## Supporting Information For:

## Molecular Dynamics Study of Helicobacter pylori Urease

# Mona S. Minkara, Melek N. Ucisik, Michael N. Weaver and Kenneth M. Merz, Jr.\*

#### Table of Contents

| Pages                    | Description                                                                        |
|--------------------------|------------------------------------------------------------------------------------|
| S2-S8                    | Expanded Wide-Open Flap Analysis, Figures S1-S4                                    |
| <b>S9-S</b> 11           | Figures S5-S7, RMSD plots                                                          |
| S12-S14                  | Figures S8-S10, RMSF plots                                                         |
| S15-S23                  | Figures S11-S19, Flap Residue Separations                                          |
| S24-S28                  | Figures S20-S24, HIS $\alpha$ 322-N $_{\epsilon}$ and Ni <sup>2+</sup> separations |
| S29-S31                  | Figures S25-S27, HIS $\alpha$ 322-C $_{\alpha}$ and Ni <sup>2+</sup> separations   |
| <b>S</b> 32- <b>S</b> 34 | Figures S28-S30, Relative Free Energy Diagrams                                     |
| S35                      | Figure S31, Radius of Gyration                                                     |
| <b>S</b> 36              | Figure S32 Na <sup>+</sup> Radial Distribution Function                            |
| <b>S</b> 37              | Figure S33 Na <sup>+</sup> RDF 30 Ångstrom                                         |
| S38                      | References                                                                         |

#### **Expanded Wide-Open State Analysis**

HIS $\alpha$ 320 is a critical residue proposed to play an integral role in the urea hydrolysis mechanism for *K. aerogenes* and *B. pasteurii* ureases<sup>1,2</sup> and displacement of this residue is thought to be essential in reaching the wide-open flap state, allowing urea access to the active site. The corresponding residue in *H. pylori* urease is HIS $\alpha$ 322. Figure S1 shows that in the flap that achieves the wide-open state, the HIS $\alpha$ 322/GLY $\alpha$ 47 separation starts around 8 Ångstroms, close to the value observed in the closed flap state, but as the simulation proceeds, the separation of these residues reaches a maximum of 20 Ångstroms, with distinct separation from the semi-open state occurring approximately 100ns into the simulation. The trajectory clearly reveals a marked displacement of the histidine in achieving the wide-open state both in comparison to the closed and semiopen states. In the closed state this separation is nearly constant at approximately 7 Ångstroms while in the semi-open state the separation is roughly 10 Ångstroms.

The separation between GLU $\alpha$ 330/ALA $\beta$ 173 is observed to fluctuate in concert with the ILE $\alpha$ 328/ALA $\beta$ 170 distances, with the former separation reaching a maximum of ~30 Ångstroms in the wide-open state (Figure S2). This separation is also observed to narrow over the last quarter of the MD run and begins its decline slightly earlier than the ILE $\alpha$ 328/ALA $\beta$ 170 separation. In the wide-open flap state all the identified residue pairs have separations that vary in phase with one another, which is in contrast to the semi-open flap state that has been reported previously in the literature.[HA] The semiopen flap state is observed in the other 10 flaps and in these cases the ILE $\alpha$ 328/ALA $\beta$ 170 and GLU $\alpha$ 330/ALA $\beta$ 173 separations fluctuate in a synchronized manner, while the HIS $\alpha$ 322/GLY $\alpha$ 47 separation fluctuates out of phase with respect to the former two separations. This behavior is expected, since ILE $\alpha$ 328 and GLU $\alpha$ 330 are only 2 amino acids apart and are more likely to move in a concerted fashion. The plots containing the residue separations for remaining flaps are presented elsewhere in the Supporting Information (Figures S11-S19). It is further pointed out that each of the distances discussed is shorter in the X-ray structure, 12.87 Ångsttroms for ILE $\alpha$ 328/ALA $\beta$ 170, 4.91 Ångstroms for GLU $\alpha$ 330/ALA $\beta$ 173 and 3.85 Ångstroms for HIS $\alpha$ 322/GLY $\alpha$ 47.



**Figure S1:** Separation between residues HIS $\alpha$ 332 and GLY $\alpha$ 47 over time for flaps representing the closed (blue), semi-open (red) and wide-open (green) flap states.



**Figure S2:** Separation between residues GLU $\alpha$ 330 and ALA $\beta$ 173 over time for flaps representing the closed (blue), semi-open (red) and wide-open (green) flap states.

#### Ni-HIS Distances

One of the mechanisms proposed in the literature for the hydrolysis of urea by *K*. *aerogenes* urease involves HIS $\alpha$ 320 on the flap interacting with the bridging hydroxide.<sup>1</sup> This hydrogen bonding interaction with the histidine is thought to be critical for urea hydrolysis and this residue corresponds to HIS $\alpha$ 322 in *H. pylori*. The hypothesis is that the wide-open flap state will have this histidine removed far enough from the nickel centers to permit a molecule of urea to enter the active site and interact with the pentacoordinate Ni<sup>2+</sup> ion. In order to analyze this separation over the course of the MD simulation, the distance between the HIS $\alpha$ 322  $\alpha$ C and the two Ni<sup>2+</sup> ions for each frame were extracted and plotted (Figure S3, Figures S16-S20). As expected, the closed flap (flap1) had very small ranges in which the separations between both Ni<sup>2+</sup> ions and the histidine were observed to vary between 9 and 11 Ångstroms. For the wide-open flap (flap11) the separations range from 9 to 27 Ångstroms, a 9-fold increase in the ranges spanned by the flap1 distances. In the other 10 cases we observed flaps that are beginning to show wide-open flap state character. This is typically manifested as the unraveling of one, but not both, of the  $\alpha$ -helices that make up the flap. For example flaps 2, 5 and 8 have ranges from 9 to 17 Ångstroms, which clearly reveal that the HIS residue is far away enough for a urea molecule to enter the active site. As for the other flaps, they have ranges of separation spanning from 9 to 14 Ångstroms.



**Figure S3**: Ni<sup>2+</sup>/HIS $\alpha$ 322- $\alpha$ C distance fluctuations for the various flaps.

In order to further probe the importance of this key HIS residue, we extracted and plotted the distances between the HIS $\alpha$ 322- $\epsilon$ N to both Ni<sup>2+</sup> ions for each flap. All but 2 flaps exhibit regions where the  $\epsilon$ N/Ni<sup>2+</sup> distance dramatically increases. Representative separations over the course of the MD simulation are presented in Figure S4 for the closed, semi-open and wide-open flap states with remaining plots presented in Figures S21-23 (see Supporting Information). In the flap that remains closed throughout the entire simulation, the minimum distance between the HIS322- $\epsilon$ N and the pentacoordinate Ni<sup>2+</sup> is 4.5 Ångstroms. This pentacoordinate nickel is the closest of the nickel ions to the HIS $\alpha$ 322  $\epsilon$ N in nearly all cases. For the first flap, which was observed to remain closed,

the maximum  $\epsilon$ N/Ni<sup>2+</sup> separation is 9 Ångstroms. As for the other 10 flaps that exhibit a semi-open flap state there are sharp peaks indicative of large increases in the  $\epsilon$ N/Ni<sup>2+</sup> separation and the maximum found in the 10 flaps that exhibit a semi-open flap state is 20 Ångstroms. As for the wide-open flap state the distance gradually increases reaching a maximum of 31 Ångstroms without a clear sharp peak as exhibited by the other flaps. In the open flap state the minimum distance is generally around 5 Ångstroms. The rapid increases in the  $\epsilon$ N/Ni<sup>2+</sup> separation indicate that the HIS $\alpha$ 322 imidazole ring undergoes a 180° rotation at a particular point in time resulting in a significant increase in the observed distance between the atoms. Also of note is a region from 50-100 nanoseconds in flap 5 where the  $\epsilon$ N/Ni<sup>2+</sup> separations invert, and Ni2 is closer to the  $\epsilon$ N than Ni1. This is the only flap where this inversion is observed and corresponds to an instance where the imidazole ring rotates 90°.



**Figure S4:** Separation between both active site  $Ni^{2+}$  ions and the HIS $\alpha$ 322- $\epsilon$ N for the wide-open, closed and a representative semi-open, state.



Figure S5: RMSD for *H. pylori* urease flaps 2 (blue), 3 (red) and 4 (green).



Figure S6: RMSD for *H. pylori* urease flaps 6 (blue), 7 (red) and 8 (green).



Figure S7: RMSD for *H. pylori* urease flaps 9 (blue), 10 (red) and 12 (green).



Figure S8: RMSF for *H. pylori* urease dimers 2 (blue), 3 (red) and 4 (green).



Figure S9: RMSF for *H. pylori* urease dimers 6 (blue), 7 (red) and 8 (green).



Figure S10: RMSF for *H. pylori* urease dimers 9 (blue), 10 (red) and 12 (green).



**Figure S11:** Flap two residue separations between GLU $\alpha$ 330/ALA $\beta$ 173 (blue), HIS $\alpha$ 322/GLY $\alpha$ 47 (red) and ILE $\alpha$ 328/ALA $\beta$ 170 (green) over time.



**Figure S12:** Flap three residue separations between GLU $\alpha$ 330/ALA $\beta$ 173 (blue), HIS $\alpha$ 322/GLY $\alpha$ 47 (red) and ILE $\alpha$ 328/ALA $\beta$ 170 (green) over time.



**Figure S13:** Flap four residue separations between GLU $\alpha$ 330/ALA $\beta$ 173 (blue), HIS $\alpha$ 322/GLY $\alpha$ 47 (red) and ILE $\alpha$ 328/ALA $\beta$ 170 (green) over time.



**Figure S14:** Flap six residue separations between GLU $\alpha$ 330/ALA $\beta$ 173 (blue), HIS $\alpha$ 322/GLY $\alpha$ 47 (red) and ILE $\alpha$ 328/ALA $\beta$ 170 (green) over time.



**Figure S15:** Flap seven residue separations between GLU $\alpha$ 330/ALA $\beta$ 173 (blue), HIS $\alpha$ 322/GLY $\alpha$ 47 (red) and ILE $\alpha$ 328/ALA $\beta$ 170 (green) over time.



**Figure S16:** Flap eight residue separations between GLU $\alpha$ 330/ALA $\beta$ 173 (blue), HIS $\alpha$ 322/GLY $\alpha$ 47 (red) and ILE $\alpha$ 328/ALA $\beta$ 170 (green) over time.



**Figure S17:** Flap nine residue separations between GLU $\alpha$ 330/ALA $\beta$ 173 (blue), HIS $\alpha$ 322/GLY $\alpha$ 47 (red) and ILE $\alpha$ 328/ALA $\beta$ 170 (green) over time.



**Figure S18:** Flap ten residue separations between GLU $\alpha$ 330/ALA $\beta$ 173 (blue), HIS $\alpha$ 322/GLY $\alpha$ 47 (red) and ILE $\alpha$ 328/ALA $\beta$ 170 (green) over time.



**Figure S19:** Flap twelve residue separations between GLU $\alpha$ 330/ALA $\beta$ 173 (blue), HIS $\alpha$ 322/GLY $\alpha$ 47 (red) and ILE $\alpha$ 328/ALA $\beta$ 170 (green) over time.



Figure S20: Flap two and three separations between the HIS $\alpha$ 322-N $_{\epsilon}$  and each Ni<sup>2+</sup> ion.



Figure S21: Flap four and six separations between the HIS $\alpha$ 322-N $_{\epsilon}$  and each Ni<sup>2+</sup> ion.



Figure S22: Flap seven and eight separations between the HIS $\alpha$ 322-N $_{\epsilon}$  and each Ni<sup>2+</sup> ion.



Figure S23: Flap nine and ten separations between the HIS $\alpha$ 322-N $_{\epsilon}$  and each Ni<sup>2+</sup> ion.



Figure S24: Flap twelve separations between the HIS $\alpha 322$ -N $_{\epsilon}$  and each Ni<sup>2+</sup> ion.



Figure S25: Flap two, three and four separations between the HIS $\alpha$ 322-C $_{\alpha}$  and each Ni<sup>2+</sup> ion.



Figure S26: Flap six, seven and eight separations between the HIS $\alpha$ 322-C $_{\alpha}$  and each Ni<sup>2+</sup> ion.



Figure S27: Flap nine, ten and twelve separations between the HIS $\alpha$ 322-C $_{\alpha}$  and each Ni<sup>2+</sup> ion.



**Figure S28:** Relative free energy diagram constructed based on the separation between HIS $\alpha$ 322/GLY $\alpha$ 47 (HIS/GLY) and GLU $\alpha$ 330/ALA $\beta$ 173 (GLU/ALA).



**Figure S29:** Relative free energy diagram constructed based on the separation between ILE $\alpha$ 328/ALA $\beta$ 170 (ILE/ALA) and GLU $\alpha$ 330/ALA $\beta$ 173 (GLU/ALA).



**Figure S30:** Relative free energy diagram HIS322ɛN/Ni<sup>2+</sup> constructed based on the separation between (Ni1 HIS and Ni2 HIS).



Figure S31: Radius of Gyration (blue) and Maximum Radius (red) of *H. pylori* Urease.



**Figure S32:** Na<sup>+</sup> Radial Distribution Function From Origin.



**Figure S33:** Na<sup>+</sup> Radial Distribution Function From Origin Through 30 Ångstroms.

#### References

(1) Karplus, P. A.; Pearson, M. A.; Hausinger, R. P. *Accounts Chem. Res.* **1997**, *30*, 330-37.

(2) Estiu, G.; Merz, K. M. *Biochemistry-Us* **2006**, *45*, 4429-43.