Supporting Information

Moreno et al. 10.1073/pnas.1323136111

Fig. S1. Effect of amino acid substitutions in the expression of viral proteins from foot-and-mouth disease virus (FMDV) RNAs with internal deletions. (A) Scheme or Δ417pa and Δ999pa RNAs in which the deletions are present in the sequence context of non-structural-coding regions of the parental FMDV C-S8c1 (compare with Figs. 1 and 2). The position of the amino acid substitution in 2C and 3A and name of the mutants are indicated below the genomes. These Legend continued on following page

mutations were chosen because they were the only nonsynonymous mutations present in the two Δ RNAs. (*B*) Western blot analysis of cellular extracts prepared at 4–42 h after electroporation (HPE) with either no RNA (mock-electroporated cells), electroporation with Δ 417 RNA or Δ 999 RNA, or coelectroporation with Δ 417 RNA + Δ 999 RNA (identified as 1, 2, 3, and 4, respectively, in the upper box, and at the top of each lane). Because the expression of viral proteins from parental Δ RNAs was not detected at early times (Fig. 2), the analyses were performed at 4–42 HPE. The horizontal filled boxes denote that the antibody used was either against VP3 (*Left*) or against 3D (*Right*). The amount of each extract was normalized relative to actin, detected with a specific monoclonal antibody (Fig. S2). The filled vertical boxes in the middle indicate that the electroporated RNA had the sequence of either Δ 417pa or Δ 999pa (Pa) or the sequence of Δ 417pa or Δ 999pa encoding the indicated amino acid substitution in 2C or 3A, or Δ 417ev, Δ 999ev (Ev) (compare with *A* and Fig. 2). The position of precursors P1, P3, and 3CD and processed proteins VP3 and 3D is indicated. The corresponding electropherograms for the same samples, and the measurement of shut-off of host cell protein synthesis, are given in Fig. S2. Electroporation by Δ 417ev, Δ 999ev, and Δ 417ev + Δ 999ev produced cytopathic effect at late HPE and no cell extracts could be prepared for analysis (two missing panels at the bottom). The origin of antibodies and procedures for electrophoresis and Western blot analysis are described in *Materials and Methods*. (C) Densitometric tracings of the bands corresponding to the Western blots for proteins VP3 and 3D of the coelectroporations of Δ 417 RNA + Δ 999 RNA shown in *B*. Sample identification in the abscissa is as in *B*. Values are given after background subtraction (average of several values around the band of interest). (D) Virus titers [corrected for two-hit kinetics (1, 2)] determined

1. Manrubia SC, Garcia-Arriaza J, Domingo E, Escarmís C (2006) Long-range transport and universality classes in *in vitro* viral infection spread. *Europhys Lett* 74(3):547–553. 2. Ojosnegros S, et al. (2011) Viral genome segmentation can result from a trade-off between genetic content and particle stability. *PLoS Genet* 7(3):e1001344.

Fig. 52. Protein expression following electroporation or coelectroporation of baby hamster kidney-21 (BHK-21) cells with Δ RNAs. (*A*) Electropherograms corresponding to the same experiment whose Western blot analyses are depicted in Fig. S1. BHK-21 cells were mock-electroporated (No RNA), electroporated with either Δ 417 RNA or Δ 999 RNA, or coelectroporated with Δ 417 RNA + Δ 999 RNA (identified as 1, 2, 3, and 4, respectively, in the upper box and at the top of each lane). At 3, 5, 7, 16, 22, or 41 HPE, the cells were labeled with [³⁵S] Met-Cys for 1 h (indicated as 4, 6, 8, 17, 23, or 42 h at the top of each panel), and the cell extracts were analyzed by SDS/PAGE, followed by fluorography and autoradiography. The amount of extract in each lane was normalized relative to actin (bottom bands). (*B*) Estimate of the intensity of shut-off of host cell protein synthesis, obtained by densitometric tracings of the protein samples at 4, 6, and 8 HPE, following mock-electroporation (No RNA) or electroporation or coelectroporation with the Δ RNAs indicated in the upper box and in the abscissa. Values are expressed as percentage of the band corresponding to actin after background subtraction. Procedures are detailed in *Materials and Methods*.

DNA C

Fig. S3. Genome analysis of BHK-21 cell culture supernatants following electroporation with FMDV RNAs. (A) Viral RNAs were analyzed by RT-PCR using specific primers to distinguish standard FMDV RNA from Δ RNAs (small arrows linked by a shaded bar at the top of each genome type, with indication of the size in base pairs of the amplified DNA; n.a., no amplification expected; the nucleotide sequence and exact position of each primer are listed in Table S3). (*B*) RT-PCR amplification bands using RNA extracted from supernatant of BHK-21 cells at 4 h following either mock-electroporation or coelectroporation with Δ 417ev + Δ 999ev RNA. As controls, RT-PCR amplifications were performed in parallel using pMT28, Δ 417ev, and Δ 999ev RNAs obtained by in vitro transcription of the corresponding RNAs. A cDNA was first synthesized using primer 2BD1 or JD5new. Then, PCR amplification was performed using the primers corresponding to each genome type, as indicated in *A*. DNAs were analyzed by agarose gel electrophoresis. The size of the DNA expected from each genomic type is indicated on the right. Lane M contains the molecular mass DNA markers (Φ 29 DNA digested with HindIII), and their size is indicated on the left. Procedures are described in *Materials and Methods*.

Fig. 54. Effect of poliovirus protein 2A on cellular and viral protein expression. (*A*) BHK-21 cells were either mock electroporated (No RNA) or electroporated with Δ 417ev RNA in the absence or presence of poliovirus protein 2A expressed *in trans* (1). At 3 HPE, cells were labeled for 1 h with [³⁵S] Met-Cys, and the protein extracts were analyzed; the amount of extract was normalized using actin (bottom box). The position of Δ 417Lab-VP0 and Δ 417Lb-VP0 is indicated on the right. Molecular mass markers for proteins are indicated on the left. (*B*) (*Top*) BHK-21 cells were either mock electroporated (No RNA) or electroporated with RNAs expressing poliovirus protein 2A or FMDV Lab. At 3 HPE, cells were labeled for 1 h with [³⁵S] Met-Cys, and the protein extracts were analyzed is of electroporated (*Middle*) Western blot analysis of elF4GI and its cleavage product (c.p.). (*Bottom*) The amount of extract was normalized using actin. Molecular mass markers for electroporates, and HPE, cells were indicated on the left. The constructions to express poliovirus 2A and FMDV L, as well as procedures for electroporation, electrophoresis, and Western blot analysis are described in *Materials and Methods*.

1. Ventoso I, Carrasco L (1995) A poliovirus 2A(pro) mutant unable to cleave 3CD shows inefficient viral protein synthesis and transactivation defects. J Virol 69(10):6280-6288.

Table S1. Mutations and corresponding amino acid substitutions in the FMDV populations passaged at high multiplicity of infection inBHK-21 cells

			FMDV po	pulation ^T				
Region						C-S8p260		Amino
analyzed*	C-S8p50	C-S8p100	C-S8p143	C-58p200	∆417	Δ999	p3d	acid⁺
5′-UTR (1–1,038)		C247U C338U	C247U C338U	C247U C338U	C247U C338U	C247U C338U U467C/U (75%)	C247U C338U	
	G476A	G476A	G476A	G476A	G476A C511U/C (75%)	G476A	G476A	
	U856C	U856C	U856C	U856C	U856C	U856C	U518C U856C U1008C	
L (1,039–1,641)		A1043G	—					N2S
			C1105C/U (25%)	G1066G/U (25%)		G1066U	G1066U	V10L P235
				A1154A/U (25%)	∆417			K39M
				C1158C/A (25%)	∆417			Syn
				C1180C/U (25%)	∆417	C1180U	C1180U	H48Y
VP4 (1,642–1,896)					A1810G/A (50%)	A1020U	A18280 A1810G	0197L T57A
VP2 (1,897–2,550)					C2202U		C2202U	Syn
						C2250U		Syn
VP3 (2,551–3,207)		C2624U	(2624)	C2624U	C2624U	G2285A U2622C C2624U	C2624U	Syn
	C2897U/C (50%)	_				G2763U ∆999		R71S A116V
				C3064G/C (75%)	C3064G	∆ 999	C3064G	H172D
	G3067A	G3067A	G3067A	G3067A	G3067A	∆ 999	G3067A	E173K
VP1 (3 208–3 834)	CSZUZA	A3328G	A3328G	A3328G	C3202A A3328G	∆999 ∧999	43328G	Q216K K41F
11 (3,200 3,03 1)		U3345A	A3344G/A (50%)	A3344G/A (75%)	A3344G	∆999 ∆999	A3344G	D46G D46E
				U3387C/U (75%)	U3387C	∆ 999	U3387C	Syn
	A2669C/A (7E0/)			U3433C	U3433C	∆999 ∧000	U3433C	Syn
	A30060/A (7376)	—			U3753C/U (75%)	∆999 ∆999	U3753C	Syn
	A3797A/G (25%)	A3797G	A3797G	A3797G	A3797G	A3797G	A3797G	H197R
2B (3,883–4,344)				A4036G/A (50%)	A4036G	A4036G	A4036G	T52A
2C (4,345–5,298)		C4650A	G4583A	G4583A	G4583A	G4583A	G4583A	S80N
	C4748U/C (75%)	C4748U/C (75%)		_				T135I
					C4824U/C (50%)	C4824U/C (50%)	C4824U	Syn
			A5110G	A5110G	A5110G	A5110G	A5110G	T256A
			G5133C	G5133C	G5133C	G5133C	G5133C	Q263H
				A5191G/A (50%)	ASISIG	ASISIG	C5214U	Svn
		G5295A	_				CSETTO	Syn
3A (5,299–5,757)			U5454C/U (50%)	U5454C/U (50%)	U5454U/C (25%)		U5454C	Syn
		A5524G	_					176V
		457120		A5606G/A (50%)	A5606G/A (75%)	A5606G	A 57420	D103G
		A5713G	_		A5713G/A (50%)	A5713G/ A (50%)	A5/13G	N139D
3C (5,971–6,609)		U6372C	_			(50%)		Syn

PNAS PNAS

Table S1. Cont.

		FMDV population [†]						
Region analyzed*	C-S8p50	C-S8p100	C-S8p143	C-58p200	C-58p260			Amino
					Δ417	∆999	p3d	acid [‡]
3D (6,610–8,009)					U6789U/C (25%)	U6789U/ C (25%)	U6789C	Syn
	G7554U	U6903C G7554U	 G7554U	_			C6840U	Syn Syn Syn

*FMDV genomic region analyzed (residue numbering is according to ref. 1).

[†]The sequence of the entire viral genome was determined for C-S8p50, C-S8p100, C-S8p143, C-S8p200, and C-S8p260 (2). Mutations are relative to the sequence of the parental clone C-S8c1. Two residues separated by a bar indicate a mixture of two nucleotides in the population, according to the sequence peak pattern. The percentage indicates the proportion of the mutant. —, reversion of a mutation to the WT sequence.

[†]Deduced amino acid substitutions relative to the sequence of the parental clone C-S8c1. Amino acid residues (single-letter code) are numbered individually for each protein from the N to the C terminus. Syn means synonymous mutation. Boldface type indicates a change in the amino acid residue. Procedures for nucleotide sequencing and identification of FMDV genomic regions are described in *Materials and Methods* of the main text.

1. Escarmís C, Dávila M, Domingo E (1999) Multiple molecular pathways for fitness recovery of an RNA virus debilitated by operation of Muller's ratchet. J Mol Biol 285(2):495–505. 2. García-Arriaza J, Ojosnegros S, Dávila M, Domingo E, Escarmís C (2006) Dynamics of mutation and recombination in a replicating population of complementing, defective viral ge-

nomes. J Mol Biol 360(3):558-572.

		FMDV genome [†]				
Genomic region*	∆ 417 pa	∆ 999 pa	∆ 417ev	∆ 999ev	Amino acid [‡]	
5′-UTR (1–1,038)		U467C		U467C		
	G476A	G476A	G476A	G476A		
	C511U		C511U			
	U856C	U856C	U856C	U856C		
	C1025U		C1025U			
L (1,039–1,641)		G1066U		G1066U	V10L	
		C1180U		C1180U	H48Y	
		A1628U		A1628U	Q197L	
VP2 (1,897–2,550)	C2202U		C2202U		Syn	
		C2250U		C2250U	Syn	
		G2285A		G2285A	G130D	
		A2545G		A2545G	K217E	
VP3 (2,551–3,207)		U2622C		U2622C	Syn	
	C2624U	C2624U	C2624U	C2624U	A25V	
		G2763U		G2763U	R71S	
	C3064G		C3064G		H172D	
	G3067A		G3067A		E173K	
	C3202A		C3202A		Q218K	
VP1 (3,208–3,834)	A3328G		A3328G		K41E	
	A3344G		A3344G		D46G	
	U3387C		U3387C		Syn	
	U3433C		U3433C		Syn	
	C3539U		C3539U		P111L	
	U3753C		U3753C		Syn	
	A3797G	A3797G	A3797G	A3797G	H197R	
2B (3,883–4,344)	A4036G	A4036G	A4036G	A4036G	T52A	
2C (4,345–5,298)	_	_	G4583A	G4583A	S80N	
		_	C4824U	C4824U	Syn	
		_	—	C4959U	Syn	
		_	—	A4988G	K215R	
			—	C5040U	Syn	
		_	A5110G	A5110G	T256A	
			G5133C	G5133C	Q263H	
	_	_	A5191G	A5191G	M283V	
	_	_	C5214U	_	Syn	
3A (5,299–5,757)	_	_	A5606G	A5606G	D103G	
3D (6,610–8,019)	_	—	—	C7074U	Syn	

Table S2. Mutations and corresponding amino acid substitutions in Δ 417pa, Δ 999pa, Δ 417ev, and Δ 999ev FMDV RNAs

*FMDV genomic region; residue numbering is according to ref. 1.

[†]The sequence of the entire viral genome was determined for the indicated *ARNAs*. Mutations are relative to the sequence of the parental clone C-S8c1. The genomes are depicted in Fig. 2.

[†]Deduced amino acid substitutions relative to the sequence of the parental clone C-S8c1. Amino acid residues (single-letter code) are numbered individually for each protein from the N to the C terminus. Syn means synonymous mutation. Boldface type indicates a change in the amino acid residue. Procedures for nucleotide sequencing and identification of FMDV genomic regions are described in *Materials and Methods*.

1. Escarmís C, Dávila M, Domingo E (1999) Multiple molecular pathways for fitness recovery of an RNA virus debilitated by operation of Muller's ratchet. J Mol Biol 285(2):495-505.

PNAS PNAS

Table S3. Oligonucleotides used in the present study

2B 2BR1 TTGGTGTCTGCTTTTGAGGAAC F	3,988
3C 3CD1 CATGACCATCTTTGCAGGTCAG R	6,009
3A 3AR3 GATGACGTGAACTCTGAGCCCGC F	5,704
3D AV2new TGTGGAAGTGTCTTTTGAGGAAAG R	7,783
2C mutSNu TTGAAGAACGTGCGAAATTGC F	4,576
2C mutSNd CGTTCCCGTTCTTCAAACACACTTGG R	4,591
2C mutTAu GAAGACACCCAACGCCAATCCAGTGGC F	5,098
2C mutTAd ACTGGATTGGC_TGGGTGTCTTCAAGTGC R	5,120
2C mutQHu GGCAATGTTTCACTACGACTGTGCCC F	5,121
2C mutQHd ggcacagtcgtagtgaaacattgcc R	5,145
2C mutMVu GAGATTGCAACAGGATGTGTTCAAGCCTCAACCCCTCCA F	5,175
2C mutMVd GGGTGGTTGAGGCTTGAACACATCCTGTTGCAATCTCTTCATTTC R	5,211
3A mutDGu CATCACCGATG <u>C</u> CCAGACACTTGACGAGGCGGAAAAG F	5,592
3A mutDGd CCGCCTCGTCAAGTGTCTGG <u>C</u> CATCGGTGGTGATGTTTGC R	5,626
L 5'Ncol-L GGGGCCCCATGGGCAATACAACTGACTGTTTTATC F	1,039
L 3'BamHI-L CCCGGGGGATCCCTATCACTTGAGCTTTCGCTGAACGCT R	1,641

*Underlined letters are nucleotides that have been modified with respect to the genomic sequence of the FMDV C-S8c1 to introduce the desired mutations.

[†]Genomic orientation of primer: forward (F) or reverse (R).

SANG SAN

[‡]Position of the 5′-nucleotide of the primer; numbering of FMDV genomic residues is that described in ref. 1.

1. Escarmís C, Dávila M, Domingo E (1999) Multiple molecular pathways for fitness recovery of an RNA virus debilitated by operation of Muller's ratchet. J Mol Biol 285(2):495-505.

Virus	Proteins*	Amino acid [†]	<i>M</i> _r (kDa) [‡]
pMT28	P1-2A	747	81.5
	VP0	303	33.0
	VP3	219	23.9
	VP1	209	22.8
∆417	∆417-Lab-P1-2A	809	88.6
	∆417-Lb-P1-2A	781	85.5
	∆417-M-P1-2A	771	84.3
	Δ417-Lab-VP0	365	40.1
	Δ417-Lb-VP0	337	37.0
	Δ417-M-VP0	327	35.8
	VP3	219	23.9
	VP1	209	22.8
∆999	∆999-P1-2A	414	45.1
	VP0	303	33.0
	Δ999-VP3	81	8.8
	∆999-VP1	14	1.6

Table S4. Comparison of the predicted size of proteins expressed from pMT28 and Δ RNAs

*The genomes and the predicted major precursors and mature proteins expressed from pMT28, Δ 417, and Δ 999 are depicted in Fig. 4 *A*–C. New proteins expected from the deletions in Δ RNAs are highlighted in bold. [†]Deduced number of amino acids present in the expressed protein.

^{*}The expected molecular mass of major precursors and mature proteins was calculated based on the genomic sequences, excluding the deleted regions in the case of proteins expressed from Δ RNAs.