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Supplemental materials for “A versatile omnibus test for detecting 

mean and variance heterogeneity" 

  

In this supplemental text, we first use real data-based simulation to demonstrate and then 

analytically show that variance heterogeneity can be induced due to linkage disequilibrium (LD) 

with a functional SNP with mean heterogeneity. We provide additional simulation results for (1) 

a lower significance level α=0.01 and (2) methods comparison for causal SNPs of lower MAF 

(MAF=0.2 and 0.1). We also show that the versatile omnibus test can detect mean and variance 

heterogeneity using additive genetic model. We demonstrate that, for a given non-normally 

distributed quantitative trait, the null distribution of the LRTMV test statistic does not depend on 

the SNP to be tested. We also present a simulation study to demonstrate that variance test by 

LRTV following rejecting the global null hypothesis by LRTMV can control the family-wise error 

rate (FWER) at the nominal level.  

1. Real data-based simulation study for LD-induced variance heterogeneity 

To confirm the observed pattern of variance heterogeneity due to LD with a functional SNP with 

mean heterogeneity (Figure 1 and Supplemental Figure 1), we performed simulation study using 

the MMP3 genetic data with 394 subjects in all. We simulated a quantitative trait on the common 

variant rs679620 (MAF 0.48) and another quantitative trait on the uncommon variant rs1034375 

(MAF 0.08). The quantitative traits were generated from  (   )  (   )  and  (   ) 

corresponding to major allele homozygous, heterozygous, and minor allele homozygous. We 

tested SNPs within 100 kb of rs679620 for association with the simulated quantitative trait on 

rs679620 using LRTMV, LRTM, LRTV, and LR (Supplemental Figure 2). Similarly, SNPs within 

100 kb of rs1034375 were tested for association with the simulated quantitative trait on 

rs1034375 (Supplemental Figure 3). Consistent with the real data, the variance heterogeneity due 

to LD also peaks in a short interval where |r| is less than 0.5 (r
2
 < 0.25) for the quantitative traits 

simulated on the common variant rs679620 and on the uncommon variant rs1034375. 

      In addition, we observed a distinct relationship between variance heterogeneity and LD 

measurement D’, compared to the relationship between variance heterogeneity and |r|. From 

Supplemental Figure 2A and 3A, we can see that variance heterogeneity peaks correspond to 

high D’, but low |r| with the functional SNP. For the quantitative trait simulated on the common 

variant rs679620, the SNP showing largest variance heterogeneity has MAF of 0.08, D’ of 0.999 
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and |r| of 0.29 with rs679620. For the quantitative trait simulated on the uncommon variant 

rs1034375, the SNP showing largest variance heterogeneity has MAF of 0.32, D’ of 0.84 and |r| 

of 0.35 with rs1034375.       

 

 

 

Supplemental Figure 1: Test statistics (-log10(P values)) for association between SNPs within 

100kb of functional SNP rs679620 and MMP3 protein levels in Cerebralspinal Fluid. A. Test 

statistics (-log10(P values)) against LD (|r|) with the functional SNP rs679620, from 5’ and 3’ 

separately. B. Test statistics (-log10(P values)) against LD (|r|) with the SNP having the smallest 

p-value of LRTV, from 5’ and 3’ separately.  

A 

B 
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Supplemental Figure 2: Test statistics (-log10(P values)) for association between SNPs within 

100kb of rs679620 and a simulated quantitative trait on the common variant rs679620. A. Test 

statistics (-log10(P values)) against LD with rs679620, from 5’ and 3’ separately. B. Test 

statistics (-log10(P values)) against LD with the SNP having the smallest p-value of LRTV, from 

5’ and 3’ separately. Top panel: Plot of D’ against |r|. Middle panel: Lowess of test statistics (-

log10(P values)) against |r|. Bottom panel: Unsmoothed plot of test statistics (-log10(P values)) 

against |r|.     

A B 
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Supplemental Figure 3: Test statistics (-log10(P values)) for association between SNPs within 

100kb of rs1034375 and a simulated quantitative trait on the uncommon variant rs1034375. A. 

Test statistics (-log10(P values)) against LD with rs1034375, from 5’ and 3’ separately. B. Test 

statistics (-log10(P values)) against LD with the SNP having the smallest p-value of LRTV, from 

5’ and 3’ separately. Top panel: Plot of D’ against |r|. Middle panel: Lowess of test statistics (-

log10(P values)) against |r|. Bottom panel: Unsmoothed plot of test statistics (-log10(P values)) 

against |r|.    
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2. Tests comparison when the significance level α was set at 0.01 

Different tests were compared when the significance level α was set at 0.01 (Supplemental Table 

1). This was based on simulation studies for a SNP with MAF of 0.4 and 1000 replicates. The 

relative performance of different tests followed what was observed from Table I.  

 

Supplemental Table 1: A comparison of empirical Type I error/power of different tests in four 

simulated scenarios when the significance level α was set at 0.01 for a SNP with MAF of 0.4. 

PB:Parametric Bootstrap; LR:Linear Regression; KW:Kruskal-Wallis; FK:Fligner-Killeen. 

 

A. Simulated normally distributed quantitative traits. 

simulated 

effects 

joint tests  mean tests  variance tests 

LRTMV LRTMV(PB) Lepage  LRTM LR KW DGLMM  LRTV Levene FK DGLMV 

no effect 0.007 0.007 0.010  0.004 0.005 0.007 0.004  0.010 0.015 0.015 0.010 

mean 0.593 0.588 0.656  0.710 0.713 0.676 0.710  0.013 0.014 0.015 0.013 

variance 0.557 0.550 0.576  0.009 0.015 0.009 0.009  0.647 0.589 0.578 0.647 

mean & var 0.912 0.910 0.931  0.619 0.692 0.639 0.619  0.662 0.585 0.570 0.662 

 

B. Simulated non-normally distributed quantitative traits. 

simulated 

effects 

joint tests  mean tests  variance tests 

LRTMV(PB) Lepage  LRTM LR KW  LRTV(PB) Levene FK 

no effect 0.011 0.009  0.007 0.007 0.010  0.012 0.007 0.006 

mean 0.236 0.797  0.695 0.702 0.817  0.014 0.009 0.008 

variance 0.619 0.216  0.007 0.023 0.008  0.630 0.427 0.214 

mean & var 0.889 0.934  0.598 0.680 0.806  0.648 0.461 0.249 

 

C. Tests that cannot control Type I error for non-normally distributed quantitative traits. 

simulated 

effects 
LRTMV LRTV DGLMV DGLMV 

Box-Cox transformation 

no effect 0.140 0.186 0.186 0.069 
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3. Tests comparison when the SNP to be tested had lower MAF 

To further compare different tests when the SNP to be tested had a lower MAF, we performed 

simulation studies for a SNP with MAF of 0.2 (Supplemental Table 2) and a SNP with MAF of 

0.1 (supplemental Table 3). All the parameters used for simulation studies of SNPs with MAF of 

0.2 and 0.1 were the same as those in the simulation studies for the SNP with MAF of 0.4 (see 

Materials and Methods in the main text). Empirical power/Type I error was calculated as the 

proportion of replicates at the significance threshold level of 0.05. The advantages and 

disadvantages of different tests still hold when MAF of the SNP decreases. Given the total 

sample size of 1000 in our simulation studies, the powers of all the tests decreased as the MAF 

of a SNP decreased. This is expected because the number of heterozygotes and rare homozygotes 

decreases as the MAF decreases. In addition, type I errors of parametric tests (LRTMV, LRTM and 

LRTV) were not well controlled for normally distributed quantitative traits when MAF of the 

simulated SNP is 0.1 due to small sample size of rare homozygotes. Parametric bootstrap can 

alleviate the type I error inflation (supplemental Table 3). The LRTMV test was more powerful 

when both mean and variance heterogeneities existed. LRTV test remained the most powerful test 

for variance heterogeneity. 
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Supplemental Table 2: Comparison of empirical Type I error/power of different tests in four 

simulated scenarios for a SNP with MAF of 0.2.  

PB:Parametric Bootstrap; LR:Linear Regression; KW:Kruskal-Wallis; FK:Fligner-Killeen. 

 

A. Simulated normally distributed quantitative traits. 

simulated 

effects 

joint tests  mean tests  variance tests 

LRTMV LRTMV(PB) Lepage  LRTM LR KW DGLMM  LRTV Levene FK DGLMV 

no effect 0.048 0.044 0.051  0.050 0.044 0.042 0.050  0.047 0.045 0.044 0.047 

mean 0.482 0.482 0.565  0.601 0.618 0.586 0.601  0.055 0.036 0.039 0.055 

variance 0.478 0.468 0.571  0.041 0.087 0.062 0.041  0.589 0.527 0.516 0.589 

mean & var 0.806 0.792 0.850  0.544 0.619 0.559 0.544  0.543 0.505 0.504 0.543 

B. Simulated non-normally distributed quantitative traits. 

simulated 

effects 

joint tests  mean tests  variance tests 

LRTMV(PB) Lepage  LRTM LR KW  LRTV(PB) Levene FK 

no effect 0.061 0.058  0.048 0.050 0.047  0.062 0.060 0.060 

mean 0.245 0.693  0.613 0.609 0.701  0.057 0.039 0.045 

variance 0.633 0.307  0.041 0.121 0.051  0.646 0.473 0.298 

mean & var 0.864 0.853  0.573 0.672 0.713  0.700 0.525 0.323 

C. Tests that cannot control Type I error for non-normally distributed quantitative traits. 

simulated 

effects 
LRTMV LRTV DGLMV DGLMV 

Box-Cox transformation 

no effect 0.255 0.323 0.323 0.184 
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Supplemental Table 3: Comparison of empirical Type I error/power of different tests in four 

simulated scenarios for a SNP with MAF of 0.1.  

PB:Parametric Bootstrap; LR:Linear Regression; KW:Kruskal-Wallis; FK:Fligner-Killeen. 

 

A. Simulated normally distributed quantitative traits. 

simulated 

effects 

joint tests  mean tests  variance tests 

LRTMV LRTMV(PB) Lepage  LRTM LRTM(PB) LR KW DGLMM  LRTV LRTV(PB) Levene FK DGLMV 

no effect 0.066 0.055 0.056  0.064 0.050 0.044 0.043 0.064  0.076 0.055 0.059 0.058 0.076 

mean 0.256 0.229 0.289  0.324 0.285 0.325 0.285 0.324  0.067 0.052 0.052 0.050 0.067 

variance 0.287 0.258 0.291  0.081 0.065 0.120 0.095 0.081  0.297 0.246 0.273 0.253 0.297 

mean & var 0.495 0.460 0.563  0.325 0.283 0.405 0.356 0.325  0.284 0.242 0.266 0.256 0.284 

 

B. Simulated non-normally distributed quantitative traits. 

simulated 

effects 

joint tests   mean tests  variance tests 

LRTMV(PB) Lepage  LRTM LRTM(PB) LR KW  LRTV(PB) Levene FK 

no effect 0.056 0.056  0.064 0.052 0.061 0.050  0.054 0.061 0.065 

mean 0.127 0.381  0.365 0.334 0.335 0.406  0.045 0.042 0.043 

variance 0.492 0.237  0.055 0.040 0.161 0.062  0.482 0.350 0.226 

mean & var 0.628 0.580  0.358 0.313 0.478 0.431  0.472 0.316 0.194 

 

C. Tests that cannot control Type I error for non-normally distributed quantitative traits. 

simulated 

effects 
LRTMV LRTV DGLMV DGLMV 

Box-Cox transformation 

no effect 0.240 0.310 0.310 0.177 
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4.     Detect mean and variance heterogeneity using additive genetic model 

In addition to modeling means and variances as genotypes, the omnibus test can also detect mean 

and variance heterogeneity using additive genetic model. We performed simulation study using 

an additive genetic model. A common SNP with MAF of 0.4 was simulated. We considered four 

scenarios: 1. Genotypes have no effects on quantitative traits; 2. Genotypes have additive effects 

on means of quantitative traits; 3. Genotypes have additive effects on variances of quantitative 

traits; and 4. Genotypes have additive effects on both means and variances of quantitative traits. 

The quantitative traits (  ) were generated using the model:            where    is the 

number of minor alleles the ith subjects carries. Without mean effects,      when genotypes 

affect means,        . We simulated    from  (         ) for scenarios without variance 

effects. For scenarios with variance effects,    was generated from  (         )  (          )  

and  (         ) corresponding to major allele homozygous, heterozygous, and minor allele 

homozygous, respectively. For each scenario, 1000 replicates were simulated with sample size of 

1000 in each replicate. Empirical power/Type I error was calculated as the proportion of 

replicates with statistically significant effects at the threshold level of 0.05 (Supplemental Table 

4). Type I errors were well controlled for all tests.   

 

Supplemental Table 4: Simulation study using additive genetic model.  

simulated 

effects 

tests 

LRTMV LRTM LRTV 

no effect 0.047 0.055 0.049 

mean 0.642 0.746 0.040 

variance 0.924 0.046 0.956 

mean & var 0.990 0.758 0.957 
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5. Construction of null distribution of LRTMV test statistic for a non-normally 

distributed quantitative trait 

For a given non-normally distributed quantitative trait, the null distribution of LRTMV test 

statistic does not depend on the SNP to be tested. We simulated a normally distributed 

quantitative trait and a quantitative trait from t-distribution (df=5) with sample size of 1000, and 

three SNPs with MAF of 0.4, 0.2 and 0.1, respectively. We constructed null distribution of 

LRTMV test statistic for each simulated quantitative trait with respect to each SNP to be tested by 

repeating parametric bootstrap 10
6
 times (Supplemental Figure 4). For the normally distributed 

quantitative trait, the null distributions match the   distribution with 4 degrees of freedom. For 

the non-normally distributed quantitative trait, the null distributions of LRTMV test statistic are 

different from   distribution (df=4), but does not change with respect to the SNP to be tested. 

Due to small sample size of rare homozygotes for the SNP with MAF of 0.1 (only 10 rare 

homozygotes on average), the null distribution constructed using parametric bootstrap shows 

subtle difference for both normally and non-normally distributed quantitative traits. Based on 

these, we suggest constructing a null distribution of LRTMV test statistic for each non-normally 

distributed quantitative trait using parametric bootstrap, which can be used to test for any SNPs 

with respect to the quantitative trait. This is much more computationally efficient than doing 

parametric bootstrap for each SNP. In addition, depending on the sample size, SNPs with MAF 

below certain threshold may be excluded from vQTL analysis due to low power and unreliable 

results.        
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Supplemental Figure 4: Null distributions of LRTMV test statistic for simulated quantitative 

traits constructed using parametric bootstrap for SNPs with MAF of 0.4, 0.2, and 0.1, 

respectively. A. A normally distributed quantitative trait. B. A non-normally distributed 

quantitative trait.  
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6 Analytical derivation for LD-induced variance

heterogeneity

In this section, we first analytically show that variance heterogeneity can be induced
due to LD with a functional locus with only mean effect. We will then demonstrate
this using simulations.

6.1 Derivation of LD-induced variance heterogeneity

Assume two SNPs in LD denoted by G1 and G2, where G1 is a functional SNP
with mean and/or variance effect on the quantitative phenotype. We denote the
major and minor alleles of G1 and G2 by A, a and B, b, respectively. We use the
following marginal and conditional probabilities to model the LD between G1 and
G2. Specifically, we have

p(G1 = A) = pA,

p(G1 = a) = pa = 1− pA,
p(G2 = B|G1 = A) = pB|A,

p(G2 = B|G1 = a) = pB|a.

If pB|A = pB|a, G1 and G2 are in linkage equilibrium; otherwise, G1 and G2 are in LD.
It also follows that p(G2 = B) = p(G2 = B|G1 = A)p(G1 = A) + p(G2 = B|G1 =
a)p(G1 = a) = pB|A × pA + pB|a × (1 − pA). The probabilities of the four possible
haplotypes, i.e., AB,Ab, aB, ab, are

pAB = pB|A × pA,
pAb = (1− pB|A)× pA,
paB = pB|a × (1− pA),

pab = (1− pB|a)× (1− pA).

Based on the above haplotype probabilities, we can easily calculate LD measures,
such as D′ and r2.

For simplicity of exposition, we first assume a haploid model and then extend to
a diploid model in the simulation study. Assume the quantitative trait Y depends on
the functional SNP G1 via:

(y|G1 = A) ∼ N(µA, σ
2
A),

(y|G1 = a) ∼ N(µa, σ
2
a).

We now derive the mean and variance differences at G2, i.e., E(y|G2 = B)−E(y|G2 =
b) and V ar(y|G2 = B) − V ar(y|G2 = b). We need the following four conditional
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probabilities in the derivation:

pa|B = p(G1 = a|G2 = B)

=
p(G2 = B|G1 = a)p(G1 = a)

p(G2 = B)

=
pB|a − pA × pB|a

pB|A × pA + pB|a × (1− pA)
,

pA|B = p(G1 = A|G2 = B)

= 1− pa|B,
pa|b = p(G1 = a|G2 = b)

=
1− pA − pB|a + pA × pB|a

1− pB|A × pA − pB|a + pA × pB|a
,

pA|b = p(G1 = A|G2 = b)

= 1− pa|b.

We have the conditional mean of the phenotype given G2 = b,

E(y|G2 = b) =

∫
yf(y|G2 = b)dy

=

∫
y
f(y,G2 = b)

p(G2 = b)
dy

=

∫
y
f(y,G2 = b|G1 = a)p(G1 = a) + f(y,G2 = b|G1 = A)p(G1 = A)

p(G2 = b)
dy

(since y⊥G2|G1) =

∫
y
f(y|G1 = a)p(G2 = b|G1 = a)p(G1 = a)

p(G2 = b)
dy

+

∫
y
f(y|G1 = A)p(G2 = b|G1 = A)p(G1 = A)

p(G2 = b)
dy

=

∫
yf(y|G1 = a)p(G1 = a|G2 = b)dy +

∫
yf(y|G1 = A)p(G1 = A|G2 = b)dy

= p(G1 = a|G2 = b)E(y|G1 = a) + p(G1 = A|G2 = b)E(y|G1 = A)

= pa|b × µa + pA|b × µA.

Similarly, we can derive,

E(y|G2 = B) = pa|B × µa + pA|B × µA.
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Thus, the conditional mean difference is,

E(y|G2 = B)− E(y|G2 = b) = (pa|B − pa|b)µa + (pA|B − pA|b)µA

=

[
pA(pB|a − pB|A)(1− pA)

(pB|ApA + pB|a − pApB|a)(1− pB|ApA − pB|a + pApB|a)

]
µa

+

[
pA(pB|A − pB|a)(1− pA)

(pB|ApA + pB|a − pApB|a)(1− pB|ApA − pB|a + pApB|a)

]
µA.

When pB|A = pB|a, i.e., G1 and G2 are in linkage equilibrium, the mean difference is
0; when pB|A 6= pB|a, we observe mean difference at G2 induced by G1 due to LD.
These results are consistent with those in association study of mean difference in the
phenotype, i.e., QTL study.

For conditional variance at G2, we have

V ar(y|G2 = b) = E(y2|G2 = b)− [E(y|G2 = b)]2

=
[
p(G1 = a|G2 = b)E(y2|G1 = a) + p(G1 = A|G2 = b)E(y2|G1 = A

]
− [p(G1 = a|G2 = b)E(y|G1 = a) + p(G1 = A|G2 = b)E(y|G1 = A)]2

= pa|b × (σ2
a + µ2

a) + pA|b × (σ2
A + µ2

A)− (pa|b × µa + pA|b × µA)2.

Similarly,

V ar(y|G2 = B) = pa|B × (σ2
a + µ2

a) + pA|B × (σ2
A + µ2

A)− (pa|B × µa + pA|B × µA)2

Therefore,

V ar(y|G2 = B)− V ar(y|G2 = b) = (pa|B − pa|b)(1− pa|B − pa|b)µ2
a + (pA|B − pA|b)(1− pA|B − pA|b)µ2

A

−2(pa|BpA|B − pa|bpA|b)µaµA + (pa|B − pa|b)σ2
a + (pA|B − pA|b)σ2

A

Some remarks,

1. When pa|B = pa|b, and thus, pA|B = pA|b, G1 and G2 are in linkage equilibrium,
and the conditional variance difference at G2 is 0.

2. Even if σ2
a = σ2

A, i.e., only mean effect at the functional SNP G1, when G1 and
G2 are in LD, the conditional variance difference at G2 is not 0, as confirmed
by Supplemental Figures 5 & 6.

3. The derivations here do not depend on the normality assumption.

6.2 Simulation study to verify the analytical results of LD-
induced variance heterogeneity

We performed simulation study to verify and illustrate the above analytical results.
We simulated 2000 replicated datasets of sample size n = 2000 with each subject’s
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diplotype formed by two haplotypes drawn independently from AB,Ab, aB, ab ac-
cording to their probabilities. We assume µA = 0, µa = 1 and an additive genetic
model so that the mean phenotype increase is 1 per minor allele at the functional
SNP G1, while σ2

A = σ2
a = 1, i.e., the variance is constant across G1’s three genotypes.

We considered two scenarios: low frequency and common functional SNP G1.

Scenario 1: Low frequency functional SNP MAF of G1 is pa = 0.05, pb|a =
0.99, 0.98, . . . , 0.90, 0.85, . . . , 0.05 and pb|A = 0.4. The resulting MAF of G2

ranges from 0.38 to 0.43. The maximum possible r2 between G1 and G2 is
around 0.085, due to the result of Wray (2005), i.e., the maximum value for r2 is

the smaller of pA(1−pB)
(1−pA)pB

and its inverse. As demonstrated in Supplemental Figure
5, a functional SNP with mean effect only can induce variance heterogeneity at
a SNP in LD with it. Due to the MAF difference between the two SNPs, large
D′ increases the variance heterogeneity, while r2 remains quite small (less that
0.1).

Scenario 2: Common functional SNP Minor allele frequency (MAF) of G1 is
pa = 1− pA = 0.4, pb|a = 0.99, 0.98, . . . , 0.90, 0.85, . . . , 0.05, and pb|A = 0.4. pb|a
closer to 1 indicates that the minor allele of G2 is more likely to be present with
the minor allele of G1, leading to higher LD between G1 and G2. On the other
hand, pb|a closer to 0 indicates that the minor allele of G2 is more likely to be
present with the major allele of G1, again resulting in higher LD between G1

and G2. The resulting alternative allele frequency of G2, i.e., pb, ranges from
0.26 to 0.64. The maximum possible r2 between G1 and G2 is around 0.53.
As demonstrated in Supplemental Figure 6, the results are similar to those
in Scenario 1 (low frequency functional SNP): large D′ increases the variance
heterogeneity and r2 remains moderate, though the latter is larger than that in
Scenario 1 due to both SNPs being common.
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Supplemental Figure 5: Low frequency functional SNP: MAF of causal SNP G1:
pa = 0.05, MAF of G2: pb = 0.38 ∼ 0.43, maximum possible r2 between G1 and G2

is 0.085; µA = 0, µa = 1, σ2
a = σ2

A = 1, sample size = 2000, replications = 2000. The
horizontal dotted line is α = 0.05.
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alternative allele frequency of G2: pb = 0.26 ∼ 0.64, maximum possible r2 between
G1 and G2 is 0.53; µA = 0, µa = 1, σ2
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A = 1, sample size = 2000, replications =

2000. The horizontal dotted line is α = 0.05.
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7 Variance tests after rejecting the global null hy-

pothesis

In this section, we performed a simulation study to demonstrate that variance test
by LRTV following rejecting the global null hypothesis by LRTMV can control the
family-wise error rate (FWER) at the nominal level.

7.1 Simulation setup

Define three hypotheses:

• Mean test: H0M : µ0 = µ1 = µ2 versus H1M : at least one “ = ” not hold

• Variance test: H0V : σ2
0 = σ2

1 = σ2
2 versus H1V : at least one “ = ” not hold

• Global test: H0MV : µ0 = µ1 = µ2 and σ2
0 = σ2

1 = σ2
2 versus

H1MV : at least one of H1M and H1V holds

We simulated 100 SNPs assuming HWE: Xij ∼ Binomial(2, p = 0.4) for i = 1, . . . , n
and j = 1, . . . , 100. We simulated the phenotype in the following two scenarios.

Scenario 1: all 100 SNPs are null The phenotype yi was simulated from N(0, 1).

Thus, H
(j)
0MV , H

(j)
0M and H

(j)
0V are true for j = 1, 2, . . . , 100.

Scenario 2: 1 SNP with mean effect only and 99 null SNPs The phenotype

yi = βXi1 + εi, where β = 0.1 and εi
i.i.d.∼ N(0, 1). Thus, H

(j)
1MV and H

(j)
1M are

true for j = 1, while H
(j)
0V are true for j = 1, . . . , 100 and H

(j)
0MV and H

(j)
0M are

true for j = 2, . . . , 100.

The empirical type I error was based on a sample size of n = 2000 and 2000 simulation
replications. The proposed test procedure is as follows:

1. Test each of 100 SNPs by LRTMV and use significance threshold 0.05/100 =
5× 10−4.

2. For m significant global tests, we use LRTV to test variance heterogeneity at
the Bonferroni correction level 0.05/m.

We are interested in controlling the FWER, defined as

Pr(at least one true H
(j)
0 among J tests is falsely rejected).

The commonly Bonferroni correction is aimed at controlling the FWER at, say, α =
0.05 among J independent tests. For the global test, we look at all the 100 SNPs
in Scenario 1 and the last 99 SNPs in Scenario 2, while we look at all 100 SNPs
for the variance test in Scenarios 1 & 2. The empirical FWER is summarized in
Supplemental Table 5. In both scenarios, the global test (LRTMV ) remained the
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nominal FWER at 0.05, while the variance test (LRTV ) following the global test had
a bit inflated FWER in Scenario 2. This is because the alternative hypothesis of the
global test H1MV is true for the first SNP and the LRTMV is no longer protecting the
Type I error of the nested variance test. Nevertheless, the Bonferroni correction for
the variance test appeared to work well in both scenarios.

Tests FWER
Scenario 1: LRTMV 0.046
100 null SNPs LRTV 0.038
Scenario 2: LRTMV 0.051
1 mean SNP + 99 null SNPs LRTV 0.059

Supplemental Table 5: Empirical FWER: sample size = 2000 based on 2000 replica-
tions
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