




FIG S1 PhoD-GFP^{6×His} expression and secretion from *B. subtilis*. (A) PhoD_{SP}-GFP^{6×His} construct design. The predicted molecular weight is indicated in parenthesis. (B) Intracellular expression of folded GFP^{6×His}. The indicated strains were grown overnight in HPDM supplemented with 1 mM IPTG. The next day, the cells were examined for folded GFP expression by fluorescence microscopy. (C) Secretion of total GFP^{6×His}. The indicated strains were grown overnight in HPDM supplemented with 1 mM IPTG. The next day, the cells were washed and resuspended in LPDM supplemented with 1 mM IPTG. After 6 h in LPDM, the cells were lysed and the medium was precipitated with TCA. The cell lysates and precipitated medium were examined by Western blot analysis probing with α-GFP, α-PhoD, and α-SigA antibodies. Migration of PhoD_{SP}-GFP, PhoD_{SP}-GFP^{6×His}, and SigA bands is indicated to the left of each blot. Migration of molecular weight standards is indicated to the right of each blot.

FIG S2 Characterization of intracellular PhoD_{SP}-GFP expression in *B. subtilis* single and double Tat-deletion strains. The indicated strains were grown overnight in HPDM supplemented with 1 mM IPTG. The next day, the cells were either (A) examined for folded GFP expression by fluorescence microscopy or (B) lysed and examined for total GFP expression by Western blot analysis probing with α-GFP, α-PhoD, and α-SigA antibodies. In panel B, migration of PhoD_{SP}-GFP and SigA bands is indicated to the left of each blot. Migration of molecular weight standards is indicated to the right of each blot.

FIG S3 Secretion of endogenous alkaline phosphatase D (PhoD) from *B. subtilis* single and double Tat-deletion strains. The indicated strains were grown overnight in HPDM. The next day, the cells were washed and resuspended in LPDM. After 6 h in LPDM, the cells were lysed and the medium was precipitated with TCA. The cell lysates and precipitated medium were examined by Western blot analysis probing with α -PhoD and α -SigA antibodies. Migration of PhoD and SigA bands is indicated to the left of each blot. Migration of molecular weight standards is indicated to the right of each blot.

FIG S4 Characterization of intracellular ^{AA}PhoD_{SP}-GFP expression in *B. subtilis*. The indicated strains were grown overnight in HPDM supplemented with 1 mM IPTG. The next day, the cells were either (A) examined for folded GFP expression by fluorescence microscopy or (B) lysed and examined for total GFP expression by Western blot analysis probing with α-GFP, α-PhoD, and α-SigA antibodies. In panel B, migration of PhoD_{SP}-GFP, GFP, and SigA bands is indicated to the left of each blot. Migration of molecular weight standards is indicated to the right of each blot.

TABLE S1 Plasmids used in this study

Plasmid	Genotype	
pDP311	Ω bpr mls	
pDP312	Ω vpr mls	
pDP313	Ωnpr E m I s	
pDP314	ΩaprE mls	
pDP315	Ωepr mls	
pDP319	ΩwprA mls	
pDP320	Ωmpr mls	
pDR111	amyE::P _{hyspank} spec amp	(Kearns and Losick 2005)
pMiniMAD2	orf ^{ēsTs} amp mls	(Patrick and Kearns, 2008)
pTM1	amyE::P _{hyspank} -PhoD _{SP} spec amp	
pTM2	amyE::P _{hyspank} -PhoD _{SP} -GFP spec amp	
pTM7	amyE::P _{hyspank} -GFP spec amp	
pTM8	amyE::P _{hyspank} -AAPhoD _{SP} -GFP spec amp	
pTM9	amyE::P _{hyspank} -PhoD _{SP} -GFP ^{6xHis} spec amp	
pTM14	amyE::P _{hvspank} -AmyE _{SP} -GFP spec amp	

 $^{^1\}mathrm{Kearns},$ DB, Losick, R. (2005) Cell population heterogeneity during growth of Bacillus subtilis. *Genes Dev.* **19**(24):3083-94.

²Patrick, JE and Kearns, DB. (2008) MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. *Mol Microbiol.* **70**(5):1166-79.

TABLE S2 Primers used in this study

Primer	Sequence
1739	aggaggaattcgtggatacactgatcgtgat
1740	ctcctgtcgactctgtttttcgttttttcctca
1741	aggaggtcgacaatggaaaacttaatatgaacacagaaaat
1742	ctcctggatccggtttaacgcataataaaaattga
1743	caaagcgaattcgtgttgga
1744	ctcctgtcgacgttttgaccgaagaacctttc
1745	aggaggtcgacaagcagaaagcgaatgatccc
1746	ctcctggatcctctctcccgccaatttgctt
1747	aggaggaattcacagaaacacgaatgcaatcg
1748	ctcctgtcgacagcaacagacaatttcttacct
1749	aggaggtcgacgttgaagcagcctggaatgc
1750	ctcctggatccatgatcaacctcgaaaacctg
1751	cctatgaattctccattttcttct
1752	ctcctgtcgaccaagctgatccacaatttttg
1753	aggaggtcgacggaaaagggttaatcaacgtac
1754	ctcctggatccgtatatgaagtgaacatgtcag
1755	aggaggaattcatctgcacaaattcagcgatc
1756	ctcctctgagtacaacaagtttgcaagacatg
1757	aggagctcgagaaacggctgaacgccgtca
1758	ctcctggatcctaggtatgggttgctgccaa
1855	aggaggaattcatttgccaattggttttcaattg
1856	ctcctctcgagttcctcttctaaatctgacgg
1857	aggagctcgagaatgtcatgaaggctgtcagc
1858	ctcctggatccttttcaaatgacaccgcacaat
1759	aggaggaattccttgtgtcgttaaaccattgat
1760	ctcctctcgagttgttttctgaatcttggaacta
1770	ctcctggatccattctgcaaaatcagctctcg
1919 3069	aggagctcgagacagggcagacagctattgcc
3070	gttggggcctttgaagtaaatgctagtaaaggagaagaacttttcact
3250	ccgaattagcttgcatgcgggttatttgtatagttcatccatgc
3250	acgactcactatagggcgaattg
3252	ctcactaagggaacaaaagctgg
3253	caggactttctcttggattaac caattcgccctatagtgagtcgtgcgaagctcttctaaatgcc
3254	ccagcttttgttccctttagtgagctgtttgaagtgagtg
3255	gcaatgattgttgccattatcg
3256	cgcatttcctttccattgct
3257	caattcgccctatagtgagtcgtcaatatgctccagcagcga
3258	ccagcttttgttccctttagtgagagcagtgctgccgatcgg
3259	tgctggctacttcagcaaca
3860	caattcgccctatagtgagtcgtaatgtttgaaaacataatttccac
3861	caattcgccctatagtgagtcgtaggaccgatcggcatatttg
3866	ttcacttacaatcgccgtttg
3867	caattcgccctatagtgagtcgtaagcttaattccatatccttttc
3868	ccagcttttgttccctttagtgaggacaaacaaatgtaggataaatc
3869	tgtaaggtcgaaacgcttcg
3903	ttgtgagcggataacaattatttcctataatggagacgatcaa
3904	ccgaattagcttgcatgcgggtcgacgcggcatttacttcaaaggccccaac
TM858	ggcagagaaccaacaaatgaa
TM859	tccagagataccggctcttga
TM860	catccatgccatgtgtaatcccagc
TM861	ccattacctgtccacacaatctgccc
TM883	aggaaagctttcaaaacaatacgtttgacgcagcaaaatttattcaaggagcggggaagattgc
TM884	gcaatcttccccgctccttgaataaattttgctgcgtcaaacgtattgttttgaaagctttcct
TM885	gaggagaggggatcttgaatgagtaaaggagaagaacttttc
TM886	gaaaagttetteteetttaeteatteaagateeeeteteteete
TM887	ggcatggatgaactatacaaacatcaccatcaccatcaccatgcatg
TM888	gaattagcttgcatgcgggttagtgatggtgatgttgtatagttcatccatgcc
TM1013	gaggagaggggatcttgaatgtttgcaaaacgattc
TM1014	gtgaaaagttetteteetttaetageactegeageegee

 TABLE S3 Relative expression levels of GFP mRNA in the B. subtilis Δ 7 ancestral strain^a

Construct	Fold difference in GFP mRNA levels (± SD ^b)
PhoD _{SP} -GFP	1.0
PhoD _{SP} -GFP ^{6×His}	0.28 (± 0.07)
$PhoD_{SP}\text{-}GFP, \Delta tatCd$	0.95 (± 0.19)
PhoD _{SP} -GFP, ΔtatCy	0.91 (± 0.13)
$PhoD_{SP}\text{-}GFP, \Delta tatCdCy$	0.97 (± 0.21)
AAPhoD _{SP} -GFP	0.67 (± 0.15)
GFP	1.8 (± 0.12)

 $^{^{\}rm a}\rm Expression$ of $\rm PhoD_{SP}\text{-}GFP$ was standardized to 1.0. $^{\rm b}\rm Standard$ deviation $^{\rm a}\rm GFP$ mRNA not detected

 $\textbf{TABLE S4} \ \text{Mass spectrometry peptide identification of the top band of purified } GFP^{6 \times \text{His}}$

Peptide	Variable modifications	m/z	Da	Score	Expect
(F)EVNASKGEEL(F)		538.70	0.43	18.9	2.30×10 ⁻⁷
(F)EVNASKGEELF(T)		1222.74	0.14	21.1	2.70×10 ⁻⁶
(F)SVSGEGEGDATY(G)		586.49	0.25	22.5	5.50×10 ⁻⁸
(F)SVSGEGEGDATYGKL(T)		735.55	0.21	23.4	1.20×10 ⁻⁸
(F) SVSGEGEGDATYGKLTL(K)		842.93	0.52	15.6	2.10×10 ⁻⁶
(F) ARYPDHMKQHDFF(K)	Oxidation at position 7	854.53	0.14	17.0	2.50×10 ⁻⁷
(F) ARYPDHMKQHDFF(K)		564.60	0.0036	15.1	2.20×10 ⁻⁵
(F)FKSAMPEGYVQERTIF(F)	Oxidation at position 5	640.38	0.063	23.9	5.40×10 ⁻⁷
(F) FKSAMPEGY(V)		515.49	0.25	19.5	1.10×10 ⁻⁷
(F) KSAMPEGY(V)	Oxidation at position 4	449.91	0.21	19.3	2.50×10 ⁻⁷
(F) KSAMPEGYVQERTIF(F)	Oxidation at position 4	886.69	0.25	18.2	1.90×10 ⁻⁸
(F) KSAMPEGYVQERTIFF(K)	Oxidation at position 4	640.44	0.12	21.8	2.70×10 ⁻⁶
(F) KSAMPEGY(V)		441.65	-0.055	16.9	1.10×10 ⁻⁷
(Y)VQERTIF(F)		446.91	0.16	16.5	3.90×10 ⁻⁵
(Y) VQERTIFF(K)		1039.65	0.093	16.0	7.20×10 ⁻⁵
(Y) VQERTIFFKDDGNY(K)		866.74	0.32	19.2	1.00×10 ⁻⁷
(F) FKDDGNY(K)		429.92	0.23	15.2	1.80×10 ⁻⁶
(Y)KTRAEVKFEGDTL(V)		747.64	0.24	22.9	2.30×10 ⁻⁷
(F) EGDTLVNRIEL(K)		629.66	-0.18	16.4	8.10×10 ⁻⁶
(F) KEDGNILGHKL(E)		612.47	0.13	16.3	1.40×10 ⁻⁶
(F) KEDGNILGHKLEY(N)		506.26	0.33	24.7	5.90×10 ⁻⁷
(F) KEDGNILGHKLEYNYNSHNVY(I)		627.39	-0.16	15.7	4.50×10 ⁻⁴
(L) GHKLEYNYNSHNVY(I)		869.67	0.27	15.9	4.90×10 ⁻⁷
(L) EYNYNSHNVY(I)		651.97	0.20	17.0	3.30×10 ⁻⁶
(Y)NYNSHNVY(I)		505.96	0.24	15.8	8.30×10 ⁻⁷
(Y)IMADKQKNGIKVNF(K)	Oxidation at position 2	541.41	0.11	25.8	1.20×10 ⁻⁷
(Y)IMADKQKNGIKVNF(K)		803.65	0.21	22.5	9.80×10 ⁻⁸
(F)KIRHNIEDGSVQL(A)		755.19	0.28	20.4	5.50×10 ⁻⁷
(F)KIRHNIEDGSVQLADHY(Q)		666.01	0.34	29.9	6.50×10 ⁻⁸
(L) ADHYQQNTPIGDGPVLLPDNHY(L)		822.37	0.31	24.6	1.20×10 ⁻⁶
(Y)QQNTPIGDGPVLLPDNHY(L)	Gln→pyro-Glu at position 1	981.23	0.26	21.4	1.40×10 ⁻⁸
(Y)QQNTPIGDGPVLLPDNHY(L)		989.27	-0.22	19.0	1.60×10 ⁻⁷

 $\textbf{TABLE S5} \ \text{Mass spectrometry peptide identification of the bottom band of purified } GFP^{6 \times \text{His}}$

Peptide	Variable modifications	m/z	Da	Score	Expect
(F)SVSGEGEGDATY(G)		586.44	0.20	22.1	8.80×10 ⁻⁸
(F)SVSGEGEGDATYGKL(T)		735.57	0.23	25.8	5.60×10 ⁻¹⁰
(F)ARYPDHMKQHDFF(K)		564.96	0.36	15.5	1.80×10 ⁻⁵
(F) KSAMPEGY(V)	Oxidation at position 4	898.46	0.063	17.4	4.60×10 ⁻⁸
(F)KSAMPEGYVQERTIF(F)	Oxidation at position 4	591.51	0.22	23.0	7.90×10 ⁻⁷
(F) KSAMPEGYVQERTIF(F)		586.35	0.39	23.5	2.10×10 ⁻⁷
(F) KSAMPEGYVQERTIFF (K)		635.37	0.38	19.1	1.30×10 ⁻⁵
(Y)VQERTIFFKDDGNY(K)		866.61	0.19	18.0	5.40×10 ⁻⁷
(F) FKDDGNY(K)		429.94	0.25	15.2	4.30×10 ⁻⁷
F) EGDTLVNRIEL(K)		1258.72	0.056	17.6	1.50×10 ⁻⁵
F) KEDGNILGHKLEY(N)		506.34	0.41	22.9	7.20×10 ⁻⁷
F) KEDGNILGHKLEYNYNSHNVY(I)		836.71	0.31	27.4	2.20×10 ⁻⁸
Y) NYNSHNVY(I)		505.94	0.22	15.1	1.20×10 ⁻⁶
Y) IMADKQKNGIKVNF(K)	Oxidation at position 2	541.64	0.34	18.3	2.90×10 ⁻⁵
Y) IMADKQKNGIKVNF(K)		803.74	0.30	21.0	2.50×10 ⁻⁷
(F) KIRHNIEDGSVQLADHY(Q)		666.12	0.45	31.3	2.20×10 ⁻⁸
F)KIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHY(L)		989.79	0.55	18.1	1.80×10 ⁻⁵
(L) ADHYQQNTPIGDGPVLLPDNHY(L)		822.52	0.46	23.6	1.10×10 ⁻⁶
(L) ADHYQQNTPIGDGPVLLPDNHYLSTQSAL(S)		1055.73	0.22	16.0	5.60×10 ⁻⁶
Y) QQNTPIGDGPVLLPDNHY(L)	Gln→pyro-Glu at position 1	981.18	0.21	24.9	5.00×10 ⁻⁹
Y) QQNTPIGDGPVLLPDNHY(L)		989.62	0.13	17.7	5.50×10 ⁻⁷
Y)QQNTPIGDGPVLLPDNHYL(S)		697.77	0.082	17.2	5.90×10 ⁻⁵
(Y)QQNTPIGDGPVLLPDNHYLSTQSAL(S)		893.78	0.33	18.7	3.10×10 ⁻⁶