Synthesis of C-Pseudonucleosides Bearing Thiazolidin-4-one as

Novel Potential Immunostimulating Agents

Hua Chen,[†] Qingmei Yin,[†] Chunxiao Li,[‡] Enkai Wang, [†] Fang Gao,[†] Xiaobo Zhang,[†] Zhi Yin,[†] Sinan Wei,[†] Xiaoliu Li, ^{*,†,§} Ming Meng, ^{*,‡} Pingzhu Zhang,[†] Na Li, [‡] and Jinchao Zhang[†]

[†] Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China

[‡] Medical School, Hebei University, Baoding 071002, China

[§] State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China

correspondence E-mail: lixl@hbu.cn, or mengming127@163.com

1 Experimental procedure and data:

1.1 General Methods: Melting points were measured on an SGW[®] X-4 micro melting point apparatus and were uncorrected. Optical rotations were determined on an SGW[®]-1 automatic polarimeter. The CD spectra were measured on a Bio-Logic MOS-450/AF-CD. ¹H NMR, and ¹³C NMR spectra were measured on a RT-NMR Bruker AVANCE 600M, NMR spectrometer using tetramethylsilane (Me₄Si) as an internal standard. Mass Spectra (MS) and High Resolution Mass Spectra (HRMS) were carried out on a FTICR-MS (Ionspec 7.0T) mass spectrometer with electrospray ionization (ESI). X-ray crystallographic measurements were made on a Bruker SMART CCD diffractometer. The optical densities for examining the activities of immunological activities were measured on a BioRad Model 3550 microplate spectrophotometer. Flow cytometry assay were analyzed on a FACSCalibur (BD Biosciences). Thin-layer chromatography (TLC) was performed on precoated plates (Qingdao GF₂₅₄) with detection by UV light or with phosphomolybdic acid in EtOH/H₂O followed by heating. Column chromatography was performed using reverse silica gel (C18, 50 μ M).

Concanavalin A (type IV) and LPS were purchased from Sigma. Non-Radioactive Cytotoxicity Assay Kit was purchased from Promega. Mouse IL-4, IL-2, and IFN- γ measurement kits were obtained from Jingmei Company, Shenzhen, China. Other reagents were from commercial sources. Cell culture and cytokine assays experiments were carried out under sterile conditions.

1.2 General procedure for the synthesis of compounds 4 and 5:

The unprotected aldehyde **1** (0.162 g, 1 mmol) was dissolved in 3 mL anhydrous EtOH, to the solution, amine **2** (1 mmol) was added and the mixture was stirred in room temperature for 15-30 min. Then, mercaptoacetic acid **3** (0.14 ml, 2 mmol) was added. After continued stirring for 30 min in r. t., the mixture was neutralized with solid K₂CO₃. Solvent was evaporated under reduced pressure to get a crude product, which was purified using reverse silica (C₁₈) gel column chromatography (H₂O-MeOH V/V = 30:70 for **4**, **5(a-c)**, **4e** and **5e**, H₂O-MeOH V/V = 2:98 for **4d** and **5d**) to get the mixture of two diastereomers **4** and **5** (Table 1).

Table 1. The synthesis of C-pseudonucleosides 4 and 5								
Entry	R	Yield (%) ^a						
Enuy		Total	4 (<i>S</i>)	5 (<i>R</i>)	4:5			
1	a	42	22	20	1.1			
2	b	41	17	24	0.7			
3	c	39	15	24	0.6			
4	d	36	14	22	0.6			
5	e	43	14	29	0.5			

a: isolated yield.

(*S*)-2-((2*S*,3*S*,4*S*,5*R*)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-3-meth ylthiazolidin-4-one (**4a**): yellow syrup, [α]_D -8.4 (c 1.0, CH₃OH), $\delta_{\rm H}$ (600 MHz, CD₃OD): 3.09 (3H, s, CH₃), 3.52 (1H, d, *J* =15.6 Hz, H-3), 3.66 (1H, dd, *J* =12.0 Hz, 4.8 Hz, H-5'), 3.72- 3.76 (2H, m, H-5, H-5'), 3.98-4.00 (1H, m, H-4'), 4.04 (1H, t, *J* =6.0 Hz, H-1'), 4.15 (1H, t, J =4.8 Hz, H-2'), 4.19 (1H, t, *J* =4.8Hz, H-3'), 4.96 (1H, dd, *J* =6.6 Hz, 2.4Hz, H-2); $\delta_{\rm C}$ (125MHz, CD₃OD): 31.0, 31.3, 61.7 (C-2), 64.6, 77.3, 78.4, 84.8, 85.7, 172.4; HRMS (ESI): Calcd for C₉H₁₅NO₅SNa (M+Na)⁺, 272.0568, Found: 272.0563.

(*R*)-2-((2*S*,3*S*,4*S*,5*R*)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-3-meth ylthiazolidin-4-one (**5a**): white solid, mp 178 °C, $[\alpha]_D$ +82.2 (c 1.0, CH₃OH), δ_H (600 MHz, CD₃OD): 2.99 (3H, s, CH₃), 3.40 (1H, d, *J* =15.0 Hz, H-5), 3.62 (1H, dd, *J* =12.6 Hz, 4.8 Hz, H-5'), 3.74 (1H, d, *J* =14.4Hz, H-5'), 3.78 (1H, dd, *J* =12.6 Hz, 4.8 Hz, H-5), 3.91-3.94 (1H, m, H-4'), 4.07-4.10 (2H, m, H-2', H-1'), 4.22 (1H, d, *J* =6.6 Hz, H-3'), 4.87 (1H, s, H-2); δ_C (125MHz, CD₃OD): 29.2, 32.0, 61.4 (C-2), 66.2, 76.1, 77.8, 80.3, 83.8, 172.9 (C-4); HRMS (ESI): Calcd for C₉H₁₅NO₅SNa (M+Na)⁺, 272.0568, Found: 272.0559. <u>(S)-2-((2S,3S,4S,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-3-butylt</u> <u>hiazolidin-4-one (4b)</u>: yellow syrup, $[\alpha]_D$ -57.4 (c 1.0, CH₃OH), δ_H (600 MHz, CD₃OD): 0.91 (3H, s, *J* =7.2Hz, CH₃), 1.24-1.31 (2H, m, CH₂), 1.52-1.60 (2H, m, CH₂), 3.28 -3.32 (1H, m, CH), 3.42 (1H, d, *J* =15.6Hz, H-5), 3.58 (1H, dd, *J* = 14.0Hz, 5.4Hz, H-5), 3.65 (1H, t, *J* = 5.4Hz, H-1'), 3.76 (1H, dd, *J* =7.8 Hz, 3.6 Hz,

CH), 3.71-3.76 (1H, m, H-5'), 3.89-3.91 (1H, m, H-4'), 3.95 (1H, t, J = 5.4 Hz, H-5'), 4.05 (1H, t, J = 4.8Hz, H-2'), 4.08 (1H, t, J = 4.2Hz, H-3'), 4.94 (1H, dd, J = 6.6 Hz, 1.8Hz, H-2); $\delta_{\rm C}$ (125 MHz, CD₃OD): 12.7, 19.6, 28.6, 31.3, 44.0, 61.7 (C-2), 62.1, 77.4, 78.7, 85.1, 86.3, 172.6 (C-4); HRMS (ESI): Calcd for C₁₂H₂₁NO₅SNa (M+Na)⁺, 314.1038, Found: 314.1033.

(*R*)-2-((2*S*,3*S*,4*S*,5*R*)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-3-butylt hiazolidin-4-one (**5b**): yellow syrup, [α]_D +35.1 (c 1.0, CH₃OH), $\delta_{\rm H}$ (600 MHz, CD₃OD): 0.98 (3H, *J* =7.2 Hz, CH₃), 1.31-1.41 (2H, m, CH₂), 1.56-1.67 (2H, m, CH₂), 3.08-3.12 (1H, m, CH), 3.37 (1H, d, *J* =15.6 Hz, H-5), 3.60 (1H, dd, *J* =12.0 Hz, 4.8 Hz, H-5), 3.72-3.77 (3H, m, CH, H-1', H-5'), 3.89-3.93 (1H, m, H-4'), 4.04-4.08 (2H, m, H-5', H-2'), 4.17 (1H, d, J =6.6Hz, H-3'), 4.91 (1H, s, H-2); $\delta_{\rm C}$ (125MHz, CD₃OD): 12.7, 19.6, 28.8, 32.5, 42.2, 61.4 (C-2), 64.1, 76.0, 77.9, 80.6, 83.8, 172.9 (C-4); HRMS (ESI): Calcd for C₁₂H₂₁NO₅SNa (M+Na)⁺, 314.1038, Found: 314.1035.

(*S*)-2-((2*S*,3*S*,4*S*,5*R*)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-3-octylt hiazolidin-4-one (**4c**): colorless syrup, [α]_D -20.9 (c 1.0,CH₃OH), $\delta_{\rm H}$ (600 MHz, CD₃OD): 0.94 (3H, t, *J* =6.6Hz, CH₃), 1.33-1.36 (10H, m, 5CH₂), 1.61-1.69 (2H, m, CH₂), 3.34 -3.35 (1H, m, CH); 3.49 (1H, d, *J* =15.6 Hz, H-5), 3.65 (1H, dd, *J* =13.2 Hz, 7.2Hz, H-5'), 3.72-3.75 (2H, m, CH, H-5), 3.78-3.83 (1H, m, H-4'), 3.98 (1H, q, J =5.4Hz, H-1'), 4.03(1H, t, *J* = 4.8 Hz, H-2'), 4.15(1H, q, *J* =4.8Hz, H-3'), 5.01 (1H, dd, J =7.2 Hz, 4.8 Hz, H-2); $\delta_{\rm C}$ (125MHz, CD₃OD); 13.2, 22.4, 26.5, 29.0, 29.1, 31.4, 31.7, 44.3, 61.9 (C-2), 62.2, 77.5, 78.9, 85.4, 86.6, 172.6 (C-4); HRMS (ESI): Calcd for C₁₆H₂₉NO₅SNa (M+Na)⁺, 370.1664, Found: 370.1657.

(R)-2-((2S,3S,4S,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-3-octylt<u>hiazolidin-4-one (5c)</u>: colorless syrup, [α]_D +38.1, (c 1.0,CH₃OH), δ_{H} (600 MHz, CD₃OD): 0.92 (3H, t, *J* =6.6Hz, CH₃), 1.32-1.35 (10H, m, 5CH₂), 1.56-1.69 (2H, m, CH₂), 3.07-3.11(1H, m, CH), 3.37 (1H, d, *J* =15.6 Hz, H-5), 3.65 (1H, dd, J =12.0Hz, 4.8Hz, H-5'), 3.67-3.77 (3H, m, CH, H-5, H-5'), 3.89-3.92 (1H, m, H-4'), 4.03-4.08 (2H, m, H-2', H-1'), 4.16 (1H, d, J = 6.6Hz, H-3'), 4.90 (1H, s, H-2); $\delta_{\rm C}$ (125 MHz, CD₃OD): 13.0, 22.3, 26.4, 26.6, 28.9, 28.9, 31.5, 32.4, 42.45, 61.5(C-2), 64.1, 76.1, 77.8, 80.6, 83.8, 172.9 (C-4); HRMS (ESI): Calcd for C₁₆H₂₉NO₅SNa (M+Na)⁺, 370.1664, Found: 370.1665.

(*S*)-2-((2*S*,3*S*,4*S*,5*R*)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-3-octad ecylthiazolidin-4-one (4d): yellow solid, mp 43-45 °C, [α]_D -7.0 (c 1.0, CH₃OH), $\delta_{\rm H}$ (600 MHz, CD₃OD): 0.92 (3H, t, *J* = 7.2 Hz, CH₃), 1.31-1.37 (30H, m, 15CH₂), 1.61-1.70 (2H, m, CH₂), 3.34-3.39 (1H, m, CH), 3.47 (1H, d, *J* =15.6Hz, H-5), 3.64 (1H, dd, J =12.0Hz, 5.4 Hz, H-5), 3.65-3.71 (1H, m, H-1'), 3.73 (1H, t, *J* =3.6 Hz, H-5'), 3.77-3.82 (1H, m, CH), 3.96-3.98 (1H, m, H-4'), 4.02 (1H, t, *J* =5.4 Hz, H-5'), 4.11 (1H, t, *J* =4.2 Hz, H-2'), 4.14 (1H, t, *J* = 4.8Hz, H-3'), 5.00 (1H, dd, J =7.2 Hz, 1.8 Hz, H-2); $\delta_{\rm C}$ (125 MHz, CD₃OD): 13.1, 22.3, 26.4, 28.9, 29.1, 29.3, 29.4, 29.4, 31.3, 31.7, 44.3, 61.8 (C-2), 62.0, 77.4, 78.7, 85.2, 86.5, 172.5 (C-4); HRMS (ESI): Calcd for C₂₆H₄₉NO₅SNa (M+Na)⁺, 510.3229, Found: 510.3232.

(*R*)-2-((2*S*,3*S*,4*S*,5*R*)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-3-octad ecylthiazolidin-4-one (**5d**): white solid, mp 98 °C, [α]_D+10.4 (c 1.0, CH₃OH), $\delta_{\rm H}$ (600 MHz, CD₃OD): 0.93 (3H, t, *J* = 6.6 Hz, CH₃), 1.32-1.36 (30H, m, 15CH₂), 1.58-1.68 (2H, m, CH₂, H-5), 3.31-3.38 (2H, m, H-1', H-5), 3.59-3.82 (3H, m, CH, H-5', H-1), 3.86-3.94 (1H, m, H-4'), 4.06-4.09 (1H, m, H-2'), 4.17-4.19 (1H, m, H-3'), 4.91 (1H, s, H-2); $\delta_{\rm C}$ (125 MHz, CD₃OD): 13.1, 22.2, 26.6, 28.9, 29.1, 29.4, 29.7, 31.3, 32.5, 42.3, 61.5 (C-2), 64.1, 76.0, 78.8, 83.6, 84.5, 172.5 (C-4); HRMS (ESI): Calcd for C₂₆H₄₉NO₅SNa (M+Na)⁺, 510.3229, Found: 510.3225.

<u>(S)-2-((2S,3S,4S,5R)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-3-pheny</u> <u>Ithiazolidin-4-one (**4e**)</u>: white solid, mp 168-170 °C, [α]_D-54.4, (c 1.0, CH₃OH), δ _H (600 MHz, CD₃OD): 3.51 (1H, dd, *J* =12.0Hz, 4.8Hz, H-5), 3.62 (1H, dd, *J* =12.0Hz, 3.6Hz, H-5'), 3.66 (1H, d, *J* =15.6Hz, H-5), 3.74-3.77 (1H, m, H-4'), 3.95-3.99 (2H, m, H-1', H-5'), 4.05 (1H, dd, *J* =7.8 Hz, 4.2 Hz, H-2'), 4.30 (1H, t, *J* = 6.6 Hz, H-3'), 5.55 (1H, dd, *J* =4.8 Hz, 1.8 Hz, H-2), 7.33-7.36 (1H, m, CH), 7.44-7.48 (4H, m, 4CH); $\delta_{\rm C}$ (125 MHz, CD₃OD): 32.0, 61.7 (C-2), 65.3, 77.1, 77.5, 82.8, 83.6, 126.4, 127.3, 128.8, 138.2, 172.1 (C-4); HRMS (ESI): Calcd for C₁₄H₁₈NO₅S (M+H)⁺, 312.0905, Found: 312.0908. (*R*)-2-((2*S*,3*S*,4*S*,5*R*)-tetrahydro-3,4-dihydroxy-5-(hydroxymethyl)furan-2-yl)-3-phen ylthiazolidin-4-one (**5e**): white solid, mp 171-173 °C, [α]_D+93.3 (c 1.0, CH₃OH), $\delta_{\rm H}$ (600 MHz, CD₃OD): 3.59 (1H, d, *J* = 15.6 Hz, H-5), 3.63 (1H, dd, *J* =12.0 Hz, 5.4Hz, H-5'), 3.64 (1H, dd, *J* =12.6 Hz, 2.4Hz, H-5), 3.96- 4.02 (4H, m, H-5', H-4', H-1', H-2'), 4.10 (1H, t, *J* = 7.8 Hz, H-3'), 5.34 (1H, s, H-2), 7.40-7.46 (3H, m, 3CH), 7.51 (2H, t, *J* = 8.4 Hz, 2CH); $\delta_{\rm C}$ (125 MHz, CD₃OD): 32.8, 61.4 (C-2), 67.3, 76.3, 77.7, 80.8, 83.9, 126.9, 127.8, 129.2, 137.2, 172.6 (C-4); HRMS (ESI): Calcd for C₁₄H₁₈NO₅S (M+H)⁺, 312.0905, Found: 312.0910.

1.3 Immunological activities assay

1.3.1 Preparation and cultivation of splenocytes

The spleens from BALb/c mice were taken out in sterile conditions and soaked in non-serum RPMI-1640 cell culture medium. The spleens were grinded using a wire mesh. Filter the cell suspension with a 200-mesh nylon net. The filtrate of the splenocytes was centrifuged at 2000 g for 10 min and then the supernatant was removed. Dissolving the precipitation in 5 mL of pH 7.2 Tris-NH₄Cl solution and incubating the cells at 37 °C for 6-10 min in order to lyse the red cells. Then the cells were centrifuged at 2000 g for 7 min and the cell pellets were dissolved in RPMI-1640 culture medium with 10% Newborn Calf Serum and 20 μ M ConA or 10 μ g/mL LPS. Counting cell and adjusting the concentration of cells solution to 5×10^6 /ml. Add 4.5×10^5 cells into each well of 96 well plates. Subsequently adding different concentration of each compound into each well, and incubating at 37 °C, 5% CO₂ for 72 hrs. The supernatant was collected and centrifuged at 2000 g for 5 min. The supernatant was collected and stored at -20 °C until for assay.

1.3.2 Measurement of the Proliferation of T cells and B cells

Splencytes from BALb/C mice were aseptically removed and minced, and cell suspensions were incubated at 4.5×10^5 cell/well, 90 µL/well in 96-well microtiter plates using an RPMI 1640 medium with 10% FCS. Spleen cells were cultured with 20 µM of Con A or 10 µg/mL Lps for 72 h at 37 °C in 5% CO₂ in the presence or absence of the tested compounds. Wells containing Con A or LPS without tested compounds were used as blanks. All the tests were performed at least three times in quadruplicate (P<0.01). Cell proliferation was measured using the MTT assay, testing OD (A) at wavelength 570 nm. Cell proliferation (%)= (A_{treated}-A_{control}) / A_{control} × 100%.

1.3.3 Measurement of the secretion of IL-2, IL-4, and IFN-γ from splenocytes

Mouse splenocytes were pretreated with Con A at the final concentration of 20 μ M at 37 °C for 72 hours in medium containing 10% newborn bovine serum (NBS) and 5% CO₂. 96-well plates were coated with anti-mouse IFN- γ , IL-2, and IL-4 MAb in advance (commercial products). Different concentrations of compounds and IL-2, IL-4, or IFN- γ standards (500, 250, 125, 62.5, 31.25, 15.63 pg/ml) were added into each well. Incubating at 20-25 °C for 120 min. The levels of IFN- γ , IL-2, and IL-4 secreted from immunized mice splenocytes were detected using the cytokine-specific ELISA Kits (R & D). Standard curves were determined using known concentration of the IL-2, IL-4, or IFN- γ . According to the standard curve, the amount of the samples was then determined.

1.3.4 Flow cytometry assay

Briefly, 5 μ l of FITC conjugated rat anti-mouse CD3, CD4, CD8 and CD19 antibodies (Caltag Laboratories) were incubated with each anti-coagulated whole blood sample of 1×10^6 cells with heparin (25U/ml) in the dark for 20 min at room temperature. Red blood cells were lysed with whole blood lysing reagents (Beckman Coulter). The cells were then analyzed by two-color flow cytometry on a FACSCalibur (BD Biosciences). All experimental protocol were performed according to the manufacturer's instructions strictly. FITC conjugated rat IgG2 isotype controls were used as isotype matched negative controls. The stained cells were analyzed on FACSCalibur flow cytometer and CellQuest software (BD Biosciences).

1.4 Single-crystal X-ray crystallographic analysis of 5a (Figure 1)

A single crystal of compound **5a** was obtained by recrystallization from the solution of CH₃OH. X-ray diffraction data for a crystal were performed with graphitemonochromated Mo-K α radiation (0.71073Å) on a Bruker APEX II diffractometer and collected by the $\omega/2\theta$ scan technique at 296(2) K. The crystal structures were solved by direct methods. All non-hydrogen atoms were refined anisotropically by full- matrix least-squares methods on F^2 . All calculations were performed using the programs SH ELXS-97 and SHELXL-97.The intensity data were collected with the $\omega/2\theta$ scan technique at 296(2) K using the h/2x scan technique from a single crystal of $0.55 \times 0.41 \times 0.38$ mm, and a semi empirical absorption correction was applied for all complexes. The crystal system was Orthorhombic, and the space group was P2(1)2(1) 2(1). The structures were solved by direct methods and refined by full-matrix least-squares on F^2 . The absolute structure parameter was 0.00(6).

Figure 1. X-ray crystallographic structures of 5a.

Complete crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC no. 820672. Copies of this information may be obtained free of charge from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK. (fax: +44-1223-336033, e-mail: deposit@ccdc.cam.ac.uk or via: www.ccdc.cam.ac.uk)

1.5 The circular dichroism (CD) spectra of compounds 4 and 5

CD measurements were performed on a a Bio-Logic MOS-450/AF-CD using a quartz cuvettes of 1 cm optical path length and over a wavelength range of 200-280 at 1 nm bandwidth, 1 nm step size, and 1 s time per point. The compounds at a final concentration of 1 mg/mL was resolved in methanol to be tested (**Figure 2**). The CD spectra were obtained by taking the average of at least three scans at room temperature. Final analysis of the data was carried out using Origin 7.0 (OriginLab Corp.).

A: 4a, 5a, 4e, and 5e B: 4b, 5b, 4c, 5c, 4d, and 5d

Figure 2. The CD spectra of compounds 4 and 5

1.6 Purity of target compounds (Table 2)

General method for HPLC: Analytical HPLC was performed on an Agilent HP-1100, with UV detection at 220 nm at a flow rate of 0.5 ml/min on BaseLine C18 reverse column (10 μ m, 250mm×4.6 mm) column with methanol-water as mobile

phase. Condition A: methanol-water V/V 47:53. Condition B: methanol-water V/V 42:58. Condition C: methanol-water V/V 98:2.

Compds	$R_t(min)$	Purity	Condition	Compds	$R_t(min)$	Purity	Condition
4 a	5.68	98.5%	А	5a	4.74	98.9%	А
4b	12.30	98.1%	А	5b	11.38	98.3%	А
4c	21.39	97.5%	В	5c	19.92	97.1%	В
4d	18.84	92.4%	С	5d	18.34	92.6%	С
4e	8.41	98.6%	А	5e	7.67	99.2%	А

Table 2. HPLC purity

1.6 Spectra copies of compounds 4 and 5

¹ H and ¹³ C NMR spectra of compound 4a	9
¹ H and ¹³ C NMR spectra of compound 5a	10
¹ H and ¹³ C NMR spectra of compound 4b	11
¹ H and ¹³ C NMR spectra of compound 5b	12
¹ H and ¹³ C NMR spectra of compound 4c	13
¹ H and ¹³ C NMR spectra of compound 5 c	14
¹ H and ¹³ C NMR spectra of compound 4d	15
¹ H and ¹³ C NMR spectra of compound 5d	16
¹ H and ¹³ C NMR spectra of compound 4e	17
¹ H and ¹³ C NMR spectra of compound 5e	18

