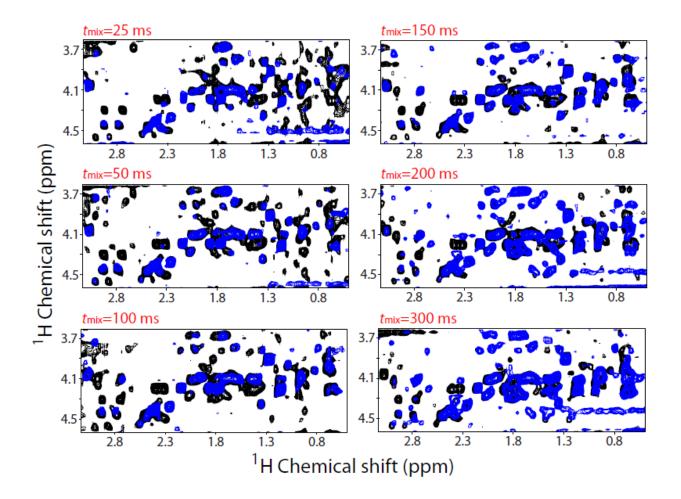

Proton-Detected 2D Radio Frequency Driven Recoupling Solid-state NMR Studies on Micelle-associated Cytochrome-b₅

Manoj Kumar Pandey¹, Subramanian Vivekanandan¹, Kazutoshi Yamamoto¹, Sangchoul Im², Lucy Waskell² and Ayyalusamy Ramamoorthy^{*1}

¹Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055


²Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, Michigan 48105

*To whom correspondence should be addressed (<u>ramamoor@umich.edu</u>)

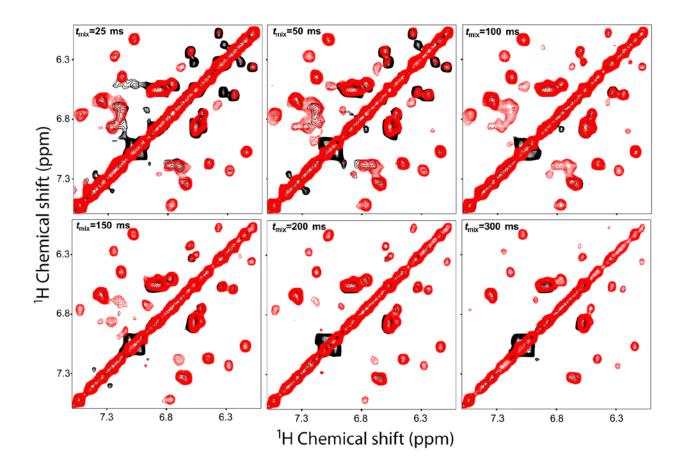


Figure S1. Two-dimensional ¹H-¹H RFDR and NOESY pulse sequences used in this study.

Figure S2. Superimposed 2D ¹H-¹H RFDR spectra of cytb₅ in the presence (black) and absence (blue) of DPC micelles recorded at mixing times of 25, 50, 100, 150, 200 and 300 ms, showing the alpha-side chain ¹H-¹H chemical shift correlations. More cross-peaks are observed in the presence of DPC micelles. This observation indicates the presence of unaveraged ¹H-¹H dipolar couplings in cytb₅ due to its interaction with DPC micelles that restricts the isotropic motion of the protein.

Figure S3. Superimposed 2D 1 H- 1 H NOESY (red) and RFDR (black) spectra of cytb₅ incorporated in DPC micelles recorded at mixing times of 25, 50, 100, 150, 200 and 300 ms, showing the chemical shift correlation of aromatic protons.

Table S1. Relaxation parameters obtained from the simulation of experimentally measuredcross-peak intensities of $cytb_5$ in the absence of DPC micelles.

Residues	RFDR		
	1/T1* (s ⁻¹)	R (s ⁻¹)	I ₀
$K39H_{\epsilon}-H_{\beta}$	1	7	15
$R52H_{\delta}$ -Q54 H_{γ}	0.5	11	4
M96H $_{\alpha}$ -H $_{\beta 1}$	4.7	5	18
$E53H_{\alpha}-H_{\gamma 2}$	1.5	7	3
$D71H_{\alpha}-H_{\beta 2}$	2.5	7	10
$D6H_{\alpha}$ - $H_{\beta 1}$	2.5	7	10