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Appendix I –Full conditionals for the one library case

We start outlining the relevant full conditionals for Markov chain Monte Carlo
sampling in the one library case. For a given k, consider model (2) completed
with G

⇤(�) = Ga(↵,�). We can integrate out the �

i

’s and rewrite the likeli-
hood as a function only of the cluster configurations s, i.e. the components’
assignments in the mixture. Thus,
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,

where L = max{s
i

, i = 1, . . . , k}, n
j

=
P

k

i=1 I(si = j) and ȳ
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are, respectively, the number of clusters, the cluster frequencies and the
total counts in cluster j at an arbitrary iteration of the posterior simulation.
Therefore, posterior inference can be obtained by sampling the configuration
indicators s and the unknown number of tags k in this reduced model.
More precisely, the full conditional for the configuration indicators s is Multi-
nomial with probabilities

p(s
i

= l|s�i

, k,y) / p(s|k)⇥ p(y|s, k), l = 1, . . . , L�i + 1,

where s�i

= (s1, . . . , si�1, si+1, . . . , sk)T , L�i = max{s�i

}, and p(s|k) is as in
(4) with L = L

�i if s
i

= l, l = 1, . . . , L�i or L = L

�i+1 if s
i

is a newly sampled
label (see MacEachern and Müller, 1998).
Inference on the number of distinct sequences k is obtained by means of a
Metropolis-within-Gibbs step. At each iteration, we propose to increase (or
decrease) the current value of k by a fixed amount with probability p (or 1 �
p). For example, in the application presented in section 3.4, we set p = 1/2.
Accordingly, we add (or delete) a set of zero counts and corresponding labels
s

i

’s to the current data. To be more specific, suppose we propose to move from
the current k to k̃ = k + 1. If the move is accepted, the data set has to be
augmented to accommodate for the new tag with y

k+1 = 0 and s

k+1 = s̃

k+1.
The value of s̃

k+1 is proposed by means of a single draw from the Pólya Urn.
Let s̃ = (s1, . . . , sk, s̃k+1)T and L = max{s

i

, i = 1, . . . , k}. Then, it can be
shown that s̃
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In order to obtain the proper acceptance rate, we need to evaluate the proba-
bility of the reverse move, from k̃ to k. The move corresponds to the deletion of
one of the zero counts previously added; hence, we sample the proposed deletion
from a discrete uniform distribution on {k0 + 1, . . . , k̃}. Thus, the Metropolis-
Hasting ratio for the upward move is given by
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and the move is accepted with probability a = min(1, A). Instead, the move
from k to k� 1 is accepted with probability a = min(1, A�1). In order to allow
for the exploration of a large posterior support space, this step can be repeated
multiple times in a single iteration. Alternatively, the previous steps can be
easily modified to take into account a generic step (m > 0) up or down from
the current state k.
Given an imputed cluster structure s, it is always possible to sample from the
posterior of the cluster-specific abundances �

⇤
j

, j = 1, . . . , L (hence, the tag
specific �
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the cluster mass, j = 1, . . . , L.

Appendix II –Full conditionals for the class comparison.

We follow the discussion in Section 3 and denote with, x

t

= 1, . . . , C, the
tissue collected in sample t. Then, y
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=
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is the observed count of
sequence i under condition x and m
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is the number of samples drawn under
condition x, x = 1, . . . , C. Again, we can integrate out the random probability
measure G and the parameters of the base measure and consider only the cluster
configuration indicators s
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measure of the cluster size, and L denotes the number of clusters.
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In order to update the cluster configurations {s
ix

}, it is convenient to rewrite
(8) explicitly in terms of the latent indicators of di↵erential expression, w

ix

.
We need to introduce further notation. Let x > 1, since x = 1 denotes the
reference condition. Also, let w�i,x

denote the vector of w’s with the exclusion
of the single element w
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�
j

)
, j = 1, . . . , L,

(11)

where the quantities M

�
j

= M

j

� N

�
j,x

m

x

with N

�
j,x

=
P

r 6=i

I(s
r,x

= j), and

ỹ
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(r,z) 6=(i,x) yr,z I(sr,z = j) denote, respectively, measures of the size and
the total counts of each cluster, with the ith observations in condition x ex-
cluded. Since the algorithm just described relies on repeated draws of the single
elements of each vector s

x

and w

x

, it is not e�cient when applied to large
datasets. We can improve the mixing of the chain and decrease computation
time by employing a merge-split move such as the one devised by the SAMS
sampler by Dahl (2003). This algorithm was used in the data example presented
in section 3.4. Conditional on the observations y

i,x

with w

i,x

= 1, the algorithm
can be described as follows:

1. At any given iteration, uniformly select a pair of distinct observations, say
i and j.

2. (a) If i and j belong to the same cluster, say S, then propose a new cluster
configuration by splitting the common cluster as follows:

– Start by forming singleton sets, say S

i

= {i} and S

j

= {j};
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– Consider a uniformly selected permutation of the remaining elements
in S;

– Any remaining element l in S is added to either S
i

or S
j

with prob-
abilities
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where W

Sr is the cardinality of cluster S

r

, r 2 {i, j}, p(y|s0, k) is
as in (11) and s(r) is the vector of cluster configurations obtained
assuming s

l
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– Let s

⇤ denote the proposed partition. Accept s

⇤ over the current
partition s with probability
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�
,

where p(s|y) and p(s⇤|y) are the partition posterior distributions
evaluated, respectively, at s and s

⇤, p(s⇤|s) is the product of the
probabilities in (12) and p(s|s⇤) = 1.

2. (b) If i and j belong to two di↵erent clusters, propose to merge them in
a new partition s

⇤. The Metropolis Hasting ratio for the proposed move
is amerge = min[1, 1

asplit
], which requires the computation of a product

of probabilities (12) to take into account the reverse split of the merged
partition s

⇤ back into the current s. We refer to Dahl (2003) for further
details.

Finally, the full conditional for the indicators of di↵erential abundance {w
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, i >

1} is obtained as follows. Note that if s
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= 1 with probability
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where the conditional distribution on the right side is given by (10). Alterna-
tively, it would be possible to update the pairs (w

ix

, s

ix

) jointly, for x > 1.
Finally, the update of k mimicks the one described in Appendix I with some
minor adjustments to take into account the presence of multiple samples; hence,
it is omitted.


