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Measurements in M63 Media 

We imaged cells grown in M63 media at 37°C for 2 hours, following induction of the target 

RNA and of the tagging MS2-GFP proteins (one hour before), using the same experimental and 

analysis protocols as in the experiments in LB described in the main text. The spatial distribution 

of newly-produced complexes, corresponding to Fig. 2 A in the main text for LB, is presented in 

Fig. S1.  

 
FIGURE S1 KDE of the spatial distribution of the fluorescence intensity (in arbitrary 

units) of complexes along the major axis of the cells, extracted from all cells and 

time points (black line, bandwidth 0.05). Data is extracted from cells that inherited 

no complexes but produced one or more. The old pole is at +1 and the new pole is at 

-1. All cells were born during the measurement period. The dashed vertical line 

represents the cell center. Measurements are from 63 cells grown in M63 media at 

37°C. The fraction of complexes observed in the older half of the cells was 0.45 

which is statistically indistinguishable from an unbiased partitioning of complexes 

(p-value of the binomial test with N equal to the number of observed cells is 0.45). 

 

The folded, spatial distribution of all complexes, corresponding to Figs. 2, B and C  in the 

main text for LB, is presented in Fig. S2. Also shown are the results from the ‘region detection’ 

method. 



 
FIGURE S2 KDE of the spatial distribution of the fluorescence intensity (in arbitrary 

units) of complexes along the major axis of the cells, extracted from all cells and 

time points (black line, bandwidth 0.05). Complex positions were normalized by half 

the cell length. Also shown is the fit to a piecewise-constant probability density 

function by maximum likelihood (gray line). All cells were born during the 

measurement period. The vertical dashed lines represent the detected separation 

points between the midcell and poles. Measurements are from 221 cells grown in 

M63 media at 37°C, with separation point detected at 0.69. 

2D Spatial distribution of complexes  

We obtained the KDE of the 2D distributions of complexes from all time points in both 

temperature conditions. Results are shown in Figs. S3, A and B, for cells at 37°C and 24°C in 

LB, respectively. 



 

FIGURE S3 KDE of the 2D spatial distributions of complexes from all time points. 

All cells were born during the measurement period. Measurements are from (A) 531 

cells at 37°C and (B) 372 cells at 24°C, both grown in LB media. Separation points 

(obtained from Figs. 2, B and C) are also shown. 

 

Models of long-term spatial distributions of large molecules in the cytoplasm of E. coli 

A cell is modeled as a 1-dimensional space, which is divided into N homogeneous sub-volumes, 

indexed from ],1[ N . The motion of the complexes is modeled along the major cell axis by 

unimolecular reactions following the Reaction-Diffusion Master Equation (1). Collisions 

between complexes are not modelled. We define )(xa


 as the propensity of the forward reaction 

(modeling the motion of a complex from position x to position x+1) and )(xa


 as the propensity 

of the reverse reaction (from x to x-1).  

These two propensities account for the combined effects of the cell geometry (rod shape 

and pole caps) and of the nucleoid on the displacements of the complexes. Let )(tP  be the N-by-

1 vector describing the probability of observing a complex in each sub-volume at time t. )(tP  

therefore evolves according to the following master equation, in matrix-vector form: 
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Since a complex can travel from any sub-volume in the cell to any other sub-volume, 

given enough time, the system is ergodic. Therefore, as t , )(tP  will converge to a unique 

solution, P . This solution can be found by solving the linear system of equations  AP0 , 

with the constraint that the total probability must sum to 1. As this is the long-term spatial 

distribution of the complexes predicted by the model, this was the distribution we fit to the 

measurements.  

In a model not accounting for the caps of the cells, the propensities of the forward and 

reverse diffusion reactions would be proportional to the diffusion constant of the complexes, D: 
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To account for the rod shape, i.e. a cylinder capped with two half-spheres, the length of 

the cell was parameterized by ]1,0[B , the normalized distance from midcell at which the cap 

begins. The forward propensities were attenuated by )(x , the ratio between the areas of the 

cross sections of the cell (denoted )(xS ) at adjacent positions. As such, )(xa


 remains the same 

and )(xa


 becomes: 
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Here, )(xc  translates the index of a sub-volume into the normalized distance from the 

midcell to the center of the sub-volume. In this case, B = 1 recovers the cylindrical cell from 

above, and B = 0 produces a spherical cell. 

The effects of a nucleoid are introduced in the above model by adding a Gaussian 

function to )(xa


 while subtracting it from )(xa


. This anisotropy was parameterized with center 

]1,0[ , standard deviation σ, and height h. Specifically: 
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To fit the models to the measurements, we use the Earth-Mover’s metric (2), otherwise 

known as the first Wasserstein metric (3), defined as: 
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where F and G are the cumulative distribution functions of the model and the measurements. 

To obtain the fraction of complexes moving towards the pole from sub-volume x, we first 

initialized the model with all probability in sub-volume x, denoted )0(x
P , and numerically 

integrated the system over one minute using the Matlab function ode23s to obtain the 

probability distribution at t = 1, )1(x
P . This fraction was then calculated as: 
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Spatial distribution without anisotropy 

We constructed a 1-dimensional model with the forward and backwards propensities of diffusion 

events set to be equal, and inversely proportional to the observed spatial distribution (results in 

Fig. S4). When both propensities are equal, the probability that a complex will travel in one 

direction is 0.5, and thus there is no velocity anisotropy. When the propensities are inversely 

proportional to the observed distribution, in the long term, the complexes tend to linger in the 

areas where they were observed with high probability. Thus, the long-term spatial distribution is 

exactly as observed (the lines are indistinguishable in Fig. S4 B), while producing a negligible 

anisotropy in the predicted displacement distribution (Fig. S4 A). 



 
 

FIGURE S4 (A) Predicted fraction of complexes travelling towards the pole from 

each position along the major axis. (B) Long-term spatial distribution of complexes. 

Results are from a model with a localized anisotropy as in Fig. 8 (gray lines), a 

model with heterogeneous speeds (dashed lines), and the measurements at 24°C 

(black lines). Note that the dashed line in (B) is superimposed by the black line.  

SUPPORTING REFERENCES 

1.  Gardiner, C.W., K.J. McNeil, D.F. Walls, and I.S. Matheson. 1976. Correlations in 

Stochastic Theories of Chemical Reactions. J. Statiscal Phys. 14: 307. 

2.  Rubner, Y., C. Tomasi, and L.J. Guibas. 2000. The Earth Mover’s Distance as a Metric for 

Image Retrieval. Int. J. Comput. Vis. 40: 99–121. 

3.  Dobrushin, R.L. 1970. Prescribing a system of random variables by conditional 

distributions. Theory Probab. Its Appl. 15: 458.  

 


