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ABSTRACT Whereas the phosphates of B-DNA jut out
into the solution, those of Z-DNA, being closer to DNA matter,
are less subject to electrostatic screening by counterions. We
present simple planar models of B- and Z-DNA that reflect
these geometric features. The ionic strength dependence of the
difference in the Poisson-Boltzmann electrostatic free energy of
the models agrees with that measured by Pohl [Pohl, F. M.
(1983) Cold Spring Harbor Symp. Quant. Biol. 47, 113-118].
This indicates that the electrostatics of the B-to-Z transition are
primarily controlled by a qualitative geometrical difference
and not by details of the DNA geometry or by complex
electrostatic properties of the ionic solution.

In the B-to-Z structural transition of double-stranded DNA
(e.g., sequences of alternating GC), which occurs at molar
salt concentrations, the electrostatic contribution to the free
energy difference, 8F = Fz — Fg, can be determined exper-
imentally, based on the variation of the critical salt concen-
tration with the length of the alternating GC duplex (1). This
phenomenon provides an interesting test of the polyelectro-
lyte theories and models that are used in the study of DNA.
Is the transition simple from the point of view of electrostat-
ics, or is it a consequence of complex features of the
counter-ion distribution? Does it depend on details of the
polymer geometry?

In our opinion, it should be possible to explain the exper-
imental results by using simple descriptions of both the DNA
geometries and the solution electrostatics. This is because the
polyelectrolyte properties are due to interactions of each
charge (whether that of a DNA phosphate or that of an ion
from the solution) with distant phosphates, interactions that
are not sensitive to local properties.

DNA as an Impenetrable Cylinder Subject to the
Poisson—Boltzmann Theory

An extensively used electrostatic model treats DNA as an
impenetrable cylinder, whose radius is equal to the distance
between the phosphates and the DNA axis. The charge is
uniformly spread on the surface of the cylinder; the super-
ficial charge density is such as to reproduce the linear charge
density along the polyelectrolyte axis [two electronic charges
per base pair; i.e., per 0.34 nm for B-DNA and per 0.37 nm
for Z-DNA (2)]. The distribution of ionic charge around the
cylinder is computed by the Poisson-Boltzmann theory.
Contrary to the case of simply charged ions, the high linear
charge of the polymer creates electrostatic potentials that are
large compared to kT/e (e is the electronic charge, k is
Boltzmann’s constant, and T is the absolute temperature), so
that the linearized (Debye—-Hiickel) form of the theory cannot
be used.
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The nonlinear theory leads to two characteristic results.
First, the potential at the charged surface is weakly depen-
dent on its shape (3, 4), so that the charged plane with the
same superficial charge density provides a good starting
approximation, connecting the problem of polyelectrolytes to
that of planar electrodes and to the field of electrochemistry.
This is particularly interesting because the potential of the
plane is given by a simple analytical formula (5).

Second, near the charged surface, the variation of the
electric field (6), and the counterion concentration as well,
are nearly independent of the salt concentration at large (4,
7). The scaling length for the variation of the electric field,
which also describes the thickness of the ionic distribution
near the surface, is designated Th:

Th =1/Q2nlgzo/e), m
where o is the surface charge density, z is the counterionic
valency, and /g is the Bjerrum length, €2/(47reoDkT). In this
expression, g9 and D are the absolute and relative dielectric
constants, respectively. In water at room temperature, Ig =
0.72 nm. For B-DNA, represented by a charged cylinder of
radius 0.95 nm (Table 1), Eq. 1 gives, in monovalent salt, Th
= 0.226 nm.

This contrasts with the linear case, in which the scaling
length is equal to A, the concentration-dependent Debye
screening length, given by

A= 41rlB'En,~z,~2, [2]
where n; and z; are the valency and concentration of ion i. In
monovalent salt, A (nm) = (10.8 ¢)~1/2, where c is the salt
concentration in mol/liter.

Previous Models of the Electrostatics of the B-to-Z
Transition

The first model of the B-to-Z transition used the Poisson—
Boltzmann theory: each of the B and Z forms was modeled
by an impenetrable cylinder of the appropriate radius and
surface charge density (8). The computed slope of 6F versus
salt concentration is about 50 times smaller than the exper-
imental value in the concentration range where the latter is
known (1-5 M).

This failure has been ascribed to the use of the Poisson—
Boltzmann theory, which, being a mean-field theory, ignores
the correlations between ions in the solution. Taking into
account such correlations, the variation of 8F with salt
concentration could be fitted to the experiment (9). In that
computation, B- and Z-DNA were modeled as double-helical
chains of charged beads; the models involved an adjustable
parameter, the distance of closest approach between ions in
the solution, to which the theoretical result was very sensi-
tive.



Biophysics: Guéron and Demaret

Table 1. Parameters of B- and Z-DNA models
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Parameter
Cylinder Sheath Linear charge Superficial Scaling
Structure radius* thickness’ parameter? charge density$ length’
B-DNA 0.95 0.3 4.2 1.05 0.226
Z-DNA 0.715 — 39 1.2 0.183

*Average distance of the charged phosphate oxygens to the DNA axis (computed from the data in ref.

2).

tComputed so that the volume of the sheath of the cylinder model is equal to the volume accessible
to the solution between the axis of the DNA molecule (2) and the stated radius of charge.
This parameter, usually denoted ¢, is the charge of the polyelectrolyte per length I along the axis (/g,

defined in the text, is equal to 0.72 nm).

§1n electron charge per nm? of the cylinder surface, computed as (linear charge density)/[lp-2m(cylinder

radius)].
9In nm, given by Eq. 1.

I'The value, determined according to definition *, is 0.11 nm. However, the phosphates in Z-DNA are
inequivalent. One should then distinguish two sheaths. The thickness of the inner one, corresponding
to three-fourths of the charge, is about 0.05 nm. The sheaths of Z-DNA are ignored in the models

computed in the text.
The Composite Cylinder Model

In this model, as in ref. 8, the electrostatics are treated in the
Poisson-Boltzmann theory, and B- and Z-DNA are repre-
sented as cylinders. [Due to correlations between ions, the
adequacy of the Poisson-Boltzmann approach is question-
able at high salt concentrations, where the Debye length is
comparable to ionic radii. However, earlier studies indicated
that the problem is less serious for the properties of the
counterionic distribution around polyelectrolytes than it
would be for the properties of an ionic solution itself (10-13).]

We find that the experimental results can indeed be ex-
plained in this framework, provided the model incorporates
the essential geometrical difference between B- and Z-DNA,
from the point of view of electrostatics. This difference does
not lie in the slightly smaller radius or in the slightly smaller
linear charge density of Z-DNA. It is a difference in shape:
in B-DNA, the charged phosphates jut out into the solution.
They are therefore fairly well surrounded by counterions,
which may be located not only beyond the phosphates but
also closer to the DNA axis (i.e., in the two well-formed
grooves). But in Z-DNA, the phosphates are close to the rest
of the DNA matter, the major groove is shallow, and the
volume of the minor groove is small, so that very few
counterions can come closer to the axis than the phosphates.

For the purpose of studying the B-to-Z transition, a cylin-
drical model of B-DNA should therefore be a composite,
consisting in an inner impenetrable cylinder, surrounded by
a sheath filled with solution and carrying the polyelectrolyte
charge on its surface. The volume of solution within the
phosphate radius of B-DNA corresponds to a sheath thick-
ness of =0.3 nm (unpublished results). In contrast, the model
for Z-DNA has the charge directly on the surface of the
impenetrable cylinder (Fig. 1A4).

The above models could be refined. For instance, Z-DNA is
also entitled to a sheath, albeit a much narrower one than that
of B-DNA. Infact, a more precise model of Z-DNA calls for two
concentric sheaths, as indicated in the legend of Table 1.

The Poisson-Boltzmann free energy for such composite
cylinders has been computed. That work (unpublished re-
sults) supports our views, but the simplicity of the concept is
masked to some extent by the details of the modeling and
computation involved. The aim of the present work is to
illustrate the composite model with an ultra-simplified case:
the composite planar model. This model accounts qualita-
tively, to say the least, for the experimental results.

The Composite Planar Model

In the B-DNA composite cylinder model, the charged surface
is surrounded by the solution both inside (the sheath) and

outside, whereas in the Z-DN A model, the surface charge has
the solution on the outer side only.

Furthermore, the surface potential of a highly charged
cylinder is close to that of a plane with the same surface
charge density (4) (except at very low salt concentrations, a
case not considered here).

Therefore the free-energy difference may be approximated
as that between two charged planes, a B ‘‘two-faced plane”’
with solution on both sides (extending to infinity on one side
and up to a distance equal to the sheath thickness on the
other) and a Z ‘‘one-faced plane’’ with solution on one side.

To compute the free energy of this model, a useful inter-
mediate is the counterionic charge in the sheath. Unfortu-
nately, its evaluation is a bit complicated because it depends
on the ionic strength and on the superficial charge density,
which varies during the charging process used for computing
the free energy.

We therefore introduce a last simplification, which has the
disadvantage of modifying the counterionic charge in the
sheath, but the advantage that the free energy of the resulting
model is obtained extremely easily. The simplification con-
sists in letting the thickness of the sheath become infinite.
Because the sheath thickness of B-DNA is larger than the
scaling length Th for the fully charged cylinder (Table 1), we
estimate that the resulting increase of the counterionic charge
is not large enough to make the model severely misleading.
Rather, we consider that the extension of the B-DNA sheath
is in the same spirit as the reduction of the sheath of Z-DNA
to zero; each of these simplifications enhances, spuriously
but not severely, the difference between the B-DNA and
Z-DNA models.

Let ¢ be the reduced potential (the potential divided by
e/kT). In a salt of z-valent counterions and —z-valent coions,
its value at the surface of the one-faced plane with surface
charge density o (5) is

Dsurface(0, A) = (2/z)sinh = 1(A/Th). (31

This expression is exact in the linear and nonlinear range. The
free energy per electronic charge (phosphate) is obtained by
the usual charging process:

F(o, \) = kT fl surface(ST, A)ds. 4]
0

Hence,

F(o, A)/(2kT/z) = sinh ~1(1/x) + x — A + £, [5]
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FiG.1. (A)Cylindrical models for B-DNA, an impenetrable cylinder within a solution-filled sheath, and for Z-DNA, an impenetrable cylinder.
The superficial charge density o is, as usual, the one that gives the correct linear charge density [e.g., 2 electronic charges per 0.34 nm for B-DNA
and per 0.37 nm for Z-DNA (Table 1)]. (B) Planar models for B-DNA, a plane layer of charge immersed in the solution, and for Z-DNA, a plane
layer with the solution on one side. The electric field at the surface was determined by application of Gauss’s theorem to three different volumes,
two of which include neutralizing counterions as shown. The polyelectrolyte charge is split in two for this purpose, as pictured by the dual ‘"’
signs. The values of the electric field are indicated. The symbol & stands for the absolute dielectric constant, and D is the relative dielectric

constant of water.
with
x=Th/A. [6]

We now establish the relation between the free energy of a
one-faced plane, F,,(0) (given by Eq. 5), and that, Fio(0),
of the two-faced plane with the same surface charge density
o. In the former case, all the neutralizing ions are on one side.
In the second case, the ions on each side neutralize half of the
surface charge. (The argument is best followed by consider-
ing Fig. 1B and temporarily ignoring the different subscripts
to o.) Applying Gauss’s theorem for the flux of the electric
field to a box enclosing a section of the plane surface and
extending to infinity, one sees that a two-faced plane with
surface charge density o creates the same electric field at the
interface with the solution as a one-faced plane with surface
charge density /2. This condition, together with that of zero
field and potential at infinity, leads to identical surface
potentials. Hence, the free energy, obtained by the charging
procedure, is also the same:

Fiwo(o) = F, one(0/2). M
The free energy difference is, therefore,
Fz — Fg = Fope(07) — Fiwo(0B) = Fone(07) — Fone(o/2), [8]

where F,,. is given by Eq. 5 with the appropriate values of
o and of x (Egs. 1 and 6).

The results, which require no computation beyond the
evaluation of Eq. 5, are plotted in Fig. 2B. The computation
was done for two models of DNA. For the solid line, the
radius is the average distance from the axis to the charged
oxygens of the phosphate groups—namely, 0.95 nm for
B-DNA and 0.715 nm for Z-DNA (Table 1). The dashed line
was computed with the radii from the earlier Poisson-
Boltzmann study (8), 1 and 0.9 nm, and with the correspond-

ing charge densities, 0.928 and 1.03 electronic charge per
nm2. The salt is monovalent.

The dotted line is the result derived from the experimental
measurements in sodium chloride solutions. Since it includes
an unknown, constant, nonelectrostatic component, only its
variation with the salt concentration is significant for com-
parison with the theory. The slope of the solid line is
practically equal to the experimental one. That of the dashed
line is 75% of the latter, as compared to only 2% in the earlier
model using the same DNA radii.

Considering the approximations made, as well as the
limited amount of experimental results (no detailed measure-
ments have been reported for other ions than NaCl), the
excellent agreement between the theoretical (solid line) and
experimental slopes is satisfying, but it must be partly
fortuitous. The important points are that (i) the slope has the
right sign and order of magnitude and (ii) agreement with the
experiment is robust with respect to changes in the radii of the
charged cylinders representing DNA.

Conclusion

In conclusion, it appears that the electrostatic contribution to
the enhanced stability of B-DNA over Z-DNA in lower salt
is due essentially, and at least semiquantitatively, to the
simple fact that, in the B geometry, the phosphate charges are
well immersed in the solution and thus may be better sur-
rounded with counterions, and better screened by them, than
in the Z geometry. This property can be accounted for by a
composite cylindrical model treated in the Poisson—
Boltzmann theory.

We shall present elsewhere a computation of the free
energy difference in composite cylindrical models of DNA,
based on analytical formulae and approximations for the
Poisson-Boltzmann potential (4, 6). It may be interesting to
compare the results thus obtained with those of a numerical
Poisson-Boltzmann computation of the composite cylinder
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(A) The free energies of B-DNA (solid line) and Z-DNA (dashed and dotted line) as a function of salt concentration in the model

of Table 1. Their difference is the solid line in B. (B) The electrostatic free energy difference per phosphate, versus c, the monovalent salt
concentration. Solid line, theoretical result for the composite planar model, based on the radii of Table 1. Dashed line, theoretical result for the
composite planar model, but with the radii used in ref. 8 (see text). Dotted line, experimental (following ref. 1). Only the slopes should be
compared. The solid line agrees well with experiment. The theoretical slope is not greatly affected by the change of the DNA radii.

model, so as to display the quality of the analytical formulae,
and also with the results of a numerical Poisson-Boltzmann
study of DNA in its exact geometry, so as to evaluate the
importance of geometrical details. Such studies require much
more computer time than do those described here.

The composite cylinder model could be applied to related

problems such as the variation of the relative stability of
Z-DNA and B-DNA versus temperature or the A-RNA to
Z-RNA transition.

1.
2.

Pohl, F. M. (1983) Cold Spring Harbor Symp. Quant. Biol. 47,
113-118.

Arnott, S., Campbell-Smith, P. J. & Chandrasekaran, R. (1975)
in CRC Handbook of Biochemistry and Molecular Biology, ed.
Fasman, G. D. (CRC, Cleveland), Vol. 2, pp. 411-423.
Guéron, M. & Weisbuch, G. (1980) Biopolymers 19, 353-382.

4.
5.

%o

10.
11.

12.

Weisbuch, G. & Guéron, M. (1981) J. Phys. Chem. 85, 517-525.
Prock, A. & McConkey, G. (1962) Topics in Chemical Physics,
Based on the Harvard Lectures of Peter J. W. Debye (Elsevier,
Amsterdam), pp. 221-225.

Weisbuch, G. & Guéron, M. (1983) J. Phys. (Paris) 44, 251-256.
Grahame, D. C. (1947) Chem. Rev. 41, 441-501.
Frank-Kamenetskii, M. D., Lukashin, A. V. & Anshelevich,
V. V. (1985) J. Biomol. Struct. Dyn. 3, 35-42.

Soumpasis, D. M. (1984) Proc. Natl. Acad. Sci. USA 81,
5116-5120.

Fixman, M. (1979) J. Chem. Phys. 70, 4995-5005.
Wennerstroem, H., Joensson, B. & Linse, P. (1982) J. Chem.
Phys. 76, 4665-4670.

Anshelevich, V. V., Lukashin, A. V. & Frank-Kamenetskii,
M. D. (1984) Chem. Phys. 91, 225-236.

Vlachy, V. & Haymet, A. D. J. (1986) J. Chem. Phys. 84,
5874-5880.



