mitochondria staining

(red) from panels A1–C1 with their corresponding

HCA (green) from A2–C2 and the overlapping re-

gions (yellow).
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assumed to be the nucleoli (16). The CARS measurements,
however, were performed on the C-H region, which is free
from the glass contribution. The colocalization of the nucle-
olus here is based on fluorescence.

Furthermore, immunofluorescence staining was per-
formed after CARS measurements for several cells using
either anti-Calnexin for endoplasmic reticulum, anti-Syn-
taxin-6 for Golgi apparatus, or anti-COX IV for mitochon-
dria to illustrate other subcellular organelles in addition to
the nucleus. Panels A1–C1 in Fig. 5 show two-channel
immunofluorescence images of MIA PaCa-2 cells. In addi-
tion to the nucleus (blue), they describe the distribution of
endoplasmic reticulum (Fig. 5 A1), Golgi apparatus
(Fig. 5 B1), or mitochondria (Fig. 5 C1), as illustrated in
red. In general, the endoplasmic reticulum is surrounding
the nucleus in high concentration accompanied by Golgi
apparatus, whereas the mitochondria are spread in the cyto-
plasm. A visual assessment indicates that the best matching
clusters from the HCA (Fig. 5, A2–C2) share information
with their corresponding fluorescence images (Fig. 5, A1–
C1). For instance, there is a great match of the blue channels
in both HCA and fluorescence staining.

For the colocalization of the cellular components in the
HCA results, the fluorescence channels were overlaid with
their corresponding HCA clusters in detail. For instance,
the matching regions (yellow) of the fluorescence imaging
(red) with the HCA (green) for the endoplasmic reticulum,
Golgi apparatus, and mitochondria are displayed in Fig. 5,
A3–C3. Good overlay is observed with PCC values at
~0.55 for these three organelles. Furthermore, mitochon-
drial distribution in glioma and HeLa cells has been detected
previously by spontaneous Raman microscopy (5,16). Spec-
tral differences between the mitochondria and the nucleus
were observed in the C-H region. Specifically, the shoulder
at the region at ~2850 cm�1 is more distinct for mitochon-
dria than for the nucleus (5). Similar results were observed
in the mean CARS spectra for MIA PaCa-2 cells (see
Fig. S2). Thus, the above results shown in Figs. 4 and 5 pro-
duced a set of spectral training datasets for six classes of
subcellular organelles including the nucleus, nucleolus,
lipid droplets, endoplasmic reticulum, Golgi apparatus,
and mitochondria.

Several reports have demonstrated the feasibility of using
CARS microscopy coupled with unsupervised multivariate
analyses such as PCA and NMF (25,26,29,30), but none
of them have reported the supervised classifications of
cellular organelles. Further, in this study, we first applied un-
supervised HCA on CARS datasets to visualize cellular
components, which are identified using fluorescence images
as a reference. More importantly, we have obtained repre-
sentative CARS spectra for different cellular components
to train a supervised classifier, which is an unprecedented
step in comparison with previous publications of multivar-
iate analyses of CARS datasets (25,26,29,30). The super-
vised classifier is then used for an automatic identification
of the subcellular organelles, as explained below in the vali-
dation stage.

It is noted that the PCC values for the colocalization are
higher for the nucleus than the other subcellular organelles,
which are lower than those of the nucleus. This might be due
to the size of the cellular components, where the nucleus is
the largest component in the cell. This implies that the prob-
ability of probing a pure component in the confocal volume
becomes higher as the size of the subcellular organelles
increases. In the case of small organelles, more than one
component might be present in the confocal volume. In
Biophysical Journal 106(9) 1910–1920



FIGURE 6 Automatic identification of the nucleus, nucleolus, and lipid

droplets. (A) Random forest of CARS dataset. (B) Fluorescence imaging

of the nucleus and lipid droplets. Overlaid images of lipid droplets and

the nucleus fluorescence (red) from panel B with their corresponding

random forest classes (green) from panel A are displayed in panels C (lipid

droplets) and D (nucleus), respectively. (yellow) Overlapping region. (D,

inset) Overlay region of the nucleolus between the fluorescence (red) and

random forest (green).
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the case of fluorescence microscopy, even minor compo-
nents can be still detected due to the selective labeling.
On the other hand, in CARS microscopy the spectrum is
composed of a combination of the spectra of all components
within the confocal volume. If the amount of the compo-
nents gets lower, the HCA might assign the pixel to another
class and thus, the fluorescence only colocalizes with a frac-
tion. The sensitivity of these two methods is limited by
different factors. Whereas fluorescence is limited by speci-
ficity and efficiency of the dye, CARS is limited by the char-
acteristic spectrum of the target component.

Furthermore, the lower PCC values can be explained in
terms of a different confocal volume, especially in the z di-
rection of both CARS and fluorescence measurements that
arises from the following:

1. After CARS measurements, the coverslips were removed
from the microscope to perform fluorescence staining
protocol, and afterwards they were repositioned on the
same microscope to acquire fluorescence measurements,
which may lead to a slight shift in the z direction between
the CARS and fluorescence measurements.

2. Single photon fluorescence imaging was used here—in
contrast to CARS, which is a multiphoton process.

3. The wavelengths used for fluorescence imaging are
shorter than those used for CARS measurements.
Validation stage

On the basis of the classifications achieved in the training
stage, the random forest classifier was trained to perform su-
pervised classification. Random forest is an attractive classi-
fier because it is simple; it does not require a feature
selection before training; it is efficient in both training and
validation; and it is robust against overfitting (35). We
have recently used random forest as a classifier to automat-
ically identify colon tissue types and area of colon adenocar-
cinoma in IR and Raman spectral datasets (11,12). Using the
training dataset described above, a random forest classifier
was trained on the preprocessed spectral images using 300
trees. The accuracy of the random forest is ~90%, indepen-
dent of the number of trees. Based on this, the spectral im-
ages depicted in Fig. 6 A are seen as automatic
identifications of subcellular organelles performed by the
random forest.

In Fig. 6 A, the CARS pseudo-color image is displayed
based on a random forest of nucleus (blue) and lipid droplets
(olive). It also clearly displays the nucleolus (cyan) within
the nucleus. To evaluate the quality of the CARS pseudo-co-
lor images, the fluorescence channels (red) from Fig. 6 B
were overlaid with their counterpart random forest classes
(green) and the results are displayed in Fig. 6, C (lipid drop-
lets) and D (nucleus).

The nucleolus is also shown as an inset of Fig. 6 D. Good
overlay is observed and the PCC values between the random
Biophysical Journal 106(9) 1910–1920
forest classes and their corresponding fluorescence channels
were estimated to be ~0.65 for lipid droplets and ~0.76 for
the nucleus and nucleolus. These results indicate that the su-
pervised random forest learning algorithm is successfully
reproducing the fluorescence results. Thus, three subcellular
components are label-free monitored instead of using at
least two different fluorescent labels. Although the identifi-
cation of lipid droplets by CARS imaging at ~2850 cm�1

has been reported previously using fluorescence staining
as a reference (13,44), these results show, for the first time
to our knowledge, their automated identification in addition
to the nucleus and nucleolus by means of random forest.

Label-free identification of subcellular organelles such as
endoplasmic reticulum, Golgi apparatus, and mitochondria
is important because these components play major roles in
cellular functions (46). We have constructed three selective
training datasets for three random forests. Each of them con-
tains the nucleus, nucleolus, and lipid droplets classes in
addition to only one class of endoplasmic reticulum, Golgi
apparatus, or mitochondria. The random forest results are
shown in Fig. 7. In this case, endoplasmic reticulum
(Fig. 7 A1), Golgi apparatus (Fig. 7 B1), or mitochondria
(Fig. 7 C1) are monitored independent of each other.

The fluorescence-labeled images of the cellular organ-
elles (red) taken from Fig. 7, A2–C2, are overlaid with their
corresponding classes of random forest (green) taken from
Fig. 7, A1 to C1, and are displayed in Fig. 7, A3–C3. The re-
gions of overlaps are shown in yellow. These data show that
random forest classes correlate well with their correspond-
ing fluorescence images of cellular components. This is re-
flected by the PCC values, which are estimated to be ~0.61
for endoplasmic reticulum, ~0.48 for Golgi apparatus, ~0.61



FIGURE 7 Automatic identification of the endo-

plasmic reticulum, Golgi apparatus, and mitochon-

dria. (A1–C1) Random forests of CARS datasets.

(A2–C2) Fluorescence images of the nucleus

(blue), endoplasmic reticulum (A2), Golgi apparatus

(B2), and mitochondria (C2). (A3–C3) Overlaid im-

ages of endoplasmic reticulum, Golgi apparatus,

and mitochondria fluorescence (red) from panels

A2–C2 with their corresponding random forest

(green) and from panels A1–C1 with overlapping

regions (yellow).
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for mitochondria, and ~0.86 for the nucleus. Similar results
have been observed for the calculated artificial fluorescence
images based on Raman data for the subcellular components
of glioma cells using a different approach (16).

However, when the classes of different random forests for
endoplasmic reticulum, Golgi apparatus, or mitochondria
(Fig. 7, A1–C1) are overlaid, the PCC values for the corre-
lation of any two of these classes are found to be quite high
(~0.84). This indicates that these classes are quite similar,
and the selective random forests display very little differen-
tiation between any of these three organelles (see also
Fig. S3).

To improve the differentiation between these three organ-
elles and identify the subcellular organelles simultaneously,
we have created one training dataset that includes all classes
for a single random forest. Fig. 8 shows the simultaneous
identification of endoplasmic reticulum, Golgi apparatus,
and mitochondria in addition to the nucleus, nucleoli, and
lipid droplets (see also Fig. S4). The simultaneous identifi-
cation of several subcellular organelles is one of the
believed novel findings in this study and was not reported
previously.
Correlation between the random forest classes and their
counterpart fluorescence channels is reflected by PCC,
which is ~0.57 for endoplasmic reticulum (Fig. 7 A),
~0.29 for Golgi apparatus (Fig. 7 B), and ~0.23 for mito-
chondria (Fig. 7 C). The average PCC value of the nucleus
in Fig. 7, A–C, was estimated to be ~0.87. Because the stain-
ing of lipid droplets was not performed for these cells
(Fig. 7), the lipid droplets class was overlaid with the
CARS image at 2850 cm�1, which is a lipid droplets marker
band (13,17,19).

Perfect overlays were observed (data not shown). Thus,
the simultaneous identification of subcellular organelles
gives satisfactory results for nucleus, nucleoli, lipid droplets,
and endoplasmic reticulum. The random forest is also able to
distinguish among endoplasmic reticulum, Golgi apparatus,
and mitochondria. However, the PCC values for the correla-
tion among the random forest classes of Golgi apparatus and
mitochondria and their corresponding fluorescence channels
are lower than expected. Both endoplasmic reticulum and
Golgi apparatus belong to the endomembrane system, and
are colocalized (49). Endoplasmic reticulum is also colocal-
ized with mitochondria at certain positions in cells (49,50).
FIGURE 8 Simultaneous automatic identification

of subcellular components in MIA PaCa-2 cells.
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Indeed, the fluorescence results of MIA PaCa-2 cells and the
calculated PCC values have indicated the colocalization of
these components (see Fig. S5 and Fig. S6). Thus, the
colocalization of these three subcellular organelles makes
the simultaneous identification of Golgi apparatus and mito-
chondria difficult, leading to lower PCC values. This is
because the classifier has to decide on one assignment for
each pixel even though, in the corresponding confocal vol-
ume, more than one component is present.

In this study, we have used CARS microscopy rather
than spontaneous Raman measurements because CARS is
a much faster method. Even faster time resolution is
possible by using instruments capable of line scanning
(51) or fast wavelength tunability (52). This point is critical,
especially for live cell imaging, due to the viability of cells
and the dynamical behavior of most subcellular organelles.
CARS imaging of living MIA PaCa-2 cells has been per-
formed in addition to fluorescence imaging of nucleus and
lipid droplets (see Fig. S7). The PCC values for the correla-
tion between random forest classes of lipid droplets and nu-
cleus with their corresponding fluorescence channels are
calculated to be 0.58 and 0.62, respectively. These results
imply that the current trained classifier can also be applied
on live cells.

Furthermore, to examine whether this trained classifier
can be applied on different cell types, we have performed
CARS and fluorescence measurements of human colorectal
adenocarcinoma cells, HT29, and the results are depicted in
Fig. S8. The PCC values for the correlation between
random forest classes of nucleus and lipid droplets with
their corresponding fluorescence channels are satisfactory.
These results suggest that the trained classifier is probably
applicable to a variety of human cancer cells as well.

In summary, the nucleus, nucleoli, lipid droplets, and
endoplasmic reticulum can be automatically and marker-
free identified. This is based not only on visual inspection,
but also on quantitative evaluation, which demonstrates
that random forest is a powerful tool to identify the subcel-
lular organelles. The random forest classifier can also differ-
entiate among endoplasmic reticulum, Golgi apparatus, and
mitochondria. Methods that can assign a combination of
components to each pixel (e.g., NMF) might further
improve the correlation (36). In addition, the trained classi-
fier is probably applicable on different human cancer cells.
Prospective of an automated label-free
identification of subcellular organelles

An automatic identification of pancreatic cancer subcellular
organelles by CARS microscopy opens new avenues for
several applications. For instance, lipid droplets are highly
dynamical organelles and perform several diverse functions
such as regulating storage and release of cholesterol and
fatty acids (20–23,53). It was observed that the number of
lipid droplets is increased in neoplastic cells and tissues,
Biophysical Journal 106(9) 1910–1920
implying that lipid droplets have a high potential as disease
markers (54). It has also been suggested that lipid droplets
are potential targets to produce new drugs for cancer treat-
ment (55). Thus, the automatic identification of lipid drop-
lets by CARS microscopy can be used for lipid droplets
quantification and to evaluate the response of these new
drugs.

Finally, CARS microscopy promises an attractive
approach for the label-free characterization of the
morphology of nuclei, which are of high relevance in
high-throughput microscopy. Contemporary protocols for
studying the cell-cycle using quantitative analysis of time-
lapse microscopy (56) or tumor microenvironments (57)
are based on either fluorescence or hematoxylin-eosin-stain-
ing protocols, to extract the morphology of nuclei. CARS
microscopy as a label-free approach may greatly simplify
these protocols by eliminating the need for staining in
high-throughput microscopic studies.
CONCLUSIONS

CARS imaging coupled with HCA have been used for what
we believe is the first time to visualize the cellular compo-
nents without the need for external markers. Furthermore,
we have established an algorithm for automatic label-free
identification of the cellular components such as nucleus,
nucleolus, lipid droplets, and endoplasmic reticulum using
the random forest method. This study opens an avenue for
the label-free simultaneous imaging of the dynamics of
several subcellular organelles. Furthermore, in the future,
we aim to identify several subcellular components in living
cells by CARS imaging by using only a few wavenumbers,
to make the measurements much faster than this study. This
can be achieved, for instance, using wavenumber feature se-
lection by means of the random forest method.
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Fig. S1. CARS images were recorded at (A) 2850 cm-1 and (B) 1750 cm-1. (C) Overlay of 
panels (A) and (B). (D) HCA of Raman dataset in the range of 2800-3100 cm-1. (E) 
Fluorescence image of lipid droplets. (F), (G), and (H) panels display the overlay (A) and (E), 
(B) and (E), and lipid droplet cluster from (D) and (E) panels, respectively. The overlapped 
regions are shown in yellow. 
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Fig. S2. Mean CARS spectra of subcellular organelles. 
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Fig. S3. Automatic identification of the endoplasmic reticulum, Golgi apparatus, and 
mitochondria. Selective random forests of CARS datasets in which the endoplasmic 
reticulum (A1-C1), Golgi apparatus (A2-C2), and mitochondria (A3-C3) are displayed in 
green. (A4-C4) Fluorescence staining (red) of endoplasmic reticulum (A4), Golgi apparatus 
(B4), and mitochondria (C4) in addition to the nucleus staining (blue). (A5-C5) Overlaid 
images of random forest classes of endoplasmic reticulum, Golgi apparatus, and 
mitochondria and the overlapping regions of the three organelles are shown in white. 
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Fig. S4. Simultaneous automatic identification of the endoplasmic reticulum, Golgi 
apparatus, and mitochondria. (A1-C1) random forest of CARS datasets. (A2-C2) 
Fluorescence images of the nucleus (blue), endoplasmic reticulum (A2), Golgi apparatus 
(B2), and mitochondria (C2). (A3-C3) Overlaid images of endoplasmic reticulum, Golgi 
apparatus, and mitochondria fluorescence (red) from (A2-C2) with their corresponding 
random forest (green) from (A1-C1) and the overlapping regions are shown in yellow. 
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Fig. S5. Colocalization of endoplasmic reticulum and Golgi apparatus. (A) Fluorescence 
image of nucleus (blue), endoplasmic reticulum (red), and Golgi apparatus (green). The 
overlay of endoplasmic reticulum and Golgi apparatus (B), endoplasmic reticulum and 
nucleus (C), and Golgi apparatus and the nucleus (D) are also shown. The overlaid regions 
are shown in yellow (B), purple (C) and cyan (D). 
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Fig. S6. Colocalization of endoplasmic reticulum and mitochondria. (A) Fluorescence image 
of nucleus (blue), endoplasmic reticulum (red), and mitochondria (green). The overlay of 
endoplasmic reticulum and mitochondria (B), endoplasmic reticulum and nucleus (C), and 
mitochondria and the nucleus (D) are also shown. The overlaid regions are shown in yellow 
(B), purple (C) and cyan (D). 
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Fig. S7. Automatic identification of the nucleus and lipid droplets in the living cell. (A) 
Random forest of CARS dataset of the MIA PaCa-2 cell. (B) Fluorescence imaging of the 
nucleus (blue) and lipid droplets (olive) of the living MIA PaCa-2 cell. Overlaid images of 
lipid droplets and the nucleus fluorescence (red) from B with their corresponding random 
forest classes (green) from A are displayed in C (lipid droplets) and D (nucleus), respectively. 
The overlapping regions are shown in yellow.  
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Fig. S8. Automatic identification of the nucleus and lipid droplets of HT29 cells based on a 
classifier trained on MIA PaCa-2 cells. (A) Random forest of CARS dataset of HT29 cells. 
(B) Fluorescence imaging of the nucleus (blue) and lipid droplets (olive) of HT29 cells. 
Overlaid images of lipid droplets and the nucleus fluorescence (red) from B with their 
corresponding random forest classes (green) from A are displayed in C (lipid droplets) and D 
(nucleus), respectively. The overlapping regions are shown in yellow.  
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