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S1. Synthetic Chemistry 

Existing in-house screening data had identified biaryl sulfonamides represented by 1 as a series with 

MMP-12 activity and amenable to chemistry from readily available starting materials, amino acids 

and boronic acids. A 50x50 array was synthesized as described below using the reagents shown in 

Table 1. 
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The majority of the products were obtained in a two step process from a series of amino acid and 

boronic acid building blocks as illustrated in Scheme 1. The amino acid was coupled with pipsyl 

chloride and the resulting iodide was reacted with the boronic acid under Suzuki conditions. In most 

cases the first step was outsourced to give suitable quantities of the sulfonamide to allow individual 

in-house Suzuki reactions with fifty boronic acids. All products were purified via preparative HPLC 

and characterized by NMR and MS.  
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Scheme 1. Standard synthetic route for the biaryl sulfonamide array. 

It is common practice to adopt a single route for parallel synthesis of arrays, for reasons of efficiency 

and economy. However, since the objective of this exercise was to obtain as diverse and complete 

an array as possible, variations of the standard route and conditions were required to avoid 

compromising the diversity of the final array. Despite best efforts, a number of the desired products 

could not be synthesized due to poor reactivity, unanticipated side reactions or product instability.  

Synthesis of sulfonamides:  

The standard route involved reaction of the amino acid with pipsyl chloride as shown in Scheme 2. 
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Scheme 2. Standard route for synthesis of sulfonamides 

The majority were synthesized by this route, with the following exceptions: 

A10: Not made 

A12, A35: As standard route, but 0 C, 6h 

A1. The phenol group required protection as the t-butyl ether, to prevent O-sulfonylation. The 

phenol was deprotected prior to the Suzuki coupling step. 

A14. A milder base (Et3N) was used for the sulfonylation to prevent hydrolysis of the ethyl ester. 

A15. The side-chain amino group of the amino acid was protected with a Cbz group during the 

sulfonylation and Suzuki steps, deprotected by hydrogenation, then trifluoroacetylated.  

A22. The phenol was allowed to react with excess pipsyl chloride during the sulfonylation step and 

was cleaved by base hydrolysis. 

A45. The Boc protected lysine methyl ester was sulfonylated then cleaved to the free amine which 

was coupled to pyridine-3-carboxylic acid before finally hydrolyzing the ester group. 



Suzuki  coupling reactions 

In most cases the iodo sulfonamides were coupled to the boronic acid building blocks using Suzuki 

conditions as shown in Scheme 3.  
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Scheme 3. Standard route for Suzuki coupling 

Although the majority of couplings were performed this way, the following were exceptions: 

A2, A3, A12: used PPh3 route (see Scheme 4) 

A10: monomer was never made 

A13, A23: failed due to cyclization reactions 

A14: heated for only 3 h to prevent ester hydrolysis 

A15: a different route was required, as already described above 

A20: failed to couple under a range of conditions 

A26: The Suzuki reaction was performed on the methyl ester of the sulfonamide via the PPh3 route 

(Scheme 4), and was hydrolyzed in the final step  

A36: was unstable – dihydrobenzene ring oxidized readily 
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Scheme 4. Suzuki coupling using PPh3 

B9, B12, B28, B45: failed purification 

B2: Because this product possessed an aromatic bromo group which interfered in the Suzuki 

reaction, these products were made directly by coupling the bromo biphenyl sulfonyl chloride with 

the amino acid building blocks. 

B26: Coupling of the perfluorophenyl boronic acid proved particularly troublesome, and the Suzuki 

conditions shown in Scheme 5 were found to be the most effective. 



B30: The nitro functionality was introduced at the final step by condensation of nitromethane with 

the biphenyl aldehyde. 

B41, B47: only 3 h heating to stop ester hydrolysis 

B50: never coupled successfully 
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Scheme 5. Route for B26 

Reagent selection 

At the time that this experiment was started there were about 450 commercially available boronic 

acids and 680 commercially available α-substituted amino acids. These lists were reduced to give a 

50x50 array using our in-house library design system, ADEPT1. A diverse set of reagents was selected 

using clustering and similarity analysis with Daylight fingerprints.2 

Full details of the chemical structures (SMILES strings2), QC data from LC/MS and biological data in 

the MMP-12 assay are given in the excel file included with the supporting information. In addition 

NMR data on several of the most active compounds are given below. 

All nmr data were measured at 400 Mhz on a Bruker DPX400. 

A18B18 [pIC50 = 7.4]  

1H NMR (CD3OD) δ 0.96 (3 H, t, J = 8 Hz), 1.40 (9 H, s), 1.67 (2 H, m), 2.63 (2 H, t, J = 8 Hz), 2.60 (1 H, 

dd, J = 6, 16 Hz), 2.68 (1 H, dd, J = 6, 16 Hz), 4.21 (1 H, t, J = 6 Hz), 7.28 (2 H, d, J = 8 Hz), 7.60 (2 H, d, J 

= 8 Hz), 7.77 (2 H, d, J = 9 Hz), 7.92 (2 H, J = 9 Hz) 

A01B30 [pIC50 = 7.3]   

1H NMR (CD3OD) δ 2.73 (1 H, dd, J = 8, 14 Hz), 2.97 (1 H, dd, J = 6, 14 Hz), 3.97 (1 H, dd, J = 6, 8 Hz), 

6.58 (2 H, d, J = 9 Hz), 6.93 (2 H, d, J = 9 Hz), 7.67 (4 H, m), 7.78 (4 H, m), 7.94 (1 H, J = 15 Hz), 8.10 (1 

H, d, J = 15 Hz) 

A04B04 [pIC50 = 7.2]   



1H NMR (CDCl3) δ 0.79 (3 H, d, J = 8 Hz), 0.85 (3 H, d, J = 8 Hz), 1.38 (2 H, m), 1.72 (1 H, m), 2.40 (3 H, 

s), 3.90 (1 H, m), 5.08 (1 H, br.d, J = 9 Hz), 6.10 (1 H, br.s), 7.28 (2 H, d, J = 9 Hz), 7.47 (2 H, d, J = 9 Hz), 

7.63 (2 H, d, J = 9 Hz), 7.82 (2 H, d, J = 9 Hz) 

A09B48 [pIC50 = 6.1]   

 1H NMR (d6DMSO) δ 2.27 (3 H, s), 3.08 (1 H, m), 3.24 (1 H, m), 3.73 (1 H, m), 5.57 (2 H, s), 6.03 (1 H, 

t, J = 7 Hz), 7.38 (1 H, t, J = 9 Hz), 7.48 (1 H, dd, J = 2, 8 Hz), 7.53 (1 H, dd, J = 2, 11 Hz), 7.79 (2 H, d, J = 

9 Hz), 7.85 (2 H, d, J = 9 Hz), 8.15 (1 H, br.s), 12.8 (1 H, br.s) 

A24B15 [pIC50 = 5]   

1H NMR (CD3OD) δ 2.04 (1 H, m), 2.25 (1 H, m), 2.60 (3 H, d, J = 7 Hz), 2.80 (1 H, m), 2.92 (1 H, m), 

4.03 (1 H, m), 7.25 (2 H, m), 7.43 (1 H, m), 7.53 (1 H, td, J = 8, 2 Hz), 7.72 (2 H, d, J = 8 Hz), 7.94 (2 H, 

d, J = 8 Hz) 

A04B07 [pIC50 = 7.8]   

1H NMR (d6DMSO) δ 0.68 (3 H, d, J = 7 Hz), 0.78 (3 H, d, J = 7 Hz), 1.37 (2 H, m), 1.57 (1 H, m), 2.49 (3 

H, s), 3.64 (1 H, m), 7.36 (2 H, d, J = 9 Hz), 7.67 (2 H, d, J = 9 Hz), 7.78 (2 H, d, J = 9 Hz), 7.83 (2 H, d, J = 

9 Hz), 8.08 (1 H, br.s), 12.70 (1 H, br.s) 

A25B19 [pIC50 = 7.5]   

1H NMR (CD3OD) δ 0.98 (9 H, s), 1.25 (3 H, t, J = 8 Hz), 2.68 (2 H, q, J = 8 Hz), 3.30 (1 H, m), 7.30 (2 H, 

d, J = 9 Hz), 7.58 (2 H, d, J = 9 Hz), 7.74 (2 H, d, J = 9 Hz), 7.88 (2 H, d, J = 9 Hz) 

A04B18 [pIC50 = 7.2]   

1H NMR (CDCl3) δ 0.82 (3 H, d, J = 7 Hz), 0.88 (3 H, d, J = 7 Hz), 0.98 (3 H, t, J = 8 Hz), 1.42 (2 H, m), 

1.70 (2 H, m), 1.73 (1 H, m), 2.65 (2 H, t, J = 8 Hz), 3.94 (1 H, m), 4.50 (1 H, br.s), 5.05 (1 H, d, J = 9 Hz), 

7.28 (2 H, d, J = 9 Hz), 7.50 (2 H, d, J = 9 Hz), 7.67 (2 H, d, J = 9 Hz), 7.84 (2 H, d, J = 9 Hz) 

A49B04 [pIC50 = 6.8]   

1H NMR (CD3OD) δ 2.37 (3 H, s), 3.35 (1 H, dd, J = 8, 15 Hz), 3.60 (1 H, dd, J = 6, 15 Hz), 4.27 (1 H, m), 

7.28 (2 H, d, J = 8 Hz), 7.41 (1 H, d, J = 4 Hz), 7.53 (2 H, d, J = 8 Hz), 7.63 (1 H, d, J = 4 Hz), 7.68 (2 H, d, 

J = 9 Hz), 7.84 (2 H, d, J = 9 Hz) 

A50B18 [pIC50 = 6.8]   

1H NMR (d6DMSO) δ 0.89 (3 H, t, J = 8 Hz), 1.60 (2 H, m), 2.58 (2 H, t, J = 8 Hz), 2.78 (1 H, dd, J = 7, 14 

Hz), 2.98 (1 H, dd, J = 6, 14 Hz), 3.74 (1 H, m), 6.99 (2 H, m), 7.31 (2 H, d, J = 9 Hz), 7.60 (1 H, m), 7.63 

(2 H, d, J = 9 Hz), 7.74 (2 H, d, J = 8 Hz), 7.79 (2 H, d, J = 8 Hz), 8.33 (1 H, br.s), 13.00 (1 H, br.s) 

S2. MMP-12 assay 

The MMP-12 assay was performed on recombinant human MMP-12 catalytic domain, residues 

G106-N268. The recombinant protein was synthesized in-house. A standard FRET based assay was 

employed with 6nM MMP-12 and 2μM of a FAM-TAMRA substrate FAM-Thr-Pro-Gly-Pro-Leu-Gly-



Leu-X-Ala-Arg-Arg-Lys-TAMRA synthesized in-house. X is 3-[(2,4-dinitrophenyl)amino]-L-alanine. The 

assay buffer contained 50mM HEPES, 150mM NaCl, 10mM CaCl2, 1μM ZnAc2 and 600μM CHAPS (all 

purchased from commercial sources); pH7.5. The assay was incubated at room temperature for 2 

hours, in the dark, and the reaction terminated by the addition of 100mM EDTA. Plates were read 

with a PheraStar (BMG Labtech) platereader (Ex of 485nm, Em of 530nm, Dichoic Filter of 505nm). 

All results are an average of at least 2 determinations. 

S3. Optimisation Algorithm 

We made the decision to use a genetic algorithm based optimizer to drive each iteration cycle, 

similar in principle to previous publications.3, 4 However, the algorithm incorporates a number of 

important additional features. In the language of the GA, each reagent is an allele in a specific gene 

(reaction position). The complete library, or genome, is the collection of genes. The population is the 

set of molecules (individuals) that have been or are to be made. To start the process the user 

provides the algorithm with the genome and various optimization parameters defined below. The 

algorithm generates the starting population (each molecule being a combination of alleles from each 

gene) and the compounds are synthesized and tested. The population is updated with the screening 

results (scores) and a new population generated using genetic operators. The process is repeated 

until convergence or a user-defined number of iterations has been reached. 

Genes, Genomes and Population 

Each gene represents a position in the combinatorial library. Each reagent at this position (allele) is 

represented by some unique label, e.g. compound identifier. In this implementation the genes are 

files and the genome is simply a list of these files. The population is a list of specific individuals from 

the genome. So for a two component library with reagents A1 to A10 and B1 to B10 a valid individual 

is A3-B5. No attempt is made to generate a combinatorial subpopulation at each iteration.  

Parent selection 

A key part of the genetic algorithm is the way in which it chooses which individuals from the 

population of tested data to use as parents for generating the next generation of test data. This 

process involves choosing individuals at random but with a probability that is weighted towards the 

fittest. In this application we use a roulette wheel with the proportion of the wheel based on an 

individual’s fitness (activity). This is done in two stages. Two roulette wheels are generated, one for 

the latest test generation (“new”) (note: the definition of last test generation is user controllable, by 

defining the number of previous generations to be considered as part of the latest generation. This is 

done so that small numbers can be tested at each generation, e.g. 1, but without affecting the ability 

to have a large population “exploring” the search-space) and one for the individuals tested in the 

generations prior to current generation (“old”). 

The roulette of “old” individuals then removes all individuals except the N fittest, where N is 

controlled by a user-defined proportion times the size of the “new” roulette wheel. This provides a 

strong pressure to search known maxima. This is not done to the “new” roulette, as the “new” 

individuals are more diverse in order to ensure that there is a robust search of the space for 

undiscovered maxima. 



Both the “old” and the “new” roulette wheels are then “normalized” so that the probability of the 

fittest being selected is greater than the probability of the weakest being selected by a user-defined 

amount. The probability for the other individuals is a linear function of fitness – not rank order. This 

is done in the expectation of finding islands of activity, forcing the algorithm to explore these islands 

requires a strong selection pressure relative to the surrounding inactive region.  

Once the roulette wheels have been set up, the second stage of the selection process can occur. 

When a parent is required, an individual is selected randomly from either the old or the new roulette 

wheel, again governed by a user-defined probability. Once a wheel is chosen, an individual is chosen 

by “spinning” the wheel to select a member of the population.  

Genetic operators 

The GAO library has been written to be problem agnostic, that is it can be applied in principle to any 

optimization problem. For example, several genetic operators have been implemented for numerical 

optimization problems. In this section we describe the operators relevant to this particular 

application. 

Cross-over takes two parents and creates a child with a mixture of the parents’ genetic information. 

For each gene in turn the child allele is chosen at random to be either of the parent alleles. 

Mutation takes one parent, where each gene either randomly mutates or takes the parent’s value. 

The probability of the gene mutating is such that on average, only one gene in the individual will 

change. 

Random generates an individual at random. 

The relative proportion of cross-over, mutation and random is user controlled. 

Choosing the next test set 

The next generation is chosen in the following manner  

1. The size of the next generation, nNew, is kept constant as defined by the initial population 

size, set to a user-defined value or can be variable. In the latter case the generation size is 

set to the size of the previous generation, nOld multiplied by the sum of the proportion of 

cross-over, mutation and random. 

2. A roulette wheel is generated with segments for cross-over, mutation and random. The 

weight of each segment is set to the proportion of the next generation to be generated by 

the corresponding method. The wheel is “spun” nNew times, each time a child is chosen, 

then a child is generated by cross-over, etc. This is a rather complex way of choosing the 



method of generating the next generation. However, the use of a roulette wheel allows the 

size of each generation to be as low as one. 

3. The parents for the cross-over and mutation are selected as described above. 

4. Each individual chosen by the above methods is a new individual in the population. When an 

individual is chosen that is already in the population, then the process is repeated with a 

different set of parents. Once every possible individual has been added to the population, 

then the process ends. 

When trying to create an individual by cross-over, if after a large number of attempts it is 

not possible to generate a new individual, then an individual is created by localized 

mutation.   

Novel aspects of the algorithm 

Retesting individuals 

Any experimental process, be that synthesis or assay will be prone to errors. Similarly, certain 

molecules may not be synthesizable. Thus a novel aspect of the algorithm described here is to allow 

for these potential errors in the optimization process. 

At each iteration, those individuals that were selected to be a parent are considered for re-testing. If 

the parent has been tested less than a user-defined number of times then it will be flagged for re-

testing. 

Seek mutation 

A proportion of random individuals can be a good way of maintaining diversity within the 

population. Within the context of a combinatorial library it is possible to identify regions of the space 

that have been poorly sampled. Thus, as an alternative to the random operator, a seek operator has 

been implemented that identifies such regions and focuses the random generation in this region.  

NULL individuals 

If GAO requests a test and there are no results available for the test, then the user can do one of 

three things; 

1. Add no entry for the test in to the fitness file 

2. Add an entry with fitness data 



3. Add an entry with “<NULL_FITNESS>” as the fitness entry. 

In all cases, GAO will keep the individual for retesting and will request that it be tested again at some 

future generation. 

All untested individuals will be stored in the population file as individuals without fitness data. 

If the user wishes to indicate that the test cannot be performed and that GAO should not request a 

re-test then the user marks the individual with “<NULL_INDIV>” as the fitness. 

Similarity and Grouping 

As described above the algorithm knows nothing about the chemical composition of the individual 

reagents (alleles) or the products. Thus we have implemented the ability to define similarity 

between alleles. The similarity is defined in terms of distance and need not be symmetric. In addition 

alleles may be grouped. Two alleles that are not in the same group have a similarity of zero. An allele 

may belong to more than one group. There are many ways of defining similarity between reagents 

and clustering or grouping compounds and the implementation leaves it up to the user to decide on 

the most appropriate criteria to use, based upon the problem at hand. For instance, a group of 

reagents may all contain a particular functional group four bonds from the attachment point or may 

be in the same cluster according to a particular set of chemical descriptors. 

When enabled similarity and grouping leads to modified selection conditions for cross-over and 

mutation. 

For cross-over the child allele is an allele that is similar to both parent alleles.  A child allele is chosen 

at random from all the alleles that satisfy the following conditions; 

Sim (P1,C) >= Sim (P1,P2) 

Sim (P2,C) >= Sim (P2,P1) 

Sim (P1,C) > 0 

Sim (P2,C) > 0 

In addition, when grouping is enabled: 

 if one parent is not in a group or if they are not in a common group, then the child allele can 

only be one of the parent alleles. 

 if the parent alleles are in the same one group that is not overlapped, then either parent 

allele or alleles in the that group could be chosen 

 where groups are overlapping, the situation is more complicated as the similarity between 

alleles from grouping is additive. 



In the case of mutation each gene is considered in turn. The new allele is an allele that is similar to 

the parent allele. The new allele is chosen by jumping a distance from the parent allele. The 

maximum jump distance is given by the formula; 

MaxJumpDistance = Nalleles * Factor 

Nalleles is the number of alleles in the gene. 

Factor = JumpFactor * AnnealingRate generation-1 

JumpFactor is a scaling factor to increase the range of the distance jumped. AnealingRate specifies 

the rate at which the jump distance will decay with each generation focusing the search to a smaller 

region as the search progresses. 

A jump allele is chosen at random from all the alleles that are within the specified distance of the 

parent allele (given the relationship between similarity and distance above).   

If no similarity is defined the child allele is set to a random value with a probability of 1/Ngenes, where 

Ngenes is the number of genes in the genome so that on average only one allele within an individual 

generated by the mutation mechanism will change randomly. 

It is possible to specify the similarity between products rather than between the individual alleles. 

Normally the similarity between products is implied by the constituent alleles that define the 

product. For instance, for a set of genes A and B with unordered alleles; 

<A1|B1> is similar to <A1|B2> because they share the same A allele. 

<A1|B1> is not similar to <A2|B2> because they do not share a common allele. 

However, the user can specify product similarity explicitly. This would allow the user to specify that 

<A1|B1> and <A2|B2> are similar. 

In order to do this, the user must choose whether they wish to keep the implicit similarity of the 

underlying gene structure. 

Product similarity can be specified in two ways; 

1) Grouping, products can be grouped in the same way as alleles. 

2) Similarity between products can be specified in the same way as alleles, e.g.; 

 <Similar;A1|B1;A2|B2,0.5> 

 <Similar;A2|B2;A1|B1,0.5> 

Both “similar” and “group” can be used together. It should be noted that the similarity specified by 

these commands is added to the implied similarity. It does not over-write it. 

Learning the SAR 

If the user has defined an initial set of groupings or similarities how do these relate to the actual 

biological data is obtained? Is it possible to learn appropriate groupings and thus generate an 



implied SAR from the data? In order to answer these questions options have been added to re-

evaluate the similarity levels associated within the groups at regular intervals during the 

optimization. The algorithm uses the standard deviation of fitness within the group to redefine the 

group similarity. 
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Tables  
Table 1. 50 Amino acids (Ann) and 50 Boronic acids (Bnn) selected for inclusion in the 50x50 array based on 

chemotype 1. 

 
Reagent A Structure Reagent B Structure 

A01 

 

B01 

 

A02 

 

B02 

 

A03 

 

B03 

 

A04 

 

B04 

 

A05 

 

B05 

 

A06 

 

B06 

 

A07 

 

B07 

 

N

O

OO O
B

O

S

N

O

O

O
B

O

Br

N

S

OO O
B

O

N
O

O

N

O

O

B
OO

S

N

O

O

O

B
O

O

O N

N

O

O

O
B

O

S

S

N
O

O

S

S

B
OO



Reagent A Structure Reagent B Structure 
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Reagent A Structure Reagent B Structure 
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Reagent A Structure Reagent B Structure 
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Reagent A Structure Reagent B Structure 
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