<u>Supplementary material for:</u> *In vivo* self-assembly of stable GFP fusion protein particles and their uses in enzyme immobilization.

Mark Venning-Slater, David O. Hooks, Bernd H. A. Rehm

Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand; telephone: +64-6-350-5515, ext. 7890; fax: +64-6-350-2267; e-mail: b.rehm@massey.ac.nz.
 Table S1: Bacterial strains, plasmids, and primers used in this study.

Name	Characteristics	Source	
Bacterial strains			
XLI-Blue	recA1, endA1, gyrA96, thi-1, hsdR17(r- _k , m+ _k), supE44, relA1, -, lac[F', proAB, lacl ^q , lacZΔM15, Tn10(Tc ^r)]		
BL21(DE3)	F-, ompT, hsdS _B (r _B - m _B -), gal, dcm (DE3)	Novagen	
<u>Plasmids</u>			
pMCS69	pBBR1MCS derivative containing genes <i>phaA</i> and <i>phaB</i> of <i>R.</i> <i>eutropha</i> colinear to lac promoter, Cp ^R		
pUC57:nanA	Ap ^r , containing <i>nanA</i> on the pUC57 plasmid		
pET14b	Ap ^r , T7 promoter	Novagen	
pET14b-nanA-phaC	pET14b vector containing <i>nanA</i> at the 3' end of <i>phaC</i>	(Hooks et el., 2013)	
pET14b-ext(AVTS)gfp- phaC(C319A)-linker-zz	pET14b vector containing a gene fusion of ext(AVTS)gfp- phaC(C319A)-linker-zz	(Jahns et al., 2013)	
pET14b-ext(AVTS)gfp- phaC(C319A)-linker-nanA	pET14b-ext(AVTS)gfp-phaC(C319A)-linker-zz derivative containing <i>nanA</i> fragment from pGEM-nanA at the 3' end	This study	
pET14b-ext(AVTS)gfp- phaC(C319A)-linker-bla(- ss)	pET14b-ext(AVTS)gfp-phaC(C319A)-linker-zz derivative containing bla(-ss) fragment from pGEM-bla(-ss) at the 3' end	This study	
pET14b-ext(AVTS)gfp- phaC(C319A)-linker-opdA	pET14b-ext(AVTS)gfp-phaC(C319A)-linker-zz derivative containing opdA fragment from pET14b-phaC-linker-opdA at the 3' end		
pET14b-ext(AVTS)gfp- nanA-linker-zz	pET14b-ext(AVTS)gfp-phaC-linker-zz derivative containing <i>nanA</i> in the <i>Nde</i> I site	This study	
pET14b-ext(AVTS)gfp- nanA-linker-nanA	pET14b-ext(AVTS)gfp-nanA-linker-zz derivative containing <i>nanA</i> fragment from pGEM-nanA at the 3' end	This study	
pET14b-bla(-ss)-phaC	pET14b vector containing a gene fusion of bla(-ss)-phaC without the signal sequence encoding region	(Rasiah & Rehm, 2009)	
pET14b-phaC-linker-opdA	pET14b vector containing a gene fusion of phaC-linker-opdA	(Blatchford et al., 2012	
<u>Primers</u> Bla(-ss)-Fwd	ATA ATA CTC GAG ATG GCC GCT AAC CTG AAC GG	IDT	
		IDT	

MALDI-TOF protein identification

Table S2: Tryptic peptides of GFP fusion proteins as identified by MALDI-TOF MS

Total bead protein was electrophoresed onto a gel and a band corresponding to the theoretical molecular weight of the fusion protein was isolated and analysed by mass spectrometry.

.

Fusion Protein	Identified peptides (modifications)					
(coverage)						
GFP-iPhaC-L-NanA	F32-K46, S91-R101, F119-R127, V269-R284, I311-R322, F363-					
(27%)	R373, A374-K387, F394-R417, L418-R428, I443-R455, Y498-					
	R511, H512-R526, N527-R547 (carbamidomethyl), E619-R634					
	(carbamidomethyl), L704-R726 (carbamidomethyl), E727-					
	K746, F749-K766, A812-R821, G862-K879, T1112-R1126					
	(carbamidomethyl, oxidation), A1142-R1151 (oxidation)					
GFP-NanA-L-NanA	F32-K46, S91-R101, F119-R127, H174-K214, D221-K243					
(28%)	(oxidation), L278-R307, A372-K394, L395-K413, Q414-R426,					
	T505-R519 (carbamidomethyl), K520-K528, A535-R544, G545-					
	R556, G557-R569					
GFP-iPhaC-L-Bla	G8-K30, L145-K160, V268-R283, I310-R321, D325-K337, F362-					
(38%)	R372, F393-R416, I442-R454, N455-K481, Y497-R510, H51					
	R525, N526-R546, E618-R633 (carbamidomethyl), G634-K660,					
	L703-R725 (carbamidomethyl), E726-K745, F748-K765, A811-					
	R820, L881-K903, G904-K926, W1011-R1025, W1071-K1090,					
	D1099-R1105, T1133-R1161 (two deamidated), E1211-K1226,					
	K1248-R1269, Q1249-R1269, Q1299-R1312, S1313-R1339					
GFP-iPhaC-L-OpdA	G8-K30, L145-K160, D220-K242 V268-R283, F362-R372, F393-					
(39%)	R416, L417-R427, I442-R454, N455-K481, Y497-R510, H511-					
	R525, N526-R546, E618-R633 (carbamidomethyl), L703-R725					
	(carbamidomethyl), E726-K745, A811-R820, G871-R896					
	(carbamidomethyl), A897-R905, A921-R937, A948-R968, S971-					
	R981, A1005-K1014, D1037-R1054, V1055-R1075					
	(carbamidomethyl), M1084-R1104, I1149-R1160, G1169-					
	R1185					

Table S3: Long-term enzyme particle stability results.

Enzymes activities after storage for NanA and Bla enzymes are expressed as percentages of initial activity, while those of OpdA are in the original absorbance units. Storage periods are in brackets (days). n.d. = not detected, n.a. = not assayed, t_0 = initial production level before storage.

	Production level of Neu5AC (NanA), maltose (BLA), or para-nitrophenol (OpdA) after							
	storage							
		Temperature						
Fusion protein	t ₀	37 °C	RT	4 °C	-80 °C			
GiCLN	50.6 ± 1.9	n.a.	n.d. ₍₉₇₎	45.1 ₍₉₇₎	48.4 (97)			
NanA-PhaC	163.2 ± 1.9	n.a.	3.2 ₍₉₇₎	74.4 ₍₉₇₎	77.1 ₍₉₇₎			
GiCLB	0.96 ± 0.04	n.a.	91.7 (95)	104.1 (95)	93.8 (69)			
Bla(-ss)-PhaC	2.08 ± 0.01	n.a.	65.9 ₍₉₅₎	98.6 ₍₉₅₎	99.5 ₍₆₉₎			
GiCLO	n.a	n.a.	0.52 ± 0.01 (132)	0.58 ± 0.01 (132)	0.65 ± 0.01 (132)			
PhaC-OpdA	n.a.	n.a.	n.a.	1.01 ± 0.01 (133)	n.a.			
GiCLO (2)	0.258± 0.002*	0.159 ± 0.003 (30)	n.a	0.166 (30)	0.166 (30)			
PhaC-OpdA (2)	0.247± 0.005*	n.d.	n.a	0.157 ± 0.005 (30)	0.160 ± 0.002 (30)			

*Measured in a separate assay to the storage results meaning initial substrate concentration could vary and are therefore not directly comparable, see Materials and Methods.

Figure S1: Fluorescent images of GFP particles after temperature treatment at 4 °C, 25 °C, 75 °C, and 85 °C were obtained at 1000x magnification using a U-MWIBA2 Blue excitation filter cube fitted to an Olympus BX51 Fluorescent Light Microscope (Olympus Optical Co., Japan), an Optronics camera (Optronics, USA), and MagnaFire[™] 2.1C Application software (Optronics, USA). GiCLN: GFP-iPhaC-L-NanA, GiCLB: GFP-iPhaC-L-Bla, GiCLO: GFP-iPhaC-L-OpdA.

Figure S2: Fluorescent images of GFP particles after 10 min pH treatment at 2, 3, 5, 8, 11, and 12 were obtained at 100x magnification using a U-MWIBA2 Blue excitation filter cube fitted to an Olympus BX51 Fluorescent Light Microscope (Olympus Optical Co., Japan), an Optronics camera (Optronics, USA), and MagnaFire[™] 2.1C Application software (Optronics, USA). GiCLN: GFP-iPhaC-L-NanA, GiCLB: GFP-iPhaC-L-Bla, GiCLO: GFP-iPhaC-L-OpdA.

References

- Amara, A., Rehm, B. H.A (2003) Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa mediated synthesis of a new polyoxoester: Identification of catalytic residues. Biochem. J. 374:413-421.
- Hooks, D.O., Blatchford, P.A., Rehm, B.H.A. (2013) Bioengineering of bacterial polymer inclusions catalyzing the synthesis of N-acetyl neuraminic acid. Appl. Environ. Microbiol. 79:3116-21.
- Jahns, A.C., Maspolim, Y., Chen, S., Guthrie, J.M., Blackwell, L.F., Rehm, B.H.A. (2013) In vivo self-assembly of fluorescent protein microparticles displaying specific binding domains. Bioconjug. Chem. 24 (8), 1314-1323.
- 4. Rasiah, I, Rehm, B.H.A. (2009) One-step production of immobilised 🛛-amylase in recombinant Escherichia coli. Appl. Environ. Microbiol. 75: 2012–2016.
- Blatchford, P.A., Scott, C., French, N., Rehm, B.H.A. (2012) Immobilization of organophosphohydrolase OpdA from Agrobacterium radiobacter by overproduction at the surface of polyester inclusions inside engineered Escherichia coli. Biotech. Bioeng. 109:1101-1108.