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Efficient Protein Aggregate Reactivation
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ABSTRACT Reactivation of intracellular protein aggregates after a severe stress is mandatory for cell survival. In bacteria, this
activity depends on the collaboration between the DnaK system and ClpB, which in vivo occurs in a highly crowded environment.
The reactivation reaction includes two steps: extraction of unfolded monomers from the aggregate and their subsequent refold-
ing into the native conformation. Both steps might be compromised by excluded volume conditions that would favor aggregation
of unstable protein folding intermediates. Here, we have investigated whether ClpB and the DnaK system are able to compen-
sate this unproductive effect and efficiently reactivate aggregates of three different substrate proteins under crowding conditions.
To this aim, we have compared the association equilibrium, biochemical properties, stability, and chaperone activity of the dis-
aggregase ClpB in the absence and presence of an inert macromolecular crowding agent. Our data show that crowding i), in-
creases three to four orders of magnitude the association constant of the functional hexamer; ii), shifts the conformational
equilibrium of the protein monomer toward a compact state; iii), stimulates its ATPase activity; and iv), favors association of
the chaperone with substrate proteins and with aggregate-bound DnaK. These effects strongly enhance protein aggregate re-
activation by the DnaK-ClpB network, highlighting the importance of volume exclusion in complex processes in which several
proteins have to work in a sequential manner.
INTRODUCTION
A functional and healthy proteome requires the successful
folding of newly synthesized proteins and the maintenance
of their functionally active conformations, as many proteins
are structurally dynamic and could be expressed at concen-
trations at which they are poorly soluble (1,2). Protein
solubility might be further compromised by the high macro-
molecular concentration estimated in the intracellular
medium (3). In stark contrast to the total concentration of
macromolecules in typical in vitro experiments, which is
usually kept around or below 1 g/l (4), in the cytoplasm of
Escherichia coli macromolecules reach concentrations of
300–400 g/l and occupy a significant fraction (up to 40%)
of the cellular volume (5,6). Thus, molecular crowding
will favor compact over expanded states and association re-
actions (7), and will increase the effective concentration of
dilute macromolecules, affecting the kinetic and thermody-
namic properties of reactions (4). It follows from these con-
siderations that to determine the physiological role of a
particular reaction in vitro, it is important to consider the
possible influence of molecular crowders on the reaction (8).

Crowding will strongly affect aggregation-prone confor-
mations that populate a (re)folding pathway (9), promoting
aggregation of partially (un)folded proteins because aggre-
gates exclude less volume to other macromolecules than iso-
lated subunits. A strategy that the cell has developed during
evolution to avoid aggregation of partially (un)folded poly-
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peptide chains is to employ molecular chaperones (10),
which essentially reduce aggregation because they either
bind them and thus reduce their concentration or allow their
(re)folding (11). Chaperones and other components in-
volved in degradation of misfolded proteins form the
network necessary to maintain a healthy proteome balance,
known as proteostasis (12). Under severe stress conditions
or at the onset of age-related degenerative disorders,
the chaperone network protective capacity can be over-
whelmed, resulting in protein aggregation of partially
(un)folded conformations. Cell survival requires recycling
of these toxic aggregates and reactivation of at least part
of the lost protein material, which involves the concerted
action of different types of chaperones. Although a huge
effort has been made to elucidate the mechanism of individ-
ual chaperones, how they cooperate in a network to ensure
proteome integrity is still far from being understood.

The disaggregase activity in bacteria requires the cooper-
ation of representatives of the Hsp70, i.e., DnaK, and
Hsp100, i.e., ClpB, chaperone families. The DnaK system
is composed of the chaperone DnaK, an Hsp40 component,
DnaJ, which carries substrate proteins and accelerates the
chaperone ATPase activity, and a nucleotide exchange
factor, GrpE. The ATPase activity of DnaK regulates its
sequential interaction with substrate proteins and cochaper-
ones during the functional cycle (13). The DnaK system
is by itself able to reactivate small protein aggregates
where the unfolded protein adopts a conformation similar
to the native state. However, when the aggregate is
formed by extensively unfolded substrate protein enriched
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in intermolecular b-structure, reactivation becomes strictly
ClpB-dependent. The disaggregase ClpB is an AAAþ

ATPase that belongs to the Clp protein family (14), and
adopts a ring-like structure built by six identical subunits.
Each monomer contains four domains: an N-terminal
domain connected through a conserved linker to the first
nucleotide binding domain (NBD1) in which the middle
(M) domain is inserted, and a second NBD (NBD2). All
NBDs bind and hydrolyze ATP, an essential process to drive
the conformational cycle of the chaperone. CryoEM studies
have suggested that in the ADP, closed-state, which shows
low affinity for substrate proteins, the N-terminal domain
docks onto the rest of the protein oligomeric barrel, and in
the ATP, open-state, which displays a higher affinity for sub-
strates, it projects toward the outside of the oligomer
(15,16). In the presence of ATP, DnaK and ClpB form a
weak, Kd around 5–25 mM (17,18), complex at the aggregate
surface, where they pull unfolded monomers out of the
aggregate for their subsequent refolding (19).

In this work, we aim to find out whether excluded volume
conditions regulate chaperone-assisted protein aggregate re-
activation. The significance of macromolecular crowding in
chaperone-mediated protein folding is beginning to be
studied and it might be a critical parameter affecting the
efficiency of intracellular protein folding. Early studies
showed that the GroEL system was not only active but
even more efficient under excluded volume conditions
(20), most likely due to an increase in the association be-
tween GroEL and GroES, which caps the internal cavity
in which partly unfolded polypeptides are protected from
aggregation while they attain their native conformation
(21). This efficient capping avoided substrate leakage
from the cavity, thus improving the refolding yield. Reacti-
vation of protein aggregates is a complex process that
involves binding of chaperones to protein substrates, inter-
action between different chaperones, and extraction of
unfolded protein monomers from the aggregate for their
refolding. Crowding could also affect the structural rear-
rangement that the chaperones, well-recognized molecular
gymnasts (22), undergo during their functional cycle, i.e.,
to their conformational equilibrium. In the case of oligo-
meric proteins, such as ClpB, excluded volume conditions
might also alter its association equilibrium, which in turn
controls its ATPase and chaperone activities (23). Therefore,
the effect of crowding on ClpB oligomerization, conforma-
tion, and association with the DnaK system should be char-
acterized under crowding conditions.

We have found that crowding shifts the association equi-
librium of ClpB toward the active, hexameric conformation,
increasing the association constant for hexamer formation
by three to four orders of magnitude. Our data also indicate
that excluded volume conditions favor a compact conforma-
tion of the chaperone and accelerates its ATPase activity.
Finally, crowding strongly enhances the functional associa-
tion between the ClpB and the DnaK system, which results
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in a significant increase (up to 40 times) of the reactivation
ability of the bichaperone network, indicating that protein
aggregate reactivation in vivo might be more efficient than
in vitro experiments would suggest.
MATERIALS AND METHODS

Reagents, protein production, purification, and
labeling

Ficoll 70, a-casein, G6PDH from Leuconostoc mesenteroides, and a-gluco-

sidase from Saccharomyces cerevisiaewere purchased from Sigma, sucrose

from Serva, and luciferase from Photinus pyralis (American Firefly) from

Roche. Wild-type (WT) ClpB and ClpB mutants (ClpB trap (E276/

E678A) and DN-ClpB) were expressed in a DclpB::kan strain derived

from MC4100 and purified as previously described (24). DnaK, DnaJ,

and GrpE were obtained as reported (25,26). Protein concentration was

determined by the colorimetric Bradford assay (Bio-Rad), and expressed

as monomers for ClpB, DnaK, and DnaJ or dimers for GrpE. ClpB labeling

with Alexa Fluor 647, succinimidyl ester (Life technologies) was carried

out as previously described (27), in 50 mM Tris-HCl (pH 7.5), 50 mM

KCl, and 5 mM MgCl2, conditions that favor protein oligomerization.

The degree of labeling was estimated to be around 1 mol of fluorophore

per protein subunit. Control experiments demonstrated that labeling had

no effect on the biochemical properties of the chaperone.
Analytical ultracentrifugation

Sedimentation velocity (SV)

SV analysis of WT- and DN-ClpB was performed at 10 mM protein in

buffer 50 mM Tris-HCl (pH 7.5), 5 mM MgCl2, containing the appropri-

ated KCl concentration (50–500 mM). Experiments were conducted at

40.000 rpm and 18�C in a XL-A analytical ultracentrifuge (Beckman

Coulter) with a UV-Vis optics detection system, using an An50Ti rotor

and 12-mm double-sector centerpieces. The sedimentation coefficient

distributions were calculated by least-squares boundary modeling of

sedimentation velocity data using the c(s) method (28) as implemented

in the software SEDFIT (National Institutes of Health, Bethesda, MD).

The s-values were corrected to standard conditions (water, 20�C, and infin-
ite dilution) using the software SEDNTERP (Biomolecular Interaction

Technologies Center, University of New Hampshire), yielding the corre-

sponding standard s-values.

Tracer sedimentation equilibrium

Low-speed tracer sedimentation equilibrium experiments at different

angular velocities (4000, 8000, and 9000 rpm) were performed to charac-

terize the effect of Ficoll 70 (acting as a macromolecular crowder) on the

self-association properties of WT- and DN-ClpB at increasing protein con-

centration. Experiments were carried out as described in the SV section,

both in the absence and presence of 15% (w/v) Ficoll 70, using short

columns (80 ml). At 1 and 3 mM ClpB, all the protein was labeled with

Alexa 647, and at higher concentrations samples contained a fixed amount

of labeled protein (3 mM). This experimental protocol was employed

because of the weak experimental signal (absorbance at 650 nm) below

1 mM protein. The dynamic nature of the ClpB assembly ensures subunit

exchange between labeled and unlabeled oligomers and formation of hybrid

hexamers (29,30). Data analysis was performed as detailed in the Support-

ing Material.

Fluorescence anisotropy

Measurements were recorded on a Fluorolog spectrofluorimeter (Jobin

Yvon) at 25�C. Different concentrations of ClpB trap were added to buffer
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50 mM Tris-HCl (pH 7.5), 50 mM KCl, 5 mM MgCl2, and 2 mM dithio-

threitol (DTT) containing 0.1 mM fluorescein isothiocyanate (FITC)-a-

casein in the presence of 2 mM ATP. This ClpB variant contains mutations

in both nucleotide binding domains (E279A/E678A) that allow binding but

not hydrolysis of ATP, therefore being able to form stable complexes with

protein substrates (31). Experiments were performed in the absence and

presence of 15% Ficoll 70. Samples were incubated overnight at 4�C and

equilibrated at room temperature 1 h before measuring fluorescence anisot-

ropy. Excitation and emission wavelengths were 492 and 515 nm, and both

slits were set at 7 nm. Data were fitted to a quadratic equation modeling a

single binding site.

Circular dichroism (CD)

Experiments were carried out in a Jasco J-810 spectropolarimeter equip-

ped with a Peltier Type Control System PFD 425S. Samples contained

3 mM of protein monomer in 20 mM Hepes (pH 7.6), 50 mM KAc- and

5 mM MgAc-, and, when required, 1 mM nucleotide. CD spectra were

collected at a scan rate of 50 nm/min using 0.1 or 1 mm pathlength

cuvettes. Four spectra were averaged for the native (25�C) and unfolded

state (90�C) of each sample. Protein unfolding was followed by measuring

the ellipticity at 222 nm at increasing temperatures, using a scan rate of

1 or 0.3�C/min. Tm was the temperature at the midpoint of the unfolding

transition, and was estimated from the first derivative of the denaturation

profile.

ATPase activity measurements

The ATPase activity of the ClpB variants used in this work was measured

spectrophotometrically in 50 mM Tris-HCl (pH 7.5), 5 mM MgCl2, and

different concentrations of KCl (50, 150, 300, and 500 mM), Ficoll 70

(0%, 10%, 15%, 20%, and 30%) or sucrose (30% and 40%), which was

used as a control to account for the increase in viscosity. Experiments

were performed at 25�C in the presence of an ATP-regenerating system.

Protein and ATP concentrations were 2 mM and 1 mM, respectively.

Substrate-induced stimulation of the chaperone ATPase activity was deter-

mined in the presence of 2 mM a-casein (Sigma), a concentration lower than

that usually employed (10 mM) in this type of experiment, to avoid substrate

aggregation at high Ficoll 70 concentration. The same method was used to

estimate the apparent affinity of ClpB for a-casein using 2 mM ClpB and

increasing a-casein concentrations.

Reactivation of G6PDH aggregates

G6PDH (10 mM; Sigma) was heat-denatured and aggregated by incubating

the protein 30 min at 70�C in 50 mM Tris-HCl (pH 7.5), 150 mM KCl,

20 mM MgCl2, 10 mM DTT. The aggregated substrate was diluted to

0.4 mM in the same buffer containing 50 mM KCl and different con-

centrations of Ficoll 70 (0%, 5%, 15%, and 30%) or sucrose (30% and

40%). The sample also contained DnaK (1 mM), DnaJ (0.1 mM), GrpE

(1.2 mM), and different concentrations of ClpB. Reactivation was started

by adding 2 mM ATP to the sample in the presence of an ATP regenerating

system (30 mM phosphoenolpyruvate and 20 ng/ml pyruvate kinase) at

30�C. Chaperone-mediated aggregate reactivation was measured as previ-

ously reported (32).

Reactivation of a-glucosidase aggregates

a-glucosidase (10 mM; Sigma) was heat-denatured and aggregated by

incubating the protein 30 min at 50�C in 50 mM Tris-HCl (pH 7.5),

150 mM KCl, 20 mM MgCl2, 10 mM DTT. Aggregated protein was

diluted to 0.4 mM in the same buffer containing 50 mM KCl and

increasing concentrations of Ficoll 70 or sucrose and WT ClpB. The con-

centrations of DnaK, DnaJ, and GrpE were 1 mM, 0.1 mM, and 1.2 mM.

Reactivation started by adding 2 mM ATP to the sample that contained

the ATP regenerating system at 30�C. Aggregate reactivation was

measured by recording the activity of a-glucosidase at different times as

reported (33).
Reactivation of luciferase denatured in urea

Luciferase (2.5 mM; Roche) was denatured in 7 M urea, 30 mM Hepes

(pH 7.6), 60 mM KCl, 10 mM MgCl2, and 10 mM DTT (45 min at

25�C). The denatured protein was diluted to 25 nM in buffer, 30 mMHepes

(pH 7.6), 50 mM KCl, 10 mM MgCl2, 2 mM DTT, containing the desired

Ficoll 70 or sucrose concentration and the ATP-regenerating system. The

diluted sample was incubated 10 min to obtain protein aggregates and after-

ward 1 mMDnaK, 1.2 mMGrpE, 0.1 mMDnaJ, and different concentrations

of ClpB were added. Reactivation at distinct Ficoll 70 concentrations was

initiated by the addition of 2 mMATP, and luciferase activity was measured

as described (23).
RESULTS

Crowding shifts the association equilibrium of
ClpB toward the active hexamer

Before analyzing the effect of crowding on the oligomeriza-
tion state of ClpB, it should be noted that neither protein
labeling with Alexa 647 nor deletion of its N-terminal
domain ((34); Fig. 1 A) significantly modified the associa-
tion properties of the chaperone, as seen by sedimentation
velocity experiments (Fig. S1 in the Supporting Material).
Excluded volume effects in highly crowded solutions are
expected to increase the tendency of ClpB, a relatively large
protein, to self-associate, which will increase the concentra-
tion of functionally active oligomers, especially at high
potassium concentration (150–300 mM). To determine the
impact of crowding on ClpB oligomerization at these KCl
concentrations, a set of sedimentation equilibrium experi-
ments at increasing chaperone concentrations were carried
out in the absence and presence of 15% (w/v) Ficoll 70,
and analyzed to obtain the corresponding apparent buoyant
molecular weights (Fig. 1). Ficoll 70 was selected as the
crowding agent because its interaction with proteins had
been previously shown to be mainly repulsive and may be
described by steric exclusion (35).

The dependence of M*i,app upon ClpB concentration was
best described by a two-state monomer-hexamer model,
both with and without Ficoll 70 (Fig. 1). In the absence of
crowder, the association constant for hexamer formation
(K6) was almost three orders of magnitude higher at
150 mM than at 300 mM KCl (Fig. 1 B; Table 1), thus con-
firming the dependence of ClpB self-association on salt con-
centration (23). The apparent buoyant molar mass values of
ClpB in the presence of Ficoll 70 were significantly lower
than those obtained in its absence, because of the nonideal
behavior of the dilute protein in a highly crowded solution
(36). Addition of 150 g/l Ficoll 70 increased the K6

value around three or four orders of magnitude at 300 or
150 mM KCl (Fig. 1 C; Table 1). This corresponds to a
decrease in the free energy of hexamer formation of 7 and
9 RT, respectively. Assuming that the hexamer is a cyclic
structure (i.e., it has six intermolecular contacts), this free
energy change would correspond to an average decrease
of 1.1–1.5 RT per intermonomer contact. When the same
Biophysical Journal 106(9) 2017–2027



FIGURE 1 Crowding shifts the association equilibrium of ClpB toward

the active hexamer. (A) Atomic model of the E. coli ClpB hexamer (34).

Different domains of each identical subunit are located in three tiers as indi-

cated in the structure of WT- (top) and DN- (bottom) ClpB. Sedimentation

equilibrium measurements were performed in the absence (B and D) and

presence (C and E) of 150 g/l Ficoll 70 to obtain the dependency of

the buoyant molecular weight of WT ClpB (B and C) or DN-ClpB

(D and E). The buffer contained 150 (black circles) or 300 mM KCl (white

circles). Solid lines are the best fit of the experimental data to the model

described in the Experimental section. Measures are represented as the

mean 5 SE from three independent experiments.

TABLE 1 Effect of crowding on the association equilibrium of

ClpB.

Protein KCl (mM) Ficoll (g/l) log K6 (l/g)
5 DG6

� (RT)a DDG6
� (RT)

WT ClpB 150 0 2.4 5 0.4 �61.2 8.8

150 150 6.1 5 1.2 �70.0

300 0 �0.8 5 0.3 �53.8 7.2

300 150 2.3 5 0.6 �61.0

DNClpB 150 0 4.3 5 0.5 �64.5 6.5

150 150 6.6 5 1.4 �70.0

300 0 0.1 5 0.1 �54.8 7.1

300 150 3.2 5 0.8 �61.9

Log K6 and DG6
o values for WT ClpB and DN-ClpB at different concentra-

tions of KCl in the absence or presence (15% w/v) of Ficoll 70. Data shown

in Fig. 1 were fitted to the model described in the Experimental section.

Measures are represented as the mean 5 SE from three independent

experiments.
aDG6

� ¼ �RT lnK0
6, where K

0
6 is the equilibrium association constant ex-

pressed in molar concentration units: K0
6 ¼ K6 (M1

5/6), being M1 the

monomer molar mass of the protein.
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experiments were performed with a ClpB variant that lacks
the N-terminal domain (Fig. 1, D and E; Table 1), the results
show that crowding favorsDN-ClpB association to an extent
similar to that described for WT ClpB. The deletion mutant
has a stronger tendency to associate into functional oligo-
mers, especially in the absence of crowder (Table 1), indi-
cating that steric repulsions between adjacent N-terminal
domains destabilize the protein hexamer. These findings
show that crowding shifted the ClpB association equilib-
rium toward the functional hexamer at salt conditions that
Biophysical Journal 106(9) 2017–2027
otherwise would promote chaperone dissociation in dilute
solutions, and that the N-terminal domain of the protein
does not significantly alter this behavior.
Crowding enhances the ATPase activity of ClpB

Crowding could favor a compact conformation of the chap-
erone, which might alter the conversion rate between the
open, ATP- and closed ADP-states, and thus its biochemical
properties. To find out if this was the case, the effect of
Ficoll 70 on the ATPase activity of ClpB and DN-ClpB
was characterized. Crowder concentrations above 10%
(w/v) enhanced the ATPase activity of ClpB regardless of
the ionic strength (Fig. 2 A). Similar nonlinear tuning of
the catalytic parameters of Fet3p by crowding has been
reported (37). The activation detected at 500 mM KCl
indicated that Ficoll 70 reverts to the salt-induced dissocia-
tion of the chaperone hexamer, which is known to drasti-
cally reduce the protein ATPase activity (23). A greater
crowder-dependent activation was observed for DN-ClpB
(Fig. 2 B), which might be due to the effect that Ficoll 70
could have on the conversion rate between different confor-
mations during the ATPase cycle. If Ficoll 70 favors a
compact conformation in which the N-terminal domain
docks onto the protein hexamer, the rate of ATP hydrolysis
by WT ClpB would be lower due to the energetic penalty
that movement of the N-domain during the functional cycle
of the protein might cause. The effect of crowding on the
ATPase activity of DN-ClpB was even greater in the pres-
ence of the substrate a-casein, known to stimulate the chap-
erone ATPase activity. The substrate-induced activation
factor of DN-ClpB increased from 1.5 to 3.5 with Ficoll
70 concentration (Fig. 2 B; inset), whereas that of WT
ClpB slightly decreases above 15% Ficoll 70 and was never
higher than 1.5 (Fig. 2 B; inset). As a control to account for
the effect of Ficoll 70 on the viscosity of the medium,
the ATPase activity of both proteins was characterized in



FIGURE 2 Excluded volume conditions stimulate the ATPase activity of

WT ClpB and DN-ClpB. (A) ATPase activity of WT ClpB at increasing

Ficoll 70 concentrations in buffer containing 50 mM (solid circles),

300 mM (open circles), and 500 mM (inverse triangles) KCl. (B) Effect

of Ficoll 70 on the ATPase activity of WT ClpB (triangles) and DN-

ClpB (circles) in the absence (solid symbols) or presence (open symbols)

of 2 mM a-casein. Measurements were carried out in buffer containing

50 mM KCl. Inset: Substrate-induced activation factor for WT ClpB

(open circles) and DN-ClpB (solid circles). (C) Basal (black bars) and

a-casein activated (white bars) ATPase activity of WT ClpB in the

presence of different sucrose concentrations. Measures are represented as

the mean 5 SE (n ¼ 4).
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30% and 40% sucrose. These sucrose concentrations were
selected because in terms of bulk viscosity 10% and 20%
(w/v) Ficoll 70 are equivalent to 30% and 40% (w/v)
sucrose, respectively (38,39). Sucrose addition reduces
ClpB activity (Fig. 2 C), an expected consequence of
the higher viscosity (40), suggesting that the additional
excluded-volume conditions that Ficoll 70 imposes, com-
pensate the otherwise inhibiting effect of viscosity.
FIGURE 3 Crowding favors the interaction of substrate proteins with

ClpB conformations generated during ATP hydrolysis. ATPase activity of

2 mM WT ClpB (A) or DN-ClpB (B) at increasing a-casein concentration.

Measurements were performed in the absence (solid symbols) or presence

(open symbols) of 15% Ficoll 70. Values of the mean 5 SE from at least

three independent experiments are shown.
Crowding increases the affinity of active ClpB for
substrate proteins

The chaperone activity of ClpB requires its interaction with
substrate proteins, and is therefore necessary to estimate the
effect that crowding might exert on this association. To this
aim, binding of FITC-labeled casein to trap variants of WT
and DN-ClpB was followed in the presence of ATP. The
estimated Kd values were similar for both protein variants
in the absence of Ficoll 70 (0.86 5 0.08 mM), and they
did not change significantly in the presence of 15% crowder
(0.88 5 0.06 mM) (Fig. S2). To further characterize this
behavior, we followed the activation of the ATPase activity
of ClpB at different substrate concentrations. In the absence
of Ficoll, the K0.5 values obtained for WT (Fig. 3 A) and
DN-ClpB (Fig. 3 B) were 3.5 and 1 mM, respectively. The
threefold lower value for DN-ClpB indicated that under
working conditions, deletion of the N-terminal domain
increased the affinity of the chaperone for a-casein. In stark
contrast with the binding experiments shown previously,
15% Ficoll 70 decreased the K0.5 values 11 and 3 times
for WTand DN-ClpB, respectively, indicating that crowding
facilitates complex formation that leads to chaperone
activation.
Crowding shifts the conformational equilibrium
of ClpB toward a compact state

To prove that Ficoll 70 could influence the conformational
transition associated with the ClpB functional cycle, the
effect of this crowder on the conformation and stability of
the apo and nucleotide-bound states of WT and DN-ClpB
was studied by CD. The CD spectra of the apo and nucleo-
tide-bound states of WT ClpB (Fig. 4, A, C, and E), and
Biophysical Journal 106(9) 2017–2027



FIGURE 4 Thermal stability of WT ClpB and DN-ClpB under crowding

conditions. First derivative of the molar ellipticity at 222 nm as a function of

temperature for apo (A and B), ADP-bound (C and D), and ATP-bound

(E and F) WT ClpB (A, C, and E) or DN-ClpB (B, D, and F) in the absence

(black lines) and presence (gray lines) of 15% Ficoll 70. Inset, variation of

the molar ellipticity at 222 nm with temperature.

2022 Martı́n et al.
DN-ClpB (Fig. 4, B, D, and F), were similar regardless of
the presence of Ficoll 70, indicating that neither nucleotides
nor crowding significantly modify their secondary structure
(Fig. S3). The irreversible thermal denaturation of apo-ClpB
showed two events at 56 and 60�C (Fig. 4 A), in agreement
with previous DSC data (41), which are shifted to 62 and
76�C upon addition of ADP (Fig. 4 C) or ATP (Fig. 4 E;
Table 2). Ficoll displaced to higher temperatures the first
thermal event of the WT apo-ClpB, and increased modestly
the stability of its ADP-state (Table 2), as it has been shown
for other proteins (42,43). The small dependence of the Tm
values (DTz 0.5–1.2�C) on scan rate suggests that the irre-
TABLE 2 Effect of crowding on the thermal stability of WT

ClpB and DN-ClpB

Protein Ficoll (g/l)

Tm (�C)

APO ADP ATP-ClpBtrap

WT ClpB 0 56.3 5 0.42 62.35 5 0.49 77 5 0.7

59.25 5 0.35

150 64.5 5 0.7 64.95 5 0.63 76.75 5 0.35

DNClpB 0 57.62 5 0.53 62.5 75.25 50.35

150 59.5 64.4 5 0.14 74 5 0.56

Midpoint denaturation temperature (Tm) values for different states of these

proteins obtained from the first derivative of the CD temperature denatur-

ation profile. Date are the mean 5 SE (n ¼ 3).
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versible process occurs after thermal denaturation. The sim-
ilarity of the Tm values of apo ClpB in 15% Ficoll 70 and the
ADP-state of the protein pointed out that crowding favors an
ADP-like conformation of the apo-protein. Two findings
suggested the involvement of the N-terminal domain in
the crowder-induced structural rearrangement of the apo-
protein: i), deletion of the N-terminal domain strongly
reduced the Ficoll-induced stabilization of the apo-protein
(Fig. 4 B); and ii), the different Tm values of the apo-
(59.5�C) and ADP-states (Fig. 4 D; 64.4�C) of the truncated
mutant in the presence of Ficoll 70, in contrast to what was
observed for WT ClpB. This would be consistent with the
current view of protein dynamics, in which the open and
closed conformations of ClpB coexist in the absence of
ligands, and crowding would displace the conformational
equilibrium toward a compact conformation, similar to the
ADP state.
Crowding enhances association of ClpB with the
DnaK system and their coordinated aggregate
reactivation activity

Reactivation of stable protein aggregates requires the func-
tional association of ClpB and the DnaK system, which
could be modulated by crowding. To find out if this was
the case, protein aggregate reactivation by this bichaperone
network was studied under crowding. Because the activity
of the DnaK-ClpB complex is sensitive to the aggregated
protein sequence, we have characterized the effect of Ficoll
70 on the reactivation of aggregates of three substrate pro-
teins: dimeric G6PDH (Fig. 5, A–C), tetrameric a-glucosi-
dase (Fig. S4), and monomeric luciferase (Fig. 5, D–F).

The DnaK system is composed of three different proteins
whose association might also be modulated by crowding.
Therefore, to analyze the effect of crowding on the associa-
tion of ClpB with the DnaK system, the concentration of the
components of this system and of substrate proteins are kept
constant, and reactivation followed at increasing ClpB
amounts for each crowder concentration. This experimental
strategy does not require a priori knowledge of the effect of
Ficoll 70 on the association of the components of the DnaK
system among them or with substrate proteins, and therefore
any experimental difference should mainly come from mod-
ifications in the association equilibrium of ClpB and/or its
interaction with free or aggregate-bound DnaK, which is
mandatory to reactivate these aggregates. Addition of Ficoll
70 induced the following changes in the reactivation reac-
tion of the three types of aggregates: i), increased both the
maximum rate and reactivation yield at 5% and 15% crow-
der; ii), decreased one order of magnitude the ClpB concen-
tration that causes half-maximum activation (Table 3); iii),
significantly reduced (3–4 times) the lag phase of the reac-
tivation reaction; and iv), at 30% partially inhibited the
reactivation reaction, which nevertheless remained more
effective than without crowding. The enhancement of the



FIGURE 5 Crowding strongly enhances reactivation of protein aggre-

gates by the DnaK-ClpB bichaperone network. Reactivation of aggregates

of G6PDH (A–C) and luciferase (D–F) in the presence of 0% (solid circles),

5% (open circles), 15% (solid triangles), and 30% (open triangles)

Ficoll 70. (A and D) Reactivation kinetics at 5 mM WT ClpB monomer.

(B and E) Lag phase of the reactivation reaction at 5 mM WT ClpB mono-

mer and increasing crowder concentrations. (C and F) Initial reactivation

rates (% refolding�min�1) measured at increasing ClpB and crowder con-

centrations. Same symbols as in (A). Values of the mean 5 SE from four

independent experiments are shown.

Reactivation of Protein Aggregates 2023
reactivation ability at lower ClpB concentrations in the pres-
ence of Ficoll 70 is expected as crowding increases the con-
centration of functional ClpB hexamers and facilitates their
TABLE 3 Crowding modulates protein aggregate reactivation

by the DnaK-ClpB chaperone network

Ficoll 70 (%)

K0.5 (mM)

G6PDH a-glucosidase Luciferase

0 3.9 5 0.5 3.4 5 0.19 12.3 5 2.19

5 2.6 5 0.4 1.6 5 0.16 4.5 5 0.61

15 0.2 5 0.006 0.1 5 0.009 0.9 5 0.19

30 0.3 5 0.01 0.2 5 0.002 0.5 5 0.042

K0.5(ClpB) values for the reactivation of different substrate proteins at

increasing ClpB and crowder concentrations. Values obtained from data

shown in Fig. 5 and Fig. S5. Measures are represented as the mean 5

SE from four independent experiments.
association with aggregate-bound DnaK. The inhibition
observed at high crowder and ClpB concentrations might
be due to a stabilization of the ClpB hexamer, so that its
slower dynamics would also decrease its reactivation effi-
ciency (23) (see below), or of the DnaK-ClpB complex,
designed to be transient with an estimated Kd of around
5–20 mM (17,18), which could become detrimental for
aggregate reactivation. An increase in ClpB concentration
above 2 mM (30% Ficoll 70) or 10–20 mM (5% and 15%
Ficoll 70) resulted in an inhibition of the reactivation effi-
ciency, suggesting that stabilization of the interaction be-
tween ClpB and aggregate-bound and/or free DnaK could
compromise the activity of the bichaperone complex. If
this were the case, it would be essential for the cell to control
the concentration of the different chaperones to optimize the
reactivation efficiency of its functional networks. It is
important to note that at 7 mM monomer and 50 mM KCl,
ClpB is a hexamer regardless of the presence of Ficoll 70
(23) and therefore the differences in reactivation rate
observed at different crowder concentrations do not arise
from Ficoll-induced modifications in the oligomerization
state of ClpB. They thus reflect primarily changes in the
association constant between the two chaperones that build
the functional complex. As previously mentioned for the
ATPase activity of ClpB, the aggregate reactivation ability
of the bichaperone network was abolished at 30% sucrose
(not shown), demonstrating that excluded volume condi-
tions are required to observe the aforementioned effects.
The dynamic nature of the ClpB hexamer is
maintained under crowding conditions

ClpB is a highly dynamic assembly that easily exchanges
subunits at 150 mM KCl (44). The biological relevance of
ClpB dynamics remains controversial, and it has been pro-
posed that it might be important to avoid stalling of the
chaperone by very stable protein aggregates (44), and that
hexamer dissociation is not essential for its chaperone activ-
ity (45). The predicted effect of crowding on the association
equilibrium of ClpB and the sedimentation equilibrium data
shown in Fig. 1 could result in a crowder-induced stabiliza-
tion of the hexamer that might hamper subunit exchange. To
explore this possibility, the aggregate reactivation efficiency
was analyzed in the absence and presence of two Ficoll 70
concentrations (15% Fig. S5 and 30% Fig. 6). Subunit ex-
change was monitored by following the insertion of inactive,
trap monomers into the WT hexamer, as it has been shown
that incorporation of a single subunit of ClpBtrap within a
WT hexamer completely inhibits its chaperone activity
(29,30). Therefore, the assay follows the timecourse of the
reactivation process by WT ClpB and the effect of adding
equimolar amounts of ClpBtrap. Data show that addition of
inactive ClpB hexamers arrested reactivation in the absence
and presence of both Ficoll 70 concentrations, indicating
that crowding did not hamper hexamer disassembly that
Biophysical Journal 106(9) 2017–2027



FIGURE 6 Excluded volume conditions do not hamper ClpB subunit ex-

change. Folding of G6PDH aggregates at 50 mMKCl and 0% (solid circles)

or 30% Ficoll 70 (open circles). Experiments were carried out with 2.5 mM

WT ClpB (solid line), and after recovery of a significant reactivation

2.5 mM ClpBtrap (dashed line) was added to the reactivation mixture at

the times indicated with black arrows.
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allows subunit exchange. They also suggest that the
aforementioned differences in reactivation are mainly due
to crowder-induced modulation of DnaK-ClpB complex
stability.
DISCUSSION

To our knowledge, this work is the first attempt to estimate
the effect of crowding on chaperone-mediated reactivation
of protein aggregates, a complex reaction that involves
the sequential interaction of different proteins. Crowding
effects arise from a balance between steric repulsions that
favor compact states, and from nonspecific interactions
that can add to the former when they are repulsive or oppose
when they are attractive (46,47). The use of synthetic poly-
mers to mimic the intracellular crowded environment has
the limitation that natural crowders are proteins and DNA
that can establish weak nonspecific interactions with
proteins. Despite this potential caveat, studies using syn-
thetic polymeric crowders are necessary to consider the
impact that excluded volume conditions might have on com-
plex processes in which several proteins are needed in
consecutive steps of a reaction, such as protein aggregate
reactivation.

A novel aspect of this study is the experimental character-
ization and analysis of the effect of crowding on ClpB olig-
omerization, which extends the previous characterization of
ClpB self-association in diluted solutions (23). Enhance-
ment of ClpB oligomer formation in the presence of Ficoll
70 is expected on grounds of excluded volume theory
(47). This work provides a quantitative analysis, by means
of nonideal tracer sedimentation equilibrium, of ClpB
self-association under crowding conditions, an experimental
challenge because of the difficulty to study a complex reac-
tion under dilute and crowded solutions. Our data show that
Ficoll 70 substantially shifts the overall ClpB isotherm
toward the active hexamer. The equilibrium association con-
stant for the active, hexameric conformation (K6) increases
Biophysical Journal 106(9) 2017–2027
between three and four orders of magnitude at 15% Ficoll
70, a similar behavior to that found for the oligomerization
equilibrium of the heptameric cochaperonin cpn10 (43). The
stabilizing effect of crowding on the active ClpB hexamer
suggests that it could be an additional factor that regulates
the intracellular activity of this chaperone, as it could widen
the range of salt conditions where ClpB hexamer could
function in vivo. Interestingly, hexamer stabilization does
not avoid subunit exchange, indicating that the dynamic
nature of the protein assembly is maintained under crowding
conditions even in the presence of nucleotides, natural ClpB
ligands that further stabilize the oligomer (23). This could
be explained assuming that the difference in free energy
of hexamer assembly with and without crowding, which
amounts to 14% of the total free energy, is compensated
by structural rearrangements of the oligomer during its func-
tional cycle that promote dissociation.

Regarding the effect of crowding on the conformation and
activity of ClpB, our data show that crowding shifts the
conformational equilibrium of apoClpB toward a compact
conformation and stimulates its ATPase activity. This struc-
tural transition is not associated with a significant modifica-
tion of the protein secondary structure, as seen by far-UV
CD, and involves the N-terminal domain, which most likely
contacts the rest of the hexamer under excluded volume
conditions. The change in the relative position of this
domain, which is connected to the rest of the protein by a
conserved linker, has been observed in cryoEM studies
of Hsp104 (48). The biochemical consequence of this
structural rearrangement is an activation of the chaperone
ATPase activity, which is essential during the disaggregation
process. This activation could be related to the crowder-
induced faster conformational transition between the open
and closed states, and to the ability of ATP binding to induce
an open conformation under excluded volume conditions.
Nucleotide exchange will shift the conformational equilib-
rium toward the open, ATP-state, because ATP binding
could provide the energy to drive an otherwise unfavorable
structural transition, as proposed for DnaK (49). As sucrose
significantly reduces the ATPase and chaperone activities of
the protein, the stimulating effect of Ficoll comes from
excluded volume conditions. A similar activation of phos-
phoglycerate kinase by Ficoll 70 has been recently reported,
and was related to the approximation of the protein catalytic
domains under crowding conditions (40). The same argu-
ment can be used to explain the higher substrate-induced
stimulation of the ATPase activity of DN-ClpB at high
crowder concentration. If Ficoll 70 favors a compact confor-
mation, the N-terminal domain would complicate the struc-
tural transition to the open, ATP-state that shows higher
affinity for substrates. Thus, the protein variant that lacks
the mobile N-domain could be activated more efficiently
than WT ClpB at high crowder concentrations. An in-
triguing finding of this work is that the expected crowder-
induced enhancement of the affinity of ClpB for substrates
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is only observed under hydrolyzing conditions, i.e., for the
active protein in the presence of ATP, and not for inactive
trap variants under the same experimental conditions. This
apparent discrepancy might be explained if crowding would
induce a rigid conformation in the inactive variants that
could compensate the expected increase in affinity for the
substrate (50). The situation would be different for the
active proteins that will be cycling between distinct confor-
mations. Under these conditions, the unfolded substrate
translocates through the central channel (51) and the com-
plex could effectively exclude less volume than the isolated
components.

Another aspect of this study that shall be discussed is
the impact that crowding might have on the functional
association of the DnaK system and ClpB. The K0.5 values
obtained from aggregate reactivation experiments decrease
up to one order of magnitude upon Ficoll addition, pointing
out that crowding significantly increases the affinity of
ClpB for the DnaK system. This interpretation assumes,
as it has been previously demonstrated, that aggregate-
bound DnaK recruits ClpB to the aggregate surface (17).
The three- to fourfold reduction in the lag phase, i.e., the
time required to extract unfolded monomers and refold
them into their active conformation, of the reactivation pro-
cess further supports this hypothesis and indicates that
crowding favors the productive interaction of the DnaK
system and ClpB at the aggregate surface. The initial
aggregate rearrangement most likely needs binding of a
productive amount of active chaperones to the aggregate
surface, which could be the limiting step of the reactivation
process. The similar crowding-induced effects on the
reactivation of three different substrate proteins suggests
that this complex process seems to be governed by chap-
erone binding to the aggregate more than by the polypep-
tide sequence that is being reactivated. The reactivation
efficiency will thus depend on i), the amount of aggre-
gate-bound chaperones, assuming that extraction of an
unfolded monomer would require the force generated by
a minimum number of chaperones, and ii), the ATP hydro-
lysis rate of both ATPases, DnaK, and ClpB, that would
provide the energy necessary for the extraction, which
under crowding conditions will be an unfavorable process.
Crowding will favor formation of chaperone functional
complexes, and at the same time will activate ClpB so
that it could exert more work to pull unfolded substrate
molecules out of the aggregate during the reactivation reac-
tion. The outcome will be, as experimentally observed, a
shortening of the lag phase and an increase in the reactiva-
tion rate.

Refolding of the extracted, unfolded monomers and their
subsequent oligomerization, if the active protein conforma-
tion is a dimer -G6PDH- or tetramer -a-glucosidase-, could
also sense excluded volume conditions. below 30% Ficoll,
increasing crowder concentrations could favor compaction
of the substrate unfolded state to a native-like conformation
provided that competing processes, i.e., aggregation of
folding intermediates, are conveniently prevented by chap-
erones. Partial inhibition of reactivation at high crowder
concentrations, i.e., 30% Ficoll 70, could be due to any of
the following reasons or to a combination of them: i), diffu-
sion-rate limiting of the conformational rearrangement
required to fold into the native state due to an increase in
viscosity (40); ii), promotion of intermolecular interactions
between aggregation-prone folding intermediates; and iii),
acceleration of refolding to compact nonnative conforma-
tions that could be similar in overall structure to the native
substrate but lack enzymatic activity, as it has been found
for carbonic anhydrase (52). Interestingly, the observed
crowder-induced enhancement of the reactivation rate and
yield occurs in the absence of a protein cage that would
provide confinement conditions to avoid intermolecular
interactions that lead to irreversible aggregation. Under
similar conditions, it has been reported that stabilization
of the GroEL-GroES complex reduces inefficient nonnative
protein release from the Anfinsen’s cage that compromises
protein refolding (20). Our data show that in a crowded
and nonconfined environment, chaperones are also able to
efficiently extract unfolded protein molecules from aggre-
gates and refold them into their native states avoiding
aggregation.
CONCLUSION

The results of this study indicate that crowding strongly
modulates protein aggregate reactivation by the DnaK-
ClpB bichaperone network. Crowding enhances reactiva-
tion by i), shifting the association equilibrium of ClpB
toward the functional hexamer; ii), accelerating its func-
tional cycle; iii), enhancing the affinity of ClpB for aggre-
gate-bound DnaK, which results in a higher amount of
functional chaperone complexes at the aggregate surface;
and iv), increasing the affinity of (a) transient conforma-
tions generated during ATP hydrolysis for substrate pro-
teins. They also provide insights into the importance of
crowding to optimize complex reactions in which different
proteins must interact sequentially, as protein aggregate
reactivation.
SUPPORTING MATERIAL

Five figures, supporting data, and references (53–59) are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(14)00344-0.

We are grateful to A. Minton for his help with data analysis, S. Rodziewicz-

Motowidlo for the atomic model of ClpB from E. coli, Begoña Monterroso

for critically reading the manuscript, and Natalia Orozco for technical

assistance.

We acknowledge financial support from the Ministerio de Ciencia e

Innovación (grants BFU2010-15443 to A.M. and BIO2011-28941-C03 to

G.R.), and the Universidad del Paı́s Vasco and Gobierno Vasco (grant

IT709-13 to A.M.).
Biophysical Journal 106(9) 2017–2027

http://www.biophysj.org/biophysj/supplemental/S0006-3495(14)00344-0
http://www.biophysj.org/biophysj/supplemental/S0006-3495(14)00344-0


2026 Martı́n et al.
REFERENCES

1. Kim, Y. E., M. S. Hipp, ., F. U. Hartl. 2013. Molecular chaperone
functions in protein folding and proteostasis. Annu. Rev. Biochem.
82:323–355.

2. Tartaglia, G. G., C. M. Dobson, ., M. Vendruscolo. 2010. Physico-
chemical determinants of chaperone requirements. J. Mol. Biol.
400:579–588.

3. Ellis, R. J., and A. P. Minton. 2006. Protein aggregation in crowded
environments. Biol. Chem. 387:485–497.

4. Ralston, G. B. 1990. Effects of crowding in protein solution. J. Chem.
Educ. 67:857–860.

5. Zimmerman, S. B., and S. O. Trach. 1991. Estimation of macromole-
cule concentrations and excluded volume effects for the cytoplasm of
Escherichia coli. J. Mol. Biol. 222:599–620.

6. Fulton, A. B. 1982. How crowded is the cytoplasm? Cell. 30:345–347.

7. Minton, A. P. 2000. Implications of macromolecular crowding for pro-
tein assembly. Curr. Opin. Struct. Biol. 10:34–39.

8. Minton, A. P. 2001. The influence of macromolecular crowding and
macromolecular confinement on biochemical reactions in physiolog-
ical media. J. Biol. Chem. 276:10577–10580.

9. van den Berg, B., R. J. Ellis, and C. M. Dobson. 1999. Effects of macro-
molecular crowding on protein folding and aggregation. EMBO J.
18:6927–6933.

10. Ellis, R. J. 1997. Molecular chaperones: avoiding the crowd. Curr. Biol.
7:R531–R533.

11. Ellis, R. J., and F. U. Hartl. 1999. Principles of protein folding in the
cellular environment. Curr. Opin. Struct. Biol. 9:102–110.

12. Balch, W. E., R. I. Morimoto, ., J. W. Kelly. 2008. Adapting proteo-
stasis for disease intervention. Science. 319:916–919.

13. Mayer, M. P. 2013. Hsp70 chaperone dynamics and molecular mecha-
nism. Trends Biochem. Sci. 38:507–514.

14. Kress, W., Z. Maglica, and E. Weber-Ban. 2009. Clp chaperone-prote-
ases: structure and function. Res. Microbiol. 160:618–628.

15. Lee, S., B. Sielaff, ., F. T. Tsai. 2010. CryoEM structure of Hsp104
and its mechanistic implication for protein disaggregation. Proc.
Natl. Acad. Sci. USA. 107:8135–8140.

16. Wendler, P., J. Shorter, ., H. R. Saibil. 2009. Motor mechanism for
protein threading through Hsp104. Mol. Cell. 34:81–92.

17. Acebrón, S. P., I. Martı́n, ., A. Muga. 2009. DnaK-mediated associa-
tion of ClpB to protein aggregates. A bichaperone network at the aggre-
gate surface. FEBS Lett. 583:2991–2996.

18. Rosenzweig, R., S. Moradi,., L. E. Kay. 2013. Unraveling the mech-
anism of protein disaggregation through a ClpB-DnaK interaction.
Science. 339:1080–1083.

19. Schlieker, C., I. Tews,., A. Mogk. 2004. Solubilization of aggregated
proteins by ClpB/DnaK relies on the continuous extraction of unfolded
polypeptides. FEBS Lett. 578:351–356.

20. Martin, J., and F. U. Hartl. 1997. The effect of macromolecular crowd-
ing on chaperonin-mediated protein folding. Proc. Natl. Acad. Sci.
USA. 94:1107–1112.

21. Martin, J. 2002. Requirement for GroEL/GroES-dependent protein
folding under nonpermissive conditions of macromolecular crowding.
Biochemistry. 41:5050–5055.

22. Kityk, R., J. Kopp, ., M. P. Mayer. 2012. Structure and dynamics of
the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell.
48:863–874.

23. del Castillo, U., C. Alfonso,., A. Muga. 2011. A quantitative analysis
of the effect of nucleotides and the M domain on the association equi-
librium of ClpB. Biochemistry. 50:1991–2003.

24. Woo, K. M., K. I. Kim,., C. H. Chung. 1992. The heat-shock protein
ClpB in Escherichia coli is a protein-activated ATPase. J. Biol. Chem.
267:20429–20434.
Biophysical Journal 106(9) 2017–2027
25. Moro, F., V. Fernández, and A. Muga. 2003. Interdomain interaction
through helices A and B of DnaK peptide binding domain. FEBS
Lett. 533:119–123.

26. Zylicz, M., T. Yamamoto,., C. Georgopoulos. 1985. Purification and
properties of the dnaJ replication protein of Escherichia coli. J. Biol.
Chem. 260:7591–7598.

27. Reija, B., B. Monterroso, ., S. Zorrilla. 2011. Development of a
homogeneous fluorescence anisotropy assay to monitor and measure
FtsZ assembly in solution. Anal. Biochem. 418:89–96.

28. Schuck, P., M. A. Perugini, ., D. Schubert. 2002. Size-distribution
analysis of proteins by analytical ultracentrifugation: strategies and
application to model systems. Biophys. J. 82:1096–1111.

29. del Castillo, U., J. A. Fernández-Higuero, ., A. Muga. 2010. Nucleo-
tide utilization requirements that render ClpB active as a chaperone.
FEBS Lett. 584:929–934.

30. Hoskins, J. R., S. M. Doyle, and S. Wickner. 2009. Coupling ATP uti-
lization to protein remodeling by ClpB, a hexameric AAAþ protein.
Proc. Natl. Acad. Sci. USA. 106:22233–22238.

31. Weibezahn, J., C. Schlieker, ., A. Mogk. 2003. Characterization of a
trap mutant of the AAAþ chaperone ClpB. J. Biol. Chem. 278:32608–
32617.

32. Diamant, S., A. P. Ben-Zvi, ., P. Goloubinoff. 2000. Size-dependent
disaggregation of stable protein aggregates by the DnaK chaperone
machinery. J. Biol. Chem. 275:21107–21113.

33. Motohashi, K., Y. Watanabe, ., M. Yoshida. 1999. Heat-inactivated
proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones.
Proc. Natl. Acad. Sci. USA. 96:7184–7189.

34. Zietkiewicz, S., M. J. Slusarz, ., S. Rodziewicz-Motowid1o. 2010.
Conformational stability of the full-atom hexameric model of the
ClpB chaperone from Escherichia coli. Biopolymers. 93:47–60.

35. Fodeke, A. A., and A. P. Minton. 2010. Quantitative characterization of
polymer-polymer, protein-protein, and polymer-protein interaction via
tracer sedimentation equilibrium. J. Phys. Chem. B. 114:10876–10880.

36. Rivas, G., and A. P. Minton. 2004. Non-ideal tracer sedimentation equi-
librium: a powerful tool for the characterization of macromolecular in-
teractions in crowded solutions. J. Mol. Recognit. 17:362–367.

37. Pozdnyakova, I., and P. Wittung-Stafsheda. 2010. Non-linear effects of
macromolecular crowding on enzymatic activity of multi copper oxi-
dase. Biochim. Biophys. Acta. 1804:1740–1744.

38. Wenner, J. R., and V. A. Bloomfield. 1999. Crowding effects on EcoRV
kinetics and binding. Biophys. J. 77:3234–3241.

39. Wheast, R. C. 1982. CRC Handbook of Chemistry and Physics, 63rd
ed. CRC Press, Boca Raton, FL.

40. Dhar, A., A. Samiotakis, ., M. S. Cheung. 2010. Structure, function,
and folding of phosphoglycerate kinase are strongly perturbed by
macromolecular crowding. Proc. Natl. Acad. Sci. USA. 107:17586–
17591.

41. Martin, I., J. Underhaug, ., A. Muga. 2013. Screening and evaluation
of small organic molecules as ClpB inhibitors and potential antimicro-
bials. J. Med. Chem. 56:7177–7189.

42. Christiansen, A., and P. Wittung-Stafshede. 2013. Quantification of
excluded volume effects on the folding landscape of Pseudomonas
aeruginosa apoazurin in vitro. Biophys. J. 105:1689–1699.

43. Aguilar, X., C. F Weise, ., P. Wittung-Stafshede. 2011. Macromolec-
ular crowding extended to a heptameric system: the Co-chaperonin
protein 10. Biochemistry. 50:3034–3044.

44. Werbeck, N. D., S. Schlee, and J. Reinstein. 2008. Coupling and dy-
namics of subunits in the hexameric AAAþ chaperone ClpB. J. Mol.
Biol. 378:178–190.

45. Biter, A. B., S. Lee,., F. T. Tsai. 2012. Structural basis for intersubu-
nit signaling in a protein disaggregating machine. Proc. Natl. Acad. Sci.
USA. 109:12515–12520.

46. Sarkar, M., A. E. Smith, and G. J. Pielak. 2013. Impact of reconstituted
cytosol on protein stability. Proc. Natl. Acad. Sci. USA. 110:19342–
19347.



Reactivation of Protein Aggregates 2027
47. Minton, A. P. 2013. Quantitative assessment of the relative contribu-
tions of steric repulsion and chemical interactions to macromolecular
crowding. Biopolymers. 99:239–244.

48. Wendler, P., J. Shorter,., H. R. Saibil. 2007. Atypical AAAþ subunit
packing creates an expanded cavity for disaggregation by the protein-
remodeling factor Hsp104. Cell. 131:1366–1377.

49. Taneva, S. G., F. Moro, ., A. Muga. 2010. Energetics of nucleotide-
induced DnaK conformational states. Biochemistry. 49:1338–1345.

50. Zhou, H. X., G. Rivas, and A. P. Minton. 2008. Macromolecular crowd-
ing and confinement: biochemical, biophysical, and potential physio-
logical consequences. Annu. Rev. Biophys. 37:375–397.

51. Weibezahn, J., P. Tessarz, ., B. Bukau. 2004. Thermotolerance re-
quires refolding of aggregated proteins by substrate translocation
through the central pore of ClpB. Cell. 119:653–665.

52. Monterroso, B., and A. P. Minton. 2007. Effect of high concentration of
inert cosolutes on the refolding of an enzyme: carbonic anhydrase B in
sucrose and ficoll 70. J. Biol. Chem. 282:33452–33458.

53. Bocanegra, R., C. Alfonso, A. Rodriguez-Huete, M. A. Fuertes, M.
Jimenez, G. Rivas, and M. G. Mateu. 2013. Association equilibrium
of the HIV-1 capsid protein in a crowded medium reveals that hexame-
rization during capsid assembly requires a functional C-domain dimer-
ization interface. Biophys. J. 104:884–893.

54. Cole, J. L. 2004. Analysis of heterogeneous interactions. Methods
Enzymol. 384:212–232.
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MATERIALS AND METHODS  
 
Tracer sedimentation equilibrium (TSE): Data analysis.  
The magnitude of the signal (S; absorbance at 650 nm) was followed as a function of 
the radial position (r). Sr is proportional to the total amount of protein and independent 
of the concentrations of all unlabeled species; this is particularly important in 
experiments done with Ficoll 70. For each solution composition, the radial dependence 
of the signal at sedimentation equilibrium was fitted to eqn. 1 to determine the whole-
cell apparent signal-average buoyant molecular weight of wt- and ΔN-ClpB (M*

i,app):  
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where Si (r) is the magnitude of the signal (absorbance at 650 nm) proportional to the 
weight/volume concentration of wt- and ΔN-ClpB at radial position r; r0 is an arbitrarily 
selected reference position; R is the molar gas constant; and T the temperature (1). The 
molecular weight analysis was done using the EQASSOC (2) and HETEROANALYSIS 
(3) programs, which yielded the same results within 5 % experimental error.  
 In the absence of Ficoll 70, all measurements meet conditions of thermodynamic 
ideality (high dilution of all macromolecular species) and therefore the apparent 
buoyant molecular weight experimental values (M*

i,app) are equal to the actual buoyant 
molecular weights (M*

i). The average molecular weight (Mi) of the different proteins 
can be obtained from the corresponding buoyant values with M*

i = Midi, where di 
denotes the specific density increments of wt- and ΔN-ClpB.  
 The experimental sedimentation equilibrium approach applied in this work, 
using short solution columns and low rotor speeds to yield shallow gradients, simplifies 
data analysis and interpretation. Under these conditions, M*

i,app becomes independent of 
radial distance and is well described by the solution average molecular weight value, 
which may be expressed as a function of the loading protein concentration and analyzed 
employing self-association relationships described elsewhere (4, 5). In this work, it has 
been assumed that wt- and ΔN-ClpB exist as an equilibrium mixture of monomers and 
hexamers with a thermodynamic equilibrium constant (K6) given by  
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where w1 and w6 denote the concentration (in weight/volume units) of monomers and 
hexamers, respectively. The average molecular weight is then given by  
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where wtot is the sum of the weight concentrations of monomers and hexamers. This 
model was then fit to the composition dependent average molecular weight data, M*

i,app, 
obtained from eqn. 1 using a non-linear least squares procedures implemented in 
MATHLAB scripts (kindly provided by Dr. Allen Minton, NIH). This self-association 
scheme resulted to be the simplest one that globally described the SE data in the 
absence and presence of Ficoll 70 (see below) with a 95% confidence limit of statistical 
significance (6).  
 
Non-ideal tracer sedimentation equilibrium analysis: The characterization of the 
corresponding SE measurements in the presence of Ficoll 70, in terms of association 
stoichiometry and equilibrium association constants, requires, as in the experiments 
done in the absence of crowder, to model the dependence of M*

i,app upon solution 
composition (7). It is also necessary to consider the effect that the interaction of the 
chaperone with all the species of the solution mixture might have on its apparent 
buoyant mass (4). The general expression that describes the condition of sedimentation 
equilibrium in a solution containing an arbitrary number of solute species at arbitrary 
concentrations is  
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where wj denotes the w/v concentration of species j, and γi is the activity coefficient of 
species i. The quantity (dlnγi/dwj) defines a thermodynamic magnitude measuring the 
free energy of interactions between species i and j, also referred to as thermodynamic 
interaction factor (5). 
 In a tracer SE experiment, the equilibrium concentration of the tracer protein 
(wt- and ΔN-ClpB) can be reliably measured independently of the gradients of the other 
solute components (Ficoll 70). Any effect of the unlabelled crowded species upon the 
signal gradient of the tracer will reflect either a net attractive or a net repulsive 
interaction between the tracer and the crowder. The quantitative analysis of the data 
would, in principle, require having a realistic model of excluded volume and other 
repulsive solute-solute interactions that may be relevant in concentrated and/or crowded 
solutions. In complex self-associating systems, as ClpB, this is extremely challenging. 
However, the analysis may be greatly simplified with the experimental design used in 
this study, which maintains constant the amount of the components present at high 
concentrations (Ficoll 70) that significantly contribute to the sum of the right-hand side 
of eqn. 4, and only changes the concentration of the dilute components (wt- and ΔN-
ClpB). Under such conditions, the dependence of M*

i,app with the concentration of one 
or more dilute species may be directly modeled by eqn. 3 as in the absence of Ficoll 70 
(for a more detailed description of this strategy see Rivas and Minton (8). Therefore, 
data in the presence of Ficoll can be analyzed without a previous knowledge of the 



dependence of the activity coefficients of all species upon crowder concentration. The 
combined SE data for a given (single) crowder concentration (wc) can be fitted by a 
self-association model that makes no assumptions on the non-specific interactions 
between dilute protein species (monomer and hexamers) and Ficoll 70. The non-linear 
modeling procedure then provides best-fit values of M*

1,app, M*
6,app and K6 for the 

concentration of Ficoll (wc) at which the molecular weight values were determined.  
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Figure S1 

 

 
 

Figure S1. Effect of KCl on the sedimentation profile of wt ClpB and ΔN-ClpB. 
Sedimentation coefficient distributions of 10 µM (2 µM labeled with Alexa 647 and 8 
µM unlabeled) wt ClpB (A) and ΔN-ClpB (B) at 50 mM Tris-HCl pH (7.5), 50 mM 
(black line) or 500 mM (grey line) KCl.  



  5

Figure S2 

 

 
Figure S2. The affinity of the ATP-state of ClpBtrap for substrates does not change 
in 15% (v/v) Ficoll 70. Fluorescence anisotropy of FITC-α-casein in the presence of 
increasing concentrations of (A) wt ClpB and (B) ΔN-ClpB in the absence (filled 
circles) and presence (empty circles) of 15 % Ficoll 70. Experimental data were fitted to 
a quadratic equation modeling a single binding site. Data are the mean ± SEM (n = 3). 



  6

Figure S3 

 

 
 
Figure S3. Secondary structure of ClpB under crowding. CD spectra of wt ClpB (A-
C-E) and ΔN-ClpB (B-D-F) in apo- (A-B), ADP- (C-D) and ATP(trap)-states (E-F) in the 
absence (solid line) and presence (dashed line) of 15 % Ficoll 70.  
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Figure S4 

 

 
 

Figure S4. Effect of crowding on the reactivation of α-glucosidase aggregates at 
increasing ClpB concentrations. (A) Reactivation kinetics at 5 µM wt ClpB monomer 
in 0 % (filled circles), 5 % (empty circles), 15 % (filled triangles), and 30 % (empty 
triangles) Ficoll 70. (B) Disaggregation Lag phase at 5 µM wt ClpB monomer in 0 %, 5 
%, 15 %, and 30 % Ficoll 70 (C) Initial reactivation rates at increasing ClpB 
concentrations measured under different crowding conditions. Same symbols as in (A). 
Values of the mean ± SEM from four independent experiments are shown. 
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Figure S5 

 

 
 

Figure S5. Subunit exchange takes place in the presence of crowder.  Folding of 
G6PDH aggregates in buffer containing 50 mM KCl and 0 % (filled circles) or 15 % 
Ficoll 70 (empty circles). Experiments were carried out with 2.5 µM wt ClpB. The 
reactivation mixtures were divided in two aliquots and after recovery of a significant 
reactivation yield, buffer (solid line) or ClpBtrap at 2.5 µM final concentration (dashed 
line) were added to each of them at the times indicated with black arrows.  
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