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ABSTRACT Following recent observations of large scale correlated motion of chromatin inside the nuclei of live differentiated
cells, we present a hydrodynamic theory—the two-fluid model—in which the content of a nucleus is described as a chromatin
solution with the nucleoplasm playing the role of the solvent and the chromatin fiber that of a solute. This system is subject to
both passive thermal fluctuations and active scalar and vector events that are associated with free energy consumption, such as
ATP hydrolysis. Scalar events drive the longitudinal viscoelastic modes (where the chromatin fiber moves relative to the solvent)
while vector events generate the transverse modes (where the chromatin fiber moves together with the solvent). Using linear
response methods, we derive explicit expressions for the response functions that connect the chromatin density and velocity
correlation functions to the corresponding correlation functions of the active sources and the complex viscoelastic moduli of
the chromatin solution. We then derive general expressions for the flow spectral density of the chromatin velocity field. We
use the theory to analyze experimental results recently obtained by one of the present authors and her co-workers. We find
that the time dependence of the experimental data for both native and ATP-depleted chromatin can be well-fitted using a simple
model—the Maxwell fluid—for the complex modulus, although there is some discrepancy in terms of the wavevector depen-
dence. Thermal fluctuations of ATP-depleted cells are predominantly longitudinal. ATP-active cells exhibit intense transverse
long wavelength velocity fluctuations driven by force dipoles. Fluctuations with wavenumbers larger than a few inverse microns
are dominated by concentration fluctuations with the same spectrum as thermal fluctuations but with increased intensity.
INTRODUCTION
Nuclei of living cells are places of intense activity (1).
DNA-encoded genes are transcribed into messenger RNA
strands by RNA polymerases. Helicases provide access for
the RNA polymerases to a DNA molecule by unwinding
and unzipping it. Topoisomerases control the supercoiling
of DNA. The enzymatic activity is fueled by the consump-
tion of free energy obtained from ATP hydrolysis and from
other sources. Chromatin serves as a substrate for this
activity. Chromatin is composed of centimeter-long DNA
molecules wound around spool-like histone octamers, the
nucleosomes, comprising the so-called 10-nm fiber. In the
less dense regions of the nucleus, referred to as ‘‘euchro-
matin’’, the 10-nm fiber is packed rather loosely, allowing
easy access to DNA for DNA-associating proteins. The
more densely packed regions are referred to as ‘‘heterochro-
matin’’. Genes located inside the heterochromatin regions
require local decondensation to allow for gene expression
(2). This is facilitated by the covalent modification of the
histone proteins through acetylation, methylation, and phos-
phorylation, which modulates the affinity of nucleosomes
for each other. In addition, ATP-consuming chromatin re-
modeling complexes actively rearrange the positions of
nucleosomes (3).
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The content of a cell nucleus is quite complex. The chro-
matin 10-nm fiber described above is immersed in a viscous
liquid, the nucleoplasm, which itself has a very rich compo-
sition: it contains not only free proteins, nucleotides, RNAs,
small molecules and salts, but also nucleoli and subnuclear
bodies such as Cajal bodies and paraspeckles or PML
bodies. During interphase—the time in the cell cycle be-
tween two cell divisions—the content of the nucleus can,
to first approximation, be viewed as a rather concentrated
and nonuniform chromatin solution in which 10-nm fiber
material, a gigantic polymer, is dissolved in a fluid
comprised of much smaller molecules. We will refer to
this solvent fluid as ‘‘nucleoplasm’’ (thus ignoring the pres-
ence of subnuclear bodies). In this chromatin solution, the
chromatin fiber itself may have higher levels of organiza-
tion, such as the (lately much disputed (4,5)) 30-nm fiber.

Chromatin dynamics has been investigated by high-reso-
lution imaging of fluorescently labeled nuclear proteins and
single DNA sites. Early work concluded that, during inter-
phase, chromatin underwent constrained (corralled) diffu-
sive motion with typical diffusion constants of the order
of 10�4 mm2/s (6–8). Analysis of three-dimensional tracks
of labeled telomeres revealed subdiffusive motion up to
timescales of 10–100 s (9). Tracking of labeled lac-operator
sites on chromatin showed both ATP and thermally driven
dynamics. Long periods of constrained diffusion were
observed, followed by short bursts of superdiffusive directed
motion (150-nm leaps of ~1 s). Upon ATP depletion, only
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localized motion was observed (10). Trajectories of micron-
sized microinjected particles (11) were found to be con-
strained within cages of ~250 nm size while ATP-dependent
subdiffusion of chromosomal loci was observed in bacterial
cells and in yeast cells (12). Interphase chromatin of embry-
onic stem cells was observed to execute ATP-dependent
periodic breathing motion on timescales of 0.1–0.01 s,
with amplitudes of ~100 nm (13). This breathing motion
is suppressed for differentiated cells while the fraction of
condensed chromatin increases. The architectural proteins
that maintain the structure of chromatin are hyperdynamic
in pluripotent embryonic stem cells but are increasingly im-
mobilized upon differentiation (14).

A microrheology study of the viscoelastic properties of
chromatin using 100-nm beads has found predominantly
elastic behavior in the frequency range 0.2–5.0 Hz with
broadly distributed values of storage and loss moduli (15).
Very different values for the moduli were reported in studies
of the displacement of a spherical magnetic nanoparticle of
1-mm diameter (16) and the rotation of a cylindrical mag-
netic nanoparticle of 1.5-mm length and 0.2-mm diameter
(17). A macroscopic rheology study using time-dependent
deformation of entire cells with fluorescently labeled nuclei
has found that nuclei of embryonic stem cells and those
of cells lacking A/C lamins were much more deformable
than those of differentiated cells (18).

All these studies focused on the tracking of a small number
of tracer particles. In a recent study, fluorescently labeled his-
tones were used to map the chromatin movement simulta-
neously across the entire nucleus (19). The study showed
that chromatin motion of human HeLa cells appears to be
spatially correlated over length scales ranging from 250 nm
to 5 mm. This is a surprising result: individual events such
as gene expression, DNA replication, or DNA repair are pre-
sumably highly specific so one would not expect large- scale
correlations. The aim of this article is to provide a theoretical
framework for the analysis of studies of ATP-driven chro-
matin dynamics. The basic theoretical assumption of the
proposed framework is that the velocity fluctuations inside
chromatin can be described within linear response theory
applied to a viscoelastic two-fluid model.

The response of the chromatin solution to both thermal
fluctuations and to active events is determined by the dy-
namic susceptibility of the two-fluid model. It could be ques-
tioned whether a very complex system such as chromatin
could be described by any simple theoretical model. Linear
hydrodynamic properties of complex systems are in general
determined by conservation laws and symmetry. These prop-
erties depend on themolecular details of the local structure of
the material only insofar as these determine the numerical
value of the response moduli of the system. For the case of
chromatin, conservation of solvent and conservation of
10-nm fiber material plays such a role. In terms of symmetry,
the chromatin solution is treated as a fluid in the sense that
the 10-nm fiber is not restrained by any three-dimensional
Biophysical Journal 106(9) 1871–1881
network of covalent cross-links (even if there are higher
levels of organization) so the shear modulus at low fre-
quencies should be zero. Moreover, the chromatin solution
appears to be relatively isotropic on length scales from tens
of nanometers to several microns. We will show that one
can similarly classify active events as scalar or vectorial,
depending on symmetry considerations.

An important motivation for adopting this methodology
was that the hydrodynamic method has been applied with
success to active gels such as the actin-myosin system
with motor protein activity treated as a distribution of force
dipoles. The motor activity produced highly correlated, low-
frequency shear fluctuations through coupling to long-wave-
length shear modes of the gel. A recent review summarizes
studies of soft materials where large-scale cooperativity
and hydrodynamic fluctuations are driven by active force
dipoles (20).

We propose that a study of the collective dynamics of
chromatin might well be relevant to questions concerning
gene expression that are of interest to the life-science com-
munity. Collective gene expression events can occur as part
of the natural progression through the cell cycle or in
response to external signaling cues or environmental chal-
lenge. Different forms of collective gene expression could
generate different active hydrodynamic fluctuation spectra.
If that is the case, then the measurement of the flow spectral
densities, as described in this article, could provide a new
diagnostic tool for probing collective activity in the nucleus.
THEORY

Two-fluid model

We start with the specification of the linear hydrodynamics
of an idealized chromatin solution that is homogeneous and
has no sources of free energy consumption. This passive
chromatin solution will be treated as a two-fluid model, a
viscoelastic fluid composed of a solvent (i.e., the nucleo-
plasm) and a polymeric material (i.e., the chromatin fiber).
The chromatin solution is assumed to have an accessible
state of thermodynamic equilibrium with no osmotic or
hydrodynamic pressure gradients. Chromatin itself is quite
compressible: a change in volume fraction of the chromatin
fiber in some region can be compensated by solvent (nucle-
oplasm) flow in or out of that region. The combined solution
composed of polymers (chromatin fiber) plus solvent
(nucleoplasm), however, will be treated as incompressible.
The polymer volume fraction in this equilibrium state will
be denoted by f0. Deviations from this equilibrium state
are described by the following set of collective hydrody-
namic variables:

1. Solvent flow velocity~vs;
2. Polymer flow velocity~vp;
3. Deviation of polymer volume fraction from equilib-

rium df;
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4. Hydrodynamic pressure P; and
5. Osmotic pressure P.

The linearized hydrodynamic equations of a two-fluid
model (21) read as

zð~vp �~vsÞ ¼ V
/

, s
4 � V

/

P� f0V
/

P; (1)

zð~vs �~vpÞ ¼ �ð1� f0ÞV
/

P: (2)
The derivation of these equations, based on general princi-
ples of linear response theory (see, e.g., Landau and Lifschitz
(22) or Doi (23)) is summarized in Section S1 in the Support-
ing Material. Equation 1 relates the viscous drag exerted by
the solvent on the chromatin polymer to the force per unit vol-
ume due to polymer-polymer interactions (first two terms)
plus the hydrodynamic force per unit volume exerted on
the polymer. The expression z ~h0/x

2 is the inverse of the sol-
vent permeability of chromatin with h0 the viscosity of the
solvent and x the typical size of the pores of the chromatin.
Next, s

4
is the (traceless) shear stress tensor of chromatin

that is additional to the separately included (minus) gradient
of the osmotic pressureP. Equation 2 relates theviscous drag
exerted by the polymers on the solvent with the hydrody-
namic force per unit volume exerted on the solvent volume
fraction (Darcy’s law for porous media); this treatment ne-
glects viscous stresses in the solvent on length scales larger
than the mesh size (see Milner (24) for further details).
Finally, osmotic pressure variations are related to concentra-
tion variations by P ¼ Kdf with K the osmotic modulus of
the polymer system.

Thehydrodynamics of chromatinwill be assumed to be that
of a generalized, linear, non-Newtonian, viscoelastic fluid.
For such fluids, the shear stress tensor can be expressed as

iqisijð~q;uÞ ¼ �Eðq;uÞ
�
1

3
qjqiv

p
i þ q2vpj

�
: (3)

Here, E(q,u) is a generalized complex shear viscosity of
FIGURE 1 Example of a scalar event. (Left panel) Equilibrium state of

chromatin. The length scale x indicates the average spacing between adja-

cent sections of the 10-nm fiber. (Right panel, yellow region) Localized re-

gion where 10-nm fiber has been chemically altered, with respect to the

equilibrium state, by (de)acetylation and/or (de)methylation of the histones.

Sections of the 10-nm fiber that have been chemically altered are shown

(red). Neither the nucleosomes nor the enzymes that produce the alterations

are shown. The chemical alteration causes a local change in the solubility of

the 10-nm fiber, causing influx or efflux of solvent. (Also in right panel)
chromatin that depends on both wavevector and frequency.
We will not specify the form of E(q,u), which must be pro-
vided either by microrheological experiments or by a micro-
scopic theory of the chromatin solution. E(q,u) is related to
the more familiar complex modulus by G(q,u) ¼ �iuE
(q,w).

Our convention for the Fourier transforms in this expres-
sion is

fð~q;uÞ ¼
Z
DV

ZN
�N

fð~r; tÞeiðut�~q ,~rÞd~rdt; (4a)

X ZN

Increased solubility of localized decondensation of the chromatin. (Gray

arrows) These changes are reversible. (Gray frame) Field of view. To see

this figure in color, go online.
fð~r; tÞ ¼ 1

DV
~q �N

fð~q;uÞeið�utþ~q ,~rÞdu
2p

; (4b)
and treated similarly for the other fields. The value DV
is nucleus volume. Wavevector and frequency are limited
by the fact that q/2p must be large compared to the inverse
of the size of the nucleus and u/2p must be large
compared to the inverse of the duration of the interphase
stage.

The condition that the full system of solvent plus chro-
matin is incompressible can be expressed as

V
/

, ½ð1� f0Þ~vs þ f0~v
p� ¼ 0; (5)

while the linearized continuity equation for polymer mate-
rial is

vf=vt þ f0V
/

,~vp ¼ 0: (6)

This completes the hydrodynamic description of passive
chromatin as a linear non-Newtonian, viscoelastic fluid.
The next step is a description of the active sources. We start
with so-called scalar events.
Scalar activity

Activity associated with the local condensation or decon-
densation of chromatin driven by free energy consumption
is termed a ‘‘scalar event’’. Unlike the active force dipoles
of the actin-myosin system mentioned in the Introduction,
scalar activity is nondirectional. Thermal concentration
fluctuations are explicitly excluded from the definition of
scalar events. Fig. 1 shows schematically an example of a
scalar event.

The shift is assumed to be due to a number of isolated
events at different sites of the chromatin. In Section S1 in
Biophysical Journal 106(9) 1871–1881
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the Supporting Material, it is shown that, in linear response
theory, scalar activity can be included as a shift in the
osmotic pressure of the form

Pð~r; tÞ ¼ Kdfð~r; tÞ � að~r; tÞ;

where

að~r; tÞ ¼
X
k

skd
�
~r �~Rk

�
gðt � tkÞ (7)

is the activity function. Here, sk indicates the sign and
strength of the condensation or decondensation event at
location ~Rk at some time tk. The dimensionless function
g(t) is zero for negative arguments whereas for positive
arguments it decays with time. A simple choice for g(t)
would be

qðtÞexpð�t=taÞ;

with ta the typical duration of such an event and q(t) the step
function, which equals 1 for positive arguments and 0 for
negative arguments.

Single scalar event

Assume that only one scalar event takes place, at the origin
at time t ¼ 0. The linearized force-balance equation is then

zð~vp �~vsÞ ¼ V
/

s
4 � KV

/

df� f0V
/

Pþ sV
/

dð~rÞgðtÞ: (8)

In a few lines of algebra, this yields

vdf

vt
¼ DV2df� ~sV2dð~rÞgðtÞ � ð1� f0Þ2

z=f0

V
/

,
�
V
/

s
4
�
; (9)

with

D ¼ K
ð1� f0Þ2
z=f0

and

~s ¼ s
ð1� f0Þ2
z=f0

:

We can identify D as a collective diffusion constant. This
equation can be viewed as defining a Green’s function for
scalar events. In Section S2 in the Supporting Material,
we solve this equation for the special case of a Newtonian
fluid. It is found to describe a localized change in polymer
concentration at the origin plus a transient collective diffu-
sion pulse that travels radially outwards from the origin.
The volume integral over the concentration variation is 0:
no new material is introduced by the localized change in
solubility.
Biophysical Journal 106(9) 1871–1881
Distributed scalar events

For the general case of a spatial and temporal distribution of
scalar events, the concentration profile induced by the scalar
events can be shown to be given by the linear response
equation

dfð~q;uÞ ¼ cðq;uÞað~q;uÞ; (10)

where
cðq;uÞ ¼ iq2f0

u

�
z

ð1�f0Þ2
þ 4

3
Eðq;uÞq2

	
þ iq2Kf0

(11)

is the dynamic susceptibility; see Section S3 in the
Supporting Material for the derivation. In the limit of zero
frequency, c(q,u ¼ 0) reduces to the static osmotic suscep-
tibility 1/K. The dynamic susceptibility has pole singular-
ities in the lower-half of the complex frequency plane that
correspond to the collective modes of the system. In Section
S7 in the Supporting Material, as a matter of a mathematical
example, we work out the calculations for the artificial case
when passive chromatin is assumed to have the rheological
properties of the Maxwell fluid. Two collective modes are
present in that case, corresponding to hybridized collective
diffusion and stress relaxation.

Ensemble averaging of scalar events

Assume a sequence of scalar events is observed, e.g., the
initiation or termination of the expression of a specific
sequence of genes, DNA replication, or repair, etc. Because
only a limited amount of data may be obtainable in a partic-
ular experiment on a given cell, strong statistical variations
are to be expected. To reduce the effect of statistical vari-
ability, the experiment could be repeated for different cells
at the same stage of the cell cycle and under the same stim-
ulus conditions. The magnitude of the ensemble-averaged
source activity hað~q;uÞi then depends on the degree of cor-
relation between different cells. If this ensemble average is
nonzero, then according to the linear response theory there
should be a nonzero ensemble-averaged longitudinal flow
velocity pattern of the formD

vpkð~q;uÞ
E

¼ u

f0q
cðq;uÞhað~q;uÞi: (12)

On the other hand, if hað~q;uÞi averages to zero due to lack

of correlation, one can still measure the ensemble-averaged
second moment of the velocity fluctuations.

Assume an ensemble of cell nuclei at the same stage of
the cell cycle and under the same external conditions for
the case that gene expression is highly stochastic so that af-
ter ensemble averaging, the first moment is hað~q;uÞi ¼ 0. If
active events are locally correlated in space and in time, then
the correlation should depend mainly on the time difference
t � t0 between events—assumed small compared with the
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characteristic timescale of the cell cycle—and on the dis-
tance~r �~r 0 between events, assuming neither~r nor~r 0 are
located close to the nuclear envelope. The second moment
for stochastic active scalar events is defined as

hað~q;uÞa�ð~q0;u0Þi ¼ DTDV
�
a2
�
~q;u

du;u0d~q;~q0 ; (13)

where the asterisk denotes complex conjugation. Wavevec-
tors are discretized in the usual way by boundary conditions
imposed at the surface of the volume DV of the nucleus
(which do not need to be specified for q [ 1/DV1/3). The
Kronecker delta notation d~q;~q0 means that the two vectors~q
and ~q0 must be equal. Frequency is discretized as well
with a frequency interval 2p/DT. The timescale DT will be
set to infinity at the end. In that limit, the Kronecker delta
du,u in the frequency domain reduces to a delta function as

2p

DT
dðu� u0Þ:

If we denote the total number of active scalar events in the
time interval DT by Ms, then the number of scalar events
rs ¼ Ms/DTDV per unit time per unit volume—the scalar
event density—will be assumed to be finite in the limit
that DT goes to infinity.

The quantity �
a2
�
~q;u

will be referred to as the ‘‘power spectral density’’ (PSD) of
active scalar events. To compute this quantity, we will take
the definition of the scalar source term Eq. 7, multiply it by
complex conjugate, and take an ensemble average. In the re-
sultingdouble sumover event numbers k and k0, only the k¼ k0

terms are assumed to be nonzero under circumstances where
the event strengths sk are statistically independent from one
another and from the event onset times and locations. Under
these assumptions, the PSD of scalar events reduces to�

a2
�
~q;u

xrs


s2
�jgðuÞj2: (14)

Similar spectral densities can be defined for the concen-
tration and longitudinal velocity fields. Using the linear
response relation Eq. 10, the PSDs of the concentration
and the longitudinal velocity fields are related to the PSD
of scalar events by�

df2
�
~q;u

¼ jcðq;uÞj2�a2
�
~q;u

; (15a)

� � u2
2
� �
v2k
~q;u

¼
q2f2

0

jcðq;uÞj a2

~q;u
: (15b)

If the active events are uncorrelated, an explicit form can be
given as
�
df2

�
~q;u

x
q4f2

0

t2a
1þðutaÞ2 rshs

2i���uh z

ð1�f0Þ2
þ 4

3
Eðq;uÞq2

i
þ iq2Kf0

���2: (16)

It is useful to compare these results with the spectrum of
thermal concentration fluctuations of the passive fluid. The
PSD of thermal fluctuations is determined by the fluctua-
tion-dissipation theorem

�
df2

�
~q;u

¼ 2kBT

u
Im½cðq;uÞ�; (17)

which, in this case, reduces to
�
df2

�
~q;u

¼
2q2f2

0kBT
�

z

ð1�f0Þ2
þ 4

3
Re½Eðq;uÞ�q2

�
���u� z

ð1�f0Þ2
þ 4

3
Eðq;uÞq2

�
þ iq2Kf0

���2: (18)

A comparison of the active (Eq. 16) and the passive
(Eq. 18) PSD shows that, although they have the same de-
nominator, the two expressions behave differently in long-
wavelength limit. The active PSD, Eq. 16, goes to zero as
q4 at q/ 0 whereas the passive PSD, Eq. 18, is proportional
to q2. That means that the ratio of the active and passive
PSDs vanishes in the long wavelength limit. The extra q2

factor in the active PSD arises from the fact that the active
sources only enter through gradients in the equations of mo-
tion. Physically, because hsi ¼ 0, condensation and decon-
densation events balance each other over large distances.
The active PSD also contains a factor

1

�ðutaÞ2 þ 1

�
;

which reflects the sudden onset of a condensation/deconden-

sation event. Because the ratio of the active and passive
PSDs is q- and u-dependent, and arising from fundamental
physics constraints, it is, in general, not possible to define
an effective noise-temperature for active scalar events. It
should be noted that the power spectrum for the passive
thermal concentration fluctuations has a subleading q4

term, similar to the active power spectrum, whereas an
active source stirring the solvent—not considered in this
article—would produce a q2 term, similar to the passive
power spectrum. The difference between the q4 and q2 terms
thus should not be viewed as reflecting a fundamental differ-
ence between active and passive fluctuations.
Vector activity

In the Introduction, we mentioned that many active soft-
matter systems are characterized by the production of
force-dipoles. Because force generation by active proteins
must obey the condition that there is no net momentum or
angular momentum transfer to the chromatin, the total force
and total torque must be zero. It follows also that, in this
Biophysical Journal 106(9) 1871–1881
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case, active force generation should be represented as a
distribution of collinear force dipoles. Fig. 2 shows possible
examples of active events in chromatin where a dipolar pair
of collinear, opposing forces is produced. (See also Narlikar
et al. (25).)

In Section S4 in the Supporting Material, we show that
such a distribution of vector events can be included in our
formalism as a contribution to the divergence of the active
part of the stress tensor,

V
/

, s
4ðacÞð~r; tÞ ¼ fa

XMv

k¼ 1

bnk

�bnk , V
/�

d
�
~r �~Rk

�
gðt � tkÞ;

(19)

withMv the number of vector events in the time interval Dt.
Each force dipole is composed of a pair of collinear opposing
forces f bnk and �f bnk separated by a microscopic distance a.
Here bnk is a unit vector along the force direction. For the
case of nucleosome rearrangement events, a would have
the typical size of a spacer length between nucleosomes.

Single vector event

A single active vector event at the origin at time t ¼ 0 in-
duces a transverse velocity flow field given by

~vtð~q;uÞ ¼ ifagðuÞ P
4ð~qÞ , bnðbn ,~qÞ

q2Eðq;uÞ : (20)

Here, Pijð~qÞ ¼ dij � bqibqj is the transverse projection oper-

ator defined with bq ¼~q=q and bqi ¼ qi=q. The equation for
the transverse flow field is obtained by applying this projec-
tion operator to Eqs. 1 and 2. The transverse polymer and
solvent flow velocities are the same in this case (and
hereon indicated as the flow field, itself). The inverse
Fourier transform can be viewed as the Green’s function
for vector events. For the special case of a Newtonian fluid,
the flow field can be obtained explicitly, as discussed in
Section S5 in the Supporting Material. The pattern of flow
lines is that of extensional flow oriented along the force
direction.
CBA

the nucleosome. In the second step (C), the enzyme detaches, and the extra D

(Gray frame) Limited field of view. For other illustrations of the production of fo

and Narlikar (3). Many other types of events in the nucleus are associated with ge

of RNA polymerases, helicases, topoisomerases, etc. To see this figure in color
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Distributed vector events

The flow field produced by a distribution of vector events is
obtained by the superposition of the flow fields of individual
sources. The activity function for a distribution of vector
events is the linear superposition of individual events of
the form of Eq. 20:

~bð~q;uÞ ¼ ifagðuÞ
XMv

k¼ 1

P
4ð~qÞ , bnkðbnk , bqÞeið~q ,~RkþutkÞ: (21)

The associated flow field can be obtained by a simple linear

response relation

~vtð~q;uÞ ¼ 1

qEðq;uÞ
~bð~q;uÞ: (22)

If, as for the scalar case, the ensemble-averaged flow field is

very small, then the PSD of the velocity fluctuations is

�
~v2t

�
~q;u

¼
���� 1

qEðq;uÞ
����2�~b2

�
~q;u

; (23)

where the PSD for vector sources, ð~b2Þ~q;u, is defined as in

Eq. 13 for the scalar PSD.

To compare this expression with the PSD for transverse
thermal equilibrium fluctuations, we use again the fluctua-
tion-dissipation theorem:

�
~v2t

�
~q;u

x
4kBT

q2
Re

�
1

Eðq;uÞ
	
: (24)

This should be compared with the full Landau-Lifshitz

expression for thermal hydrodynamic fluctuations in a
Newtonian fluid (see, e.g., Lifshitz and Pitaevskii (26)),

�
~v2t

�
~q;u

¼ kBT
4hq2

ðurÞ2 þ h2q4
; (25)

with r the mass density. For frequencies small compared to
2
hq /r , the two expressions agree if one sets E ¼ h.
Comparing the spectrum of active fluctuations with that

of transverse equilibrium thermal fluctuations, one sees
FIGURE 2 Example of a vector event. (A) The

figure shows two steps of the translocation of one

nucleosome (shown as a disk) along DNA. The

dots (in green) along the DNA are position markers

as a guide to the eye. In the first step (B), a chro-

matin remodeling enzyme binds to the nucleosome

and applies equal but opposite forces on the DNA

on opposite sides of the nucleosome. The enzyme

is not shown, but its action is indicated by the

spring (in orange). It leads to an excess of DNA

wound around the nucleosome, which promotes

formation of DNA loops that can diffuse along

NA is released by the nucleosome, resulting in nucleosome translocation.

rce dipoles in chromatin, see Fig. 2 in Narlikar et al. (25) or Fig. 2 in Racki

neration of localized force dipoles including—but not limited to—the action

, go online.
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that—unlike the scalar case—active vectorial events are not
reduced by a factor q2 as compared to the equilibrium fluc-
tuation spectrum. If active events have a long lifetime, then
the active spectrum carries again an extra factor 1/u2. In
that case, active vector events should dominate at low
frequencies.

Nematic order parameter

Ensemble averaging for vectorial events can be discussed
conveniently by introducing a nematic order parameter
field. A force dipole source, Eq. 19, (locally) breaks rota-
tional symmetry at the site of the force dipole event while
maintaining inversion symmetry bn4� bn as reflected by
Eq. 21. If the orientations of different force dipoles across
the chromatin are correlated, then rotational symmetry
could be broken on larger length scales. To examine the
development of nematic order, we define the density
rvð~r; tÞ of vector events and the nematic order parameter as

rvð~r; tÞ ¼
X
k

d
�
~r �~Rk

�
dðt � tkÞ; (26a)

Q ð~r; tÞ ¼
X

d
�
~r �~R

�
dðt � t Þ

�bnðkÞbnðkÞ � 1
d

	
: (26b)
ij

k

k k i j 3
ij

A similar formulation, in terms of fields instead of individ-

ual events, can be found in MacKintosh and Levine (27). In
terms of the force dipole distribution, a chromatin solution
would be a uniaxial or biaxial nematic if the spatial and tem-
poral average hQiji ofQijð~r; tÞ would be nonzero. In terms of
the event density and the nematic order parameter field,
Eq. 19 then reads as

V
/

, s
4ðacÞð~r; tÞ ¼ fa

Z
d3~r 0dt0gðt � t0Þ

�
�
Q
4

ð~r 0; t0Þ þ 1

3
I
4

rð~r 0; t0Þ
	
, V

/

dð~r �~r 0Þ:
(27)

An ensemble-averaged activity function for vectorial events
~
hbð~q;uÞi can be defined in analogy to the ensemble-aver-
aged activity function hað~q;uÞi for scalar activity. In terms
of the nematic order parameter:



~bð~q;uÞ� ¼ ifagðuÞP4ð~qÞ ,

�
Q
4

ð~q;uÞ
�
, bq: (28)

The nucleus could have a broken rotational symmetry of the

nematic type either because the orientations of the different
force dipoles are correlated due to the intrinsic structural or-
ganization of the nucleus (which may or may not be related
to the liquid-crystalline ordering possible in the suspensions
of nucleosome particles (28)). Another, and even more inter-
esting, possibility is that the symmetry-breaking is dynamic.
The hydrodynamic backflow of active force dipoles pro-
duces the aligning torques on neighboring dipoles. Sponta-
neous nematic symmetry-breaking of this type has been
invoked as a possible mechanism for the convective flows
observed in oocytes (29).

If the fluctuations in chromatin are sufficiently strong that
the ensemble-averaged nematic order parameter is zero,
then—as in the scalar case—the PSD for nematic fluctua-
tions can be expressed in the form of a two-point correlation
function. In terms of the nematic order parameter field:

�
~b
2
�
~q;u

¼ f 2a2
��gðuÞ��2

�

�bq ,Q4�
ð~q;uÞ , P

4ð~qÞ ,Q
4

ð~q;uÞ , bq�
DVDT

: (29)

Similar to the formula in Eq. 14, the PSD of vector events
simplifies if the directions of the force dipoles are statisti-
cally independent of each other and of the event positions.
In that case, only the k¼ k0 terms survive in the double sum-
mation over event pairs implicit in the formula of Eq. 29,
which results in�

~b
2
�
~q;u

¼ rv f
2a2jgðuÞj2
ðbq , bnÞ2 � ðbq , bnÞ4�; (30)

where rv is the average of rvð~r; tÞ. If the force dipoles are
distributed isotropically, then
ðbq , bnÞ2 � ðbq , bnÞ4� ¼ 2



15:

RESULTS AND COMPARISON WITH EXPERIMENT

This section provides a preliminary comparison of the
theoretical framework of the previous sections with the
observational study of collective dynamics in chromatin
that motivated our work. The observational study applied
displacement correlation spectroscopy (DCS), which is
based on time-resolved image correlation analysis as a
means for the measurement of the velocity fluctuation
spectra (19). DCS uses algorithms of particle image
velocimetry to measure direction and magnitude of local
movements simultaneously across the entire nucleus and
over the entire duration of the experiment (19). Fluores-
cently-labeled histones are used to visualize chromatin
movement. A camera records subsequent exposures to
pulses of laser light. The frames are split into a large
number of interrogation areas, or windows. For each inter-
rogation window a local displacement vector between two
time points, separated by time interval Dt, is obtained by
cross-correlation between pairs of images; all experimen-
tally accessible values of Dt were sampled. If the displace-
ment over a time interval Dt is measured, then the mean
velocity

½~rðt þ DtÞ �~rðtÞ�=Dt
Biophysical Journal 106(9) 1871–1881



1878 Bruinsma et al.
can be obtained. The spatial Fourier transform ~Fð~q;DtÞ of
the mean flow velocity is given by

~Fð~q;DtÞ ¼
XN
j

~rjðt þ DtÞ �~rjðtÞ
Dt

ei~q ,~rjðtÞ; (31)

with N the number of tracer particles. The flow spectral den-

sity (FSD) S(q,Dt) is defined as
��~Fðq;DtÞ��2�
N:
In Section S6 in the Supporting Material we show that this

measured FSD is related to the computed velocity PSD by,

Sðq;DtÞxc

Z
1� cos uDt

ðuDtÞ2
�
~v2
�
~q;u

du

p
; (32)

with c ¼ N/DV the tracer concentration.

In the study, the time-dependent displacements of labeled

chromatin sites,

~riðt þ DtÞ �~riðtÞ;

were measured for interphase HeLa cells both with and

without ATP consumption (19). From these data, we calcu-
lated the FSD using the method described above. Fig. 3
shows the measured FSD as a function of the wavenumber
q for different values of Dt.

We fitted the data to the form

Sðq;DtÞ ¼ AðqÞ
Dt2 þ BðqÞ
Dt: (33)

The motivation for this fitting function was twofold. In the

limit that the wavenumber q is larger than the inverse of
the mean separation between the tracer particles, the FSD
should be proportional to 1/Dt2 for localized tracer particles
FIGURE 3 Flow spectral densities of the chromatin of wild-type and

ATP-depleted nuclei of interphase HeLa cells as a function of the wavenum-

ber q for several values of the fixed measurement time interval Dt. To see

this figure in color, go online.
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and proportional to 1/Dt for diffusing tracer particles (see
Section S6 in the Supporting Material). We will discuss
below that this is also a natural fitting form for general q
when a simple model for the E(q,u) value of chromatin is
adopted.

The result of a fit to the passive data (ATP-depleted
nuclei) is shown in Fig. 4. The best fit is A(q) f 1/q1.6

whereas B(q) is statistically very close to zero for the q/2p
value in excess of an inverse micron. The inset of Fig. 4
shows the FSD multiplied by Dt2 as a function of Dt for
fixed q. Because B(q) is statistically almost zero, this should
be practically a horizontal straight line for the fitting proce-
dure to be meaningful. This appears to be the case. Recall
that in terms of tracer dynamics, a Dt2 dependence would
indicate localization.

The next step should be a comparison between the
measured FSD and the FSD computed for a generalized
complex shear viscosity E(q,u) obtained either from a
microrheological study or a microscopic theory of chro-
matin rheology. As neither is available at this point, we
will assume

EðuÞ ¼ h

1� iut

independent of wavenumber as a simple illustrative

example. This form is the generalized viscosity of the
Maxwell fluid (MF). Based on the Tseng et al. (15), Celedon
et al. (17), Pajerowski et al. (18), and Dahl et al. (30), our
best estimates are for t to be in the range of a few seconds
and for h/t to be in the range of 1.5–200 Pa. In Section S7 in
the Supporting Material, it is shown that the FSD of a
passive MF is the sum of a longitudinal velocity term
FIGURE 4 Fit coefficients A(q) and B(q) of the fitting form of Eq. 33 for

the case of ATP-depleted cells. B(q) is practically zero for q/2p greater than

an inverse micron; that means that the FSD at constant q should be propor-

tional to 1/Dt2. (Inset) Passive FSD multiplied by Dt2 for fixed q as a func-

tion of Dt; linear regression (pink line), very nearly horizontal. To see this

figure in color, go online.



FIGURE 5 Fit coefficients A(q) and B(q) of the fitting form of Eq. 33 for

the case of ATP-consuming cells. (Inset) FSD multiplied by Dt2 of wild-

type (ATP-consuming) cells for two particular fixed values of q as a func-

tion ofDt; (solid and dashed lines) linear regression fits. To see this figure in

color, go online.
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(approximately) proportional to 1/(q2Dt2) for Dt large
compared to the inverse of the relaxation rates of the MF,
and a transverse velocity term proportional to 1/(q2Dt). In
terms of a comparison with the MF, our results would
seem to rule out transverse velocity fluctuations as the
source of the observed equilibrium FSD because of the Dt
dependence. However, the q dependence of the FSD devi-
ates somewhat from the MF 1/q2 dependence; the heteroge-
neity of chromatin could be a contributing factor in this
regard (because the local chromatin concentration varies
throughout the nucleus in a living cell significantly), or it
could indicate that a q dependence must be included in
the MF expression for the generalized viscosity. It should
be noted that the viscosity of the nucleoplasm is known to
be time-dependent (31) but this takes place over timescales
that are much longer than the duration of the experiment
(~25 s).

At the next stage, we repeated the analysis for the case
of wild-type HeLa cells, which are ATP-active. For values
of q/2p larger than an inverse micron, the passive (ATP-
depleted) and active (wild-type, ATP-active) spectra appear
to be quite similar, apart from the roughly doubled overall
intensity (see Fig. 3). The simplest interpretation is that in
this high q regime the FSD still is dominated by thermal
fluctuations but that ATP activity has reduced the osmotic
modulus by a factor of approximately one-half. In principle,
it is also possible that large q active fluctuations have the
same form as thermal fluctuations, but with an effective
noise-temperature that is twice the actual temperature.

For q/2p less than an inverse micron, the active and pas-
sive spectra are different: the FSD of the active system in-
creases rapidly, as compared to the passive data (Fig. 3).
Equation 33 still can be used as a fitting form. This is
demonstrated in the inset in Fig. 5, which shows a plot of
the FSD multiplied by (Dt)2 for a fixed q roughly corre-
sponding to the crossover between large and small q regimes
(where passive and active data are very similar and very
different, respectively). It is seen that the FSD multiplied
by Dt2 is approximately linear in Dt (the linear regression
fit is shown as a solid straight line). Having justified the
fitting from Eq. 33, we analyzed the coefficients A(q) and
B(q) obtained from the fitting procedure. The data for large
q regime are shown in Fig. 5. Just as for the passive case,
B(q) is very small for q/2p that is larger than an inverse
micron. On the other hand, in the low q range, B(q) grows
so rapidly that it has to be plotted on a different vertical
scale (see Fig. S2 in the Supporting Material).

The inset in Fig. 5 that demonstrates linear dependence
would be consistent with a FSD that is inversely propor-
tional to 1/Dt. In turn, this would be consistent with diffu-
sive tracer dynamics. In terms of a comparison between
the FSD of active cells and that of MF rheology, we show
in Section S7 in the Supporting Material that the contribu-
tion to the FSD coming from active transverse velocity fluc-
tuations is proportional to 1/q2Dt, just as it was for thermal
fluctuations. The contribution coming from active longitudi-
nal fluctuations is either independent of q or goes to zero in
the small q limit, depending on whether Dt is small or large
compared to the duration of the active events. In either case,
the longitudinal FSD would be proportional to 1/Dt, which
is not consistent with the observed Dt dependence. The
interpretation of these results in terms of the MF would be
that, for ATP-consuming cells, transverse active fluctuations
dominate in the small q limit whereas longitudinal thermal
fluctuations dominate for larger q.
CONCLUSIONS

To summarize, we have presented a framework for the anal-
ysis of large-scale studies of chromatin dynamics using par-
ticle-tracking methods. It is based on the assumption that the
response of chromatin to equilibrium thermal fluctuations,
active concentration fluctuations, and active force dipoles
can be described by linearized hydrodynamics. The pro-
posed method was illustrated by applying it to the results
of a recent DCS study of global chromatin dynamics. If
the results are interpreted in terms of single-particle dy-
namics, they indicate a crossover from localized dynamics
in ATP-depleted cells to diffusive dynamics in ATP-active
cells. This is consistent with some of the single-particle
tracking studies (e.g., Levi et al. (10)). In terms of an inter-
pretation based on the MF, thermal fluctuations of ATP-
depleted cells are dominated by concentration fluctuations.
For ATP-active cells, small wavelength fluctuations (i.e.,
wavenumbers larger than a few inverse microns) are still
dominated by concentration fluctuations. The increase of
the intensity of the fluctuations could be due to a simple
Biophysical Journal 106(9) 1871–1881
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reduction of the osmotic modulus in the presence of ATP
hydrolysis. Longer wavelength fluctuations appear to be
associated with transverse velocity fluctuations generated
by force-dipole activity.

It should be pointed out that boundary effects associated
with the nuclear membrane are likely to play an important
role for fluctuations with a wavelength comparable to the
size of the nucleus. Large-scale concentration fluctuations
should be suppressed by a rigid boundary. Indeed, on the
timescales relevant for the experiments discussed above
((10 s), the nuclear membrane is effectively rigid (19)
(see also Hinde et al. (13) and Talwar et al. (32)). Coupling
between nuclear envelope breathing and internal chromatin
dynamics in embryonic stem cells on timescales upwards of
~100 s was examined in Talwar et al. (32) and would have to
be included for the theory to be extended into this frequency
range. Based on the results of a recent study of the convec-
tive dynamics driven by active force dipoles inside a sphere
as a model for cytoplasmic streaming (33), active transverse
flow fluctuations with q in the range of the inverse of the
nucleus are not expected to be suppressed, although they
may be scattered by the concentration inhomogeneities
that characterize chromatin. One interesting possibility is
that coupling of the dipoles through the medium leads to a
form of nematic order.

Another open question concerns the actual form of the
generalized complex viscosity E(q,u). Studies of the local
topology of chromatin have concluded that it has a fractal
structure, specifically that of a crumpled globule (34–36).
Theoretical studies of the rheological properties of polymer
melts (in which polymers have the fractal geometry of
Gaussian chains) indicate that even in this simple case
E(q,u) does not have the MF form (37). Understanding
the connection between the fractal structure of chromatin
and its rheological properties poses an interesting theoret-
ical challenge.

Finally, we would like to put our work in the broader
context of complex materials and systems. To the best of
our knowledge, the possibility of active scalar events has
not been considered in the literature. However, sequences
of force-dipole events have been discussed in relation to
punctuated stress relaxation phenomena in amorphous
media, such as glasses or foams (see, e.g., Chattoraj et al.
(37)). An interesting possibility would be to apply the
PSD/FSD measurement method discussed here to other
active systems, such as a suspension of actively swimming
microorganisms (38–40).
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S.1. Hydrodynamic Equations of Motion and Linear
Response

In this supplementary section we apply the Doi-Onuki
method (Ref. (22) in the main text) to construct the two-
component hydrodynamic equations for polymer solutions
and gels including the linear response of such systems to per-
turbations.

In general, the relaxation equations for a thermodynamic
system close to equilibrium can be phrased as the condition
that the Rayleigh Function for the time-dependent thermo-
dynamic quantities xi(t), (i = 1, 2, ..n)

R = W +
∑
i

∂F

∂xi

(
dxi
dt

)
(S1)

must be minimized with respect to dxi

dt for fixed xi (see, for
instance, Refs. (23,24) in the main text; see also Ref. (25)
for further details of the derivation and its applicability lim-
its). The dissipation function W is quadratic in the general-
ized velocities dxi

dt while F is the thermodynamic free en-
ergy. The first part of the Rayleigh Function is the energy
dissipated per unit time, and the second part the work per-
formed per unit time by the thermodynamic forces. For a
polymer network, the thermodynamic variables are the lo-
cal monomer concentration φ(~r) and the coarse-grained dis-
placement field ~up(~r) of the polymer molecules. For poly-
mer solutions that are not cross-linked, such as chromatin
solution, the displacement field is not truly a proper ther-
modynamic quantity. However, for a visco-elastic medium,
the displacement description is maintained and the poly-
mer solution is treated as a polymer network in the limit
that the zero-frequency shear modulus vanishes. Only time-
derivatives of the displacement variables should enter in the
final hydrodynamic equations in that case.

In the hydrodynamic description, energy dissipation is
dominated by friction associated with relative flow of poly-
mer and solvent, in which case the dissipation function takes
the form

W =
1

2

∫
d3rζ (~vp − ~vs)2

, (S2)

with ζ the friction coefficient per unit volume, ~vs the solvent
flow velocity, and ~vp = d~up/dt.

As regards the second term of the Rayleigh function (1),
the free energy F of the polymer network or solution is com-

posed of two terms. The first term is

Fφ =

∫
d3rf(φ(~r) (S3)

with φ the polymer concentration and f(φ) the equilibrium
concentration-dependent free energy density of the polymer
network. After imposing the continuity equation

∂φ

∂t
+ ~∇ · φ~vp = 0 , (S4)

Fφ is found to contribute a term

dFφ
dt

= −
∫
d3r

(
∂f

∂φ
~∇ · (φ~vp)

)
(S5)

to the Rayleigh Function. This term accounts for interactions
between the polymer monomers with each other and with the
surrounding solvent molecules. The second term is the poly-
mer elastic free energy Fp, which contributes to the Rayleigh
Function a term of the form

dFp
dt

= −
∫
d3r

(
σαβ(~r)

∂vpα
∂rβ

)
. (S6)

Here, σαβ is the symmetric traceless shear stress tensor of
the polymer network. In the main text, the form of the stress
tensor for a viscoelastic solution is discussed. Here it will be
left unspecified. The part of the stress tensor associated with
swelling/compression of the network that has a finite trace
is absorbed in the first, concentration dependent, part of the
free energy.

The polymer system is compressible: if locally the poly-
mer concentration increases then this is compensated by
solvent drainage from the region. The combined polymer-
solvent at fixed φwill however be assumed to be incompress-
ible. The incompressibility condition

~∇ ((1− φ)~vs + φ~vp) = 0 , (S7)

is included in the Rayleigh Function by introducing the hy-
drodynamic pressure P (~r), acting as a Lagrange multiplier.
Collecting all terms gives

R =

∫
d3r

(
1

2
ζ(~vp − ~vs)2 − ∂f

∂φ
~∇ · (φvp)−

−σαβ
∂vpα
∂rβ

− P ~∇ ((1− φ)~vs + φ~vp)

)
.

(S8)
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Finally, in order to apply linear response theory, infinites-
imal, time-dependent “fields” hi(t) are introduced that are
thermodynamically conjugate to the thermodynamic param-
eters xi in the sense that dW =

∑
i hidxi is the work done

by the external fields for an infinitesimal change dxi of the
thermodynamic parameters. The change in the Hamiltonian
of the system is of the form ∆H = −

∑
i hixi. The time-

dependent fields induce time-dependent changes in the ther-
modynamic parameters:

δxi(t) =

∫ t

−∞
dt′χij(t− t′)hj(t′) . (S9)

where χij(τ) is the dynamical susceptibility (response func-
tion). The Fluctuation-Dissipation (FD) theorem states that
the imaginary part of the frequency Fourier transform of the
dynamical susceptibility is related to the autocorrelation ma-
trix of the thermodynamic parameters by

Im [χij(ω)] =
ω

2kBT
Sij(ω) , (S10)

where Sij(t− t′) ≡ 〈xi(t)xj(t′)〉.
For the present case, we introduce an infinitesimal, exter-

nally imposed, time-dependent chemical potential µ(ex)(~r, t)
for monomers that is conjugate to the concentration field and
an infinitesimal, externally imposed stress tensor σ(ex)

αβ (~r, t)
that is conjugate to the strain tensor of the polymer network.
These fields contribute a term to the Rayleigh Function of
the form

δR =

∫
d3r

(
−µ(ex)(~r, t)~∇ · (φvp)−

−σ(ex)
αβ (~r, t)

∂vpα
∂rβ

)
.

(S11)

Minimizing the Rayleigh Function gives

ζ(~vp − ~vs) = ~∇
(←→σ +←→σ (ex)

)
− ~∇Π−φ~∇µ(ex)−φ~∇P ,

(S12)

ζ (~vs − ~vp) = − (1− φ) ~∇P . (S13)

The linearized version of these equation are used in the main
text, where φ0µ

(ex)(~r, t) is replaced by the source termα(~r, t)
for scalar events and the externally imposed stress σ(ex) by
the active stress σ(ac) for vector events. As shown in the main
text, if the fluctuation modes are decomposed into transverse
and longitudinal components then the external chemical po-
tential only generates longitudinal modes and the traceless
external stress tensor only transverse components. The cross-
correlation matrix is thus diagonal. The diagonal compo-
nents of the dynamical susceptibility are given in the main
text, and the final application of the FD theorem is straight-
forward.

S.2. Green’s Function Derivation for a Scalar Event

Assume a scalar event takes place at the origin at time t = 0.
The linearized force balance equation is

ζ (~vp − ~vs) = ~∇←→σ −K~∇δφ

− φ0
~∇P + s~∇δ (~r) g(t) .

(S14)

In a few lines of algebra, this yields

∂δφ

∂t
= D∇2δφ− s̃∇2δ(~r)g(t)− (1− φ0)2

ζ/φ0

~∇ ·
(
~∇←→σ

)
,

(S15)

with D = K (1−φ0)2

ζ/φ0
and s̃ = s (1−φ0)2

ζ/φ0
. We can identify

D as the collective diffusion constant. This equation can be
viewed as defining a Greens function for scalar events.

As a concrete example, assume that passive chromatin be-
haves like a simple Newtonian fluid. The stress tensor term
~∇·
(
~∇←→σ

)
then reduces to η∇2

(
~∇ · ~vp

)
with η the viscos-

ity. After applying the continuity equation to eliminate the
flow, one obtains:(

1− (1− φ0)2

ζ
η∇2

)
∂δφ

∂t
' D∇2δφ− s̃∇2δ(~r)g(t) .

(S16)

The term (1−φ0)2

ζ η∇2 is small compared to one for wavenum-

bers qξ �
√
η0/η. If one assumes that to be the case then

the remaining equation is:

∂δφ

∂t
' D∇2δφ− s̃∇2δ(~r)g(t) . (S17)

If the local change in solubility is permanent, with g(t) ∼
θ(t), then the solution of the equation leads to a Green’s
function:

δφ(~r, t > 0) ' s̃

D

[
δ (~r)− e−r

2/4Dt

(4πDt)3/2

]
. (S18)

This describes a localized change in concentration at the ori-
gin, equal to (s/K)δ(~r) together with a transient diffusion
pulse that travels outwards from the origin. The volume inte-
gral over the concentration variation is zero: no new material
is introduced by the change in solubility as is physically cor-
rect. The linearization condition δφ � φ0 is satisfied pro-
vided s� Kξ3.

S.3. Derivation of the dynamic susceptibility

To deal with a distribution of Ms scalar events, write the
linearized equations of motion in Fourier transformed form:

ζ(~vp − ~vs) = i~q·
(←→σ +←→σ (ac)

)
−i~qKδφ−iφ0~qP . (S19)
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Here, σij(ac)(~q, ω) = δijα(~q, ω) with

α(~q, ω)) = g(ω)

Ms∑
k=1

ske
i(ωtk−~q·~Rk) , (S20)

where g(ω) is the Fourier transform of g(t), the function
that defines the time course of scalar event. For instance, if
g(t) = θ(t)e−t/τa (which means, g(t) is zero at t < 0, starts
at t = 0, and falls off exponentially with characteristic time
τa at t > 0), then gω = τa

1−iωτa . Darcy’s Law reduces to:

ζ (~vs − ~vp) = −i(1− φ0)~qP , (S21)

while the incompressibility condition becomes:

i~q · ((1− φ0)~vs + φ0~v
p) = 0 , (S22)

and the continuity equation:

−ωδφ+ φ0~q · ~vp = 0 . (S23)

Next, define vp‖ = ~q ·~v/q to be the longitudinal component
of the polymer flow field. Eliminating pressure and longitu-
dinal solvent flow leads to an expression for the concentra-
tion fluctuations in the hydrodynamic limit:

δφ(~q, ω) = χ(q, ω)α(~q, ω) , (S24)

where

χ(q, ω) =
iq2φ0

ω
[

ζ
(1−φ0)2 + 4

3E(q, ω)q2
]

+ iq2Kφ0

(S25)

is the dynamic susceptibility. Note, that in the limit of zero
frequency, χ (q, ω = 0) equals the static osmotic suscepti-
bility 1/K, as it should. The dynamic susceptibility has pole
singularities in the lower half of the complex plane at ω =
−iΓ(q) with Γ(q) the relaxation rate of a collective mode of
the system. In section S.7, the specific case of the Maxwell
Fluid (MF) is discussed, which has two such collective modes,
corresponding to hybridized collective diffusion and stress
relaxation.

S.4. Vector Activity Derivation

Vector activity in general represents action of a set of force
dipoles. Each force dipole is composed of a pair of collinear
opposing forces fn̂ and −fn̂ exerted in two different points
separated by a microscopic distance a. Here n̂ is a unit vector
marking the direction of force dipole; at the same time vector
an̂ connects the points where two forces are applied (such
that two forces forming a dipole generate no torque). If ~R is
position vector of a center-point of the force dipole, then two
forces are exerted in points ~R− (a/2)n̂ and ~R+ (a/2)n̂. In
reality there are more than one vector source, and their total

contribution to the divergence of stress tensor (i.e., applied
force per unit volume) reads

~∇ ·←→σ (ac)(~r, t) =

Mv∑
k=1

fkg(t− tk)×

×
[
δ
(
~r − ~Rk −

ak
2
n̂k

)
+ δ

(
~r − ~Rk +

ak
2
n̂k

)]
,

(S26)

where g(t) describes time development of the event, start-
ing at time tk for event k, while Mv the number of vector
events. For the case of nucleosome rearrangement events, a
would have the typical size of a spacer length between nu-
cleosomes. Given that distance a (any ak) is microscopic, we
can write

δ
(
~r − ~Rk ±

ak
2
n̂k

)
' δ

(
~r − ~Rk

)
± ak

2
n̂k ~∇δ

(
~r − ~Rk

)
.

(S27)
Combining now two of such δ-functions in formula (26), we
arrive at

~∇·←→σ (ac)(~r, t) =

Mv∑
k=1

fkakn̂k(n̂k · ~∇)δ
(
~r − ~Rk

)
g(t−tk) .

(S28)
If all forces are the same, fk = f , and all distances are the
same, ak = a, then we arrive at the result used in the main
text (Eq. 19).

S.5. Greens Function: Vector Event

First consider the case of a vector event with long event dura-
tion in a medium that can be described as a Netwonian fluid.
The source term is then the sum of two time-independent
δ-function forces. Each produces a flow field of the form

~v(~r) = f n̂ ·
←→
S (~r)/8πη , (S29)

where
Sij(~r) =

δij
r

+
rirj
r3

(S30)

is the Oseen tensor. The combined dipole flow field has the
form:

~v(~r) = fa (n̂ · ~∇) (n̂ ·
←→
S (~r))/8πη . (S31)

The pattern of flow lines is that of extensional flow oriented
along the force direction.

For the case of a general linear viscoelastic medium, it is
useful to define the transverse projection operator

←→
P . In q-

space, the projection operator is defined as Pij(~q) = δij −
q̂iq̂j , where q̂ = ~q/q and q̂i = qi/q. Apply this projection
operator to Eqs. 1 and 2 for two-fluid hydrodynamics. This
leads to ~vp⊥ = ~vs⊥ and

E ∗ ∇2~v⊥ = fa
←→
P · n̂(n̂ · ~∇)δ(~r)g(t) . (S32)

The ∗ symbol stands for the convolution of the space-time
memory kernel E with the transverse polymer velocity field
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(indicated from here on as the flow field itself). After Fourier
transform, the flow field produced by the vector event is:

~v⊥(~q, ω) = ifag(ω)

←→
P (~q) · n̂(n̂ · ~q)
q2E(q, ω)

. (S33)

The Green’s function is the reverse Fourier Transform.

S.6. FSD and PSD

S.6.1 Derivation

In this section we discuss the relationship between the FSD,
as measured experimentally, and the PSD that is a convenient
quantity to compute theoretically. We start from the advec-
tive equation of motion of a labelled site of the chromatin
moving in the surrounding hydrodynamic flow field

d~r(t)

dt
= ~vp(~r(t), t) (S34)

The tracer displacement between successive measurements
is

~r(t+ ∆t)− ~r(t)
∆t

=

∫ t+∆t

t

~v(~r(t′), t′)
dt′

∆t
(S35)

(where we suppressed index p for brevity). Perform a mode
expansion of the flow field, according to the Fourier trans-
form convention Eq. 4:

~r(t+ ∆t)− ~r(t)
∆t

=∫ t+∆t

t

[∑
~p

∫∞
−∞ ~v(~p, ω)e−ı(~p·~r(t

′)+ωt′) dω
2π

∆V

]
dt′

∆t

(S36)

Multiply by ei~q·~ri(t) and do the summation over i = 1, 2, . . . , N
tracer particles:

~F (~q,∆t) =

N∑
i

∫ t+∆t

t

[∑
~p

∫∞
−∞ ~v(~p, ω)eı(~q·~ri(t)−~p·~ri(t

′)−ωt′) dω
2π

∆V

]
dt′

∆t
.

(S37)

If the particle displacement over time ∆t is such that we
can replace ~q · ~ri(t′) ' ~q · ~ri(t), and if the tracers are uni-
formly distributed over the sample, then only the ~p = ~q
mode survives in the sum

∑N
i e

ı((~q−~p)·~ri(t)) ' Nδ~p,~q pro-
vided that 1/q is large compared at the distance between
labelled particles but small compared at the nucleus size:
N/∆V � q3 � 1/∆V . Under these assumptions:

~F (~q,∆t) =
N

∆V

∫ ∞
−∞

~v(~q, ω)

[∫ t+∆t

t

e−iωt
′ dt′

∆t

]
dω

2π

=
N

∆V

∫ ∞
−∞

~v(~q, ω)e−iωt
1− e−iω∆t

iω∆t

dω

2π
(S38)

If 〈~v〉 = 0 and
〈
~F
〉

= 0, one has to look at the second
moment. Multiplying by the complex conjugate and doing

the ensemble average gives for S(q,∆t) =

〈∣∣∣~F (q,∆t)
∣∣∣2〉 /N ,

S(q,∆t) ' N

∆V

∫
1− cosω∆t

(ω∆t)2

(
~v2
)
~q,ω

dω

π
(S39)

which is the relation between FSD and power spectral den-
sities used in the main text (Eq. 32).

S.6.2 Limiting cases

We conclude by discussing a few limiting cases. In the limit
that ∆t is small compared to the inverse of all characteristic
frequencies, the FSD goes to a constant:

S(q,∆t→ 0) ' N

∆V

∫ (
~v2
)
~q,ω

dω

2π
(S40)

In the limit that ∆t is large compared to the inverse of all
characteristic frequencies, the FSD reduces to

S(q,∆t) ' N

∆V

(
~v2
)
~q,0

∆t
, (S41)

the flow spectral density drops as 1/∆t. In the limit of q
large compared to the inverse of the spacing between la-
belled sites, the result is most easily derived directly from
the definition of ~F (~q,∆t), Eq. 31 in the main text:

S(q,∆t) '
〈
∆r2

〉
∆t2

, (S42)

with
〈
∆r2

〉
the mean square displacement of a single la-

belled genome site after a time ∆t. If single-site dynamics
is characterized by a power law of the form

〈
∆r2

〉
∝ ∆tα

in the limit of large ∆t then the FSD would be proportional
to N/∆t2−α or large ∆t. Here, α is less than one for sub-
diffusion and α is greater than one for superdiffusion. If the
labelled sites would remain localized, which would be the
case for a gel, then α would be zero.

S.7. FSD of a Maxwell Fluid

In this section we compute the FSD of a Maxwell Fluid for
passive and active fluctuations. A Maxwell Fluid has a com-
plex viscosity E(ω) = η

1−iωτ , independent of wavenumber,
with τ the stress relaxation time.

S.7.1 Thermal Fluctuations

According to the fluctuation-dissipation theorem, the ampli-
tude of thermal transverse velocity fluctuations depends on
the assumed rheology only through the factor Re

[
1

E(q,ω)

]
.
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This equals 1/η both for a Newtonian Fluid and for a Maxwell
Fluid so the spectra of transverse velocity fluctuations of a
Maxwell Fluid is that of a Newtonian Fluid:

S⊥(q,∆t) ' [c]
4kBT

q2η∆t
. (S43)

The FSD for longitudinal velocity fluctuations is more
complex. The dynamic susceptibility for the concentration
fluctuations of a Maxwell Fluid is

χ(q, ω) =
iq2φ0

ω
[

ζ
(1−φ0)2 + 4

3
ηq2

1−iωτ

]
+ iq2Kφ0

. (S44)

The dispersion relation of the relaxation rates associated with
different modes of the system is determined by the poles
of the dynamical susceptibility, found by setting the inverse
of the dynamical susceptibility to zero. Introducing dimen-
sionless wavenumbers and a dimensionless osmotic modulus
through,

Q2 =
4

3

ηq2

ζ
(1− φ0)2 (S45a)

1

κ
=

4

3

η

τKφ0
(S45b)

the mode dispersion ω = −iΓ(Q) must be the solution of
the quadratic equation

(τΓ)2 − τΓ
[
1 +Q2(κ+ 1)

]
+Q2κ = 0 , (S46)

or, explicitly,

Γ1(Q) =
1 +Q2(κ+ 1)

2τ
−
√

[1 +Q2(1− κ)]2 + 4κQ4

2τ
(S47a)

Γ2(Q) =
1 +Q2(κ+ 1)

2τ
+

√
[1 +Q2(1− κ)]2 + 4κQ4

2τ
(S47b)

The two branches are separated by a gap, as shown schemat-
ically in Fig. 1. For small wavenumbers, the lower branch
approaches Dq2, the relaxation rate for collective diffusion
with a collective diffusion coefficient D = Kφ0(1−φ0)2/ζ
that does not depend on the viscosity or the stress relax-
ation time. For large wavenumbers, the lower branch satu-
rates at Γ1τ = κ

1+κ . Concentration fluctuations are most pro-
nounced at a consolute point where the osmotic modulus K
vanishes. The relaxation rate of the lower branch goes to zero
(“critical slowing down”) in that limit for any wavenumber.
The upper branch reduces to the relaxation rate 1/τ for shear
stress in the small wavenumber limit. For large wavenum-
bers, the upper branch approaches D2q

2 with a diffusion co-
efficient D2 = (1 − φ0)2

[
4
3η +Kτφ0

]
/ζτ that now does

depend on the viscosity and the stress relaxation time.

+1

1

Q

(Q)

2(Q)

1(Q)

Figure S1 Relaxation rate Γ(Q) of a Maxwell Fluid. The lower
branch Γ1(Q) represents collective diffusion in the long wave-
length limit with a collective diffusion coefficient D = 3Kφ0/4η.
In the limit that the osmotic modulus K vanishes, the lower
branch relaxation rate goes to zero for all wavelengths. The up-
per branch represents stress relaxation for long wavelengths
and collective diffusion for short wavelengths.

Figure S2 Fit coefficients A(q) and B(q) of the fitting form Eq.
33 for the case of ATP-consuming cells. Inset: FSD multiplied by
∆t2 of wildtype (ATP-consuming) cells for two particular fixed
values of q as a function of ∆t; solid and dashed lines: linear
regression fit. In addition to the Fig. 5 of the main text, we show
here left panel which reports data for very small q where com-
pletely different scale on the vertical axis has to be used.

The longitudinal contribution to the FSD takes the form

S||(q,∆t) = [c]
2kBTτ(1− φ0)2

φ0ζ∆t2
×(

1
Γ1
− τ
) [

1− e−Γ1∆t
]
−
(

1
Γ2
− τ
) [

1− e−Γ2∆t
]

Γ2 − Γ1
.

(S48)

The full FSD is the sum of the longitudinal and transverse
contributions:

S(q,∆t) = S||(q,∆t) + S⊥(q,∆t) . (S49)
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S.7.2 Active Vectorial Fluctuations

The FSD for transverse velocity fluctuations in the presence
of active vectorial sources in a Maxwell Fluid has the form

S⊥(q,∆t) ' [c]

q2η2π
×∫ (

~β2
)
~q,ω

(
1 + (ωτ)

2
) 1− cosω∆t

(ω∆t)2
dω

(S50)

This depends in general on the form of the active structure
factor. We will consider the case in which there are no spa-
tial or temporal correlations between the active events and
where the direction of the active forces is random in space.
In that case (see Eq. 30),

(
~β2
)
~q,ω

= 2
15
m(fa)2τ2

a

(ωτa)2+1 with m =

M/∆V∆T the number of active vector events per unit vol-
ume per unit time. This results in a FSD

S⊥(q,∆t) =
2

15
[c]
m(fa)2ττ2

a

q2η2∆t2
×[(

τ

τa
− τa

τ

)(
1− e−∆t/τa

)
+

∆t

τ

] (S51)

In the two limits of ∆t large and small to τa this expression
is proportional to 1/(q2∆t) and thus of the same form as the
equilibrium FSD.

S.7.3 Active Scalar Fluctuations

The FSD for active scalar sources in a Maxwell Fluid is

S||(q,∆t) ' [c]
q2(1− φ0)4

πζ2∆t2
×∫ (

α2
)
~q,ω

(1− cosω∆t)(1 + (ωτ)2)

|(ω + iΓ1)(ω + ıΓ2)|2
dω

(S52)

In the absence of correlations between active events (Eq. 14),

(α2)~q,ω =
m〈s2〉τ2

a

(ωτa)2+1 with m = M/∆V∆T the number of
scalar events per unit time per unit volume:

S||(q,∆t) ' [c]
m
〈
s2
〉
q2(1− φ0)4τ2

a

ζ2τ2∆t2
×

(
1− (Γ2τ)

2
) (

1− e−Γ2∆t
)

Γ2 [Γ2
1 − Γ2

2]
[
1− (Γ2τa)

2
] +

(
1− (Γ1τ)

2
) (

1− e−Γ1∆t
)

Γ1 [Γ2
2 − Γ2

1]
[
1− (Γ1τa)

2
] +

τa
(
τ2
a − τ2

) (
1− e−∆t/τa

)[
1− (Γ2τa)

2
] [

1− (Γ1τa)
2
]


(S53)

The FSD is proportional to 1/∆t for ∆t small compared
to the three relaxation times τa, 1/Γ2, and 1/Γ1. In the long-
time limit that ∆t is large compared to these three relaxation

times, the FSD is dominated by the slowest of the three re-
laxation rates. If the slowest relaxation rate is collective dif-
fusion - the only gapless mode - then for long wavelengths

S||(q,∆t) ' [c]
m
〈
s2
〉

(1− φ0)4τ2
a

ζ2∆t2D
, (S54)

with D = Kφ0(1 − φ0)2/ζ the collective diffusion coeffi-
cient. The FSD depends on ∆t as 1/∆t2 but it is indepen-
dent of wavenumber. If the duration of the active event is the
longest time scale then the FSD

S||(q,∆t) ' [c]
m
〈
s2
〉

(1− φ0)4q2τ5
a

ζ2∆t2
(S55)

is proportional to q2.
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