#### SUPPLEMENTARY INFORMATION (MCR-13-0588R)

### Novel Roles for ERK5 and Cofilin as Critical Mediators Linking ERα-Driven

#### Transcription, Actin Reorganization and Invasiveness in Breast Cancer

Zeynep Madak-Erdogan, Rosa Ventrella, Luke Petry and Benita S. Katzenellenbogen

Contents

**Supplementary Figures 1-9 Legends** 

**Supplementary Tables 1-3 Titles** 

**Supplementary Figures 1-9** 

**Supplementary Tables 1-3** 

#### SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1. Verification of pERK5 recruitment to binding sites identified by ChIP-Seq in MCF-7 cells. ChIP-qPCR of pERK5 recruitment to regulatory regions of various E2-regulated genes was conducted. MCF-7 cells were treated with vehicle or 10 nM E2 for 45 min. After formaldehyde cross-linking and sonication, pERK5/DNA complexes were immunoprecipitated. Immunoprecipitated DNA levels were measured by qPCR and % input was calculated. The results (mean  $\pm$  SD) are from three independent experiments.

# Supplementary Figure 2. Impact of ERK5 depletion on gene regulations in estradiol treated cells.

(a) Comparison of number of  $17\beta$ -estradiol (E2) regulated genes after 24 h of ligand treatment in MCF-7 cells. Genespring Venn Diagram tool was used to compare overlap between genes regulated greater than or equal to1.8-fold with FDR of 0.01 in each background, i.e. cells treated with control siRNA or ERK5 siRNA for 72 h before hormone treatment for 24h.

(b) Scatter plots for gene regulations in the different cell backgrounds: scatter plots of E2regulated genes in each cell background were generated using the Genespring scatterplot tool. The top two panels show how genes that are regulated by E2 in siCtrl transfected cells are also being regulated in siERK5 transfected cells. The bottom two panels show how genes that are regulated by E2 in siERK5 transfected cells are also being regulated in siCtrl transfected cells. E2-upregulated genes are shown in red and E2-downregulated genes in blue. Supplementary Figure 3. ERK5 inhibitor XMD8-92 does not change cellular ER $\alpha$  levels. MCF-7, T47D and BT474 cells were treated with 1 uM XMD8-92 for 1h and 0.1% EtOH (Veh) or 10 nM E2 was added for 45 min. ER $\alpha$  levels were assessed by Western blotting using ER $\alpha$  antibody.

Supplementary Figure 4. Impact of constitutively active MEK5 (MEK5-CA) on gene stimulation, chromatin occupancy of pMAPK substrates and pERK5 recruitment to E2-stimulated genes. MCF-7 cells were infected with AdCMV (Ctrl) or increasing amounts of AdMEK5-CA for 24h and then treated with vehicle or 10 nM E2 for 45 min for ChIP and Western blot, or 24h for gene expression analysis.

**Supplementary Figure 5.** Loss of pERK5 localization to the nucleus in the absence of ERα. MCF-7, BT474 and T47D cells were transfected with 20 nM siCtrl or siERα for 72 h and then treated with 10 nM E2 for 45 min and immunofluorescence microscopy was performed with antibody specific to pERK5. F-actin was stained and visualized with Alexa568-phalloidin. Nuclei were stained and visualized with DAPI.

Supplementary Figure 6. Loss of ERK5, pERK5 and CFL1 localization to the nucleus in the absence of ER $\alpha$  activity and ERK5 activity. MCF-7 cells were treated with Ctrl (0.1% EtOH), 1  $\mu$ M of the antiestrogen Fulvestrant or 1  $\mu$ M XMD8-92 (ERK5 inhibitor) for 24 h and immunofluorescence microscopy was performed with an antibody specific to ERK5 (upper left) and ER $\alpha$ , pERK5 (upper right) or CFL1 (lower left). F-actin was stained and visualized with Alexa568-phalloidin. Nuclei were stained and visualized with DAPI.

1/8/14

**Supplementary Figure 7. ERK5 regulates transcription after estradiol treatment of MCF-7 cells.** Impact of ERK5-DN expression on recruitment of factors associated with transcription. MCF-7 cells were infected with AdCMV (Ctrl) or AdERK5-DN for 24h and then treated with control vehicle or 10 nM E2 for 45 min. Factor/DNA complexes were immunoprecipitated using specific antibody to PAF1, SPT5, RNA Pol II, CyclinT1 or WDR61. Immunoprecipitated DNA levels were measured by qPCR and % input was calculated. Values are the mean ± SD of three independent experiments.

**Supplementary Figure 8. Intracellular localization of pERK5 after expression of ERα in three ERα-negative breast cancer cell lines.** MDA-MB-468, MDA-MB-453 and SKBR3 cells were infected with control AdCMV or AdERα for 96 h and immunofluorescence microscopy was performed with antibodies specific to pERK5 and ERα. Nuclei were stained and visualized with DAPI.

**Supplementary Figure 9.** Colocalization of pERK5 and F-actin after ERα introduction into ERα-negative cells. MDA-MB-468 cells were infected with AdCMV or AdERα for 96 h and immunofluorescence microscopy was performed with an antibody specific to pERK5. F-actin was stained and visualized with Alexa568-phalloidin. Nuclei were stained and visualized with DAPI.

#### SUPPLEMENTARY TABLE LEGENDS

Table S1. GO Term Enrichment Analysis for Genes whose Regulation by E2 was affectedby ERK5 knockdown.

 Table S2. List of E2-regulated signature genes requiring chromatin recruitment of ERK5

 for their hormonal regulation.

Table S3. BED files for ChIP-Seq for ERK5, PXSP motif containing proteins and RNA PolII in the presence of E2.



















# Table S1. GO term Enrichment Analysis for Genes whose Regulation byE2 Stimulation was affected by ERK5 knockdown

| #  | Maps                                                     | Total | pValue    | Min FDR     |
|----|----------------------------------------------------------|-------|-----------|-------------|
| 1  | Cell cycle_Start of DNA replication in early S phase     | 32    | 0.000E+00 | 0           |
| 2  | Cell cycle_Role of SCF complex in cell cycle regulation  | 29    | 4.926E-08 | 3.0295E-06  |
| 3  | Cell cycle_Role of APC in cell cycle regulation          | 32    | 3.045E-06 | 0.000124853 |
| 4  | DNA damage ATM / ATR regulation of G2 / M checkpoint     | 26    | 3.413E-05 | 0.001049494 |
| 5  | Cell cycle Transition and termination of DNA replication | 28    | 4.624E-05 | 0.001137382 |
| 6  | DNA damage ATM/ATR regulation of G1/S checkpoint         | 32    | 7.945E-05 | 0.001579904 |
| 7  | Cell cycle ESR1 regulation of G1/S transition            | 33    | 8.991E-05 | 0.001579904 |
| 8  | Apoptosis and survival_DNA-damage-induced apoptosis      | 15    | 1.584E-04 | 0.002434862 |
| 9  | DNA damage_Role of Brca1 and Brca2 in DNA repair         | 30    | 1.307E-03 | 0.017863367 |
| 10 | DNA damage_DNA-damage-induced responses                  | 9     | 1.826E-03 | 0.022465943 |

Enrichment by Pathway Maps for E2 stimulated genes which are blocked by ERK5 knockdown

Enrichment by Pathway Maps for E2 stimulated genes which are enhanced by ERK5 knockdown

| #  | Maps                                                   | Total | pValue    | Min FDR     |
|----|--------------------------------------------------------|-------|-----------|-------------|
| 1  | Immune response_HSP60 and HSP70/ TLR signaling pathway | 54    | 2.324E-06 | 0.000579236 |
| 2  | Immune response_IL-17 signaling pathways               | 60    | 4.355E-06 | 0.000579236 |
| 3  | Apoptosis and survival_Apoptotic TNF-family pathways   | 42    | 1.216E-05 | 0.001078462 |
| 4  | Immune response_MIF-mediated glucocorticoid regulation | 22    | 1.707E-05 | 0.001135078 |
| 5  | Immune response TLR signaling pathways                 | 54    | 4.228E-05 | 0.002249381 |
| 6  | Bacterial infections in CF airways                     | 58    | 5.991E-05 | 0.002473333 |
| 7  | Immune response TREM1 signaling pathway                | 59    | 6.509E-05 | 0.002473333 |
| 8  | Immune response CD40 signaling                         | 65    | 1.038E-04 | 0.003452811 |
| 9  | Immune response_Gastrin in inflammatory response       | 69    | 1.382E-04 | 0.004083634 |
| 10 | Signal transduction_AKT signaling                      | 43    | 2.568E-04 | 0.006830088 |

#### Enrichment by Pathway Maps for E2 repressed genes which are blocked by ERK5 knockdown

| # | Maps                                                         | Total | pValue    | Min FDR     |
|---|--------------------------------------------------------------|-------|-----------|-------------|
| 1 | Development_ERK5 in cell proliferation and neuronal survival | 23    | 4.153E-04 | 0.116685748 |
| 2 | Apoptosis and survival_NGF activation of NF-kB               | 29    | 8.335E-04 | 0.117111448 |
| 3 | Transcription_Receptor-mediated HIF regulation               | 39    | 1.992E-03 | 0.150561121 |
| 4 | Apoptosis and survival_Ceramides signaling pathway           | 40    | 2.143E-03 | 0.150561121 |
| 5 | Development PIP3 signaling in cardiac myocytes               | 47    | 3.407E-03 | 0.159554553 |
| 6 | Development HGF signaling pathway                            | 47    | 3.407E-03 | 0.159554553 |
| 7 | G-protein signaling Proinsulin C-peptide signaling           | 52    | 4.539E-03 | 0.168220616 |
| 8 | Development WNT signaling pathway. Part 2                    | 53    | 4.789E-03 | 0.168220616 |

| 9 Cytoskeleton remodeling TGF, WNT and cytoskeletal remodeling         | 111 | 5.648E-03 | 0.17635468  |
|------------------------------------------------------------------------|-----|-----------|-------------|
| 10 Development_WNT signaling pathway. Part 1. Degradation of beta-cate | 19  | 6.561E-03 | 0.184377933 |

### Enrichment by Pathway Maps for E2 repressed genes which are enhanced by ERK5 knockdown

| #  | Maps                                                                     | Total | pValue    | Min FDR     |
|----|--------------------------------------------------------------------------|-------|-----------|-------------|
| 1  | Histidine-glutamate-glutamine metabolism                                 | 95    | 1.032E-02 | 0.124836896 |
| 2  | Immune response _Sialic-acid receptors (Siglecs) signaling               | 12    | 1.962E-02 | 0.124836896 |
| 3  | Cytoskeleton remodeling_CDC42 in cellular processes                      | 22    | 3.569E-02 | 0.124836896 |
| 4  | Apoptosis and survival_Anti-apoptotic TNFs/NF-kB/IAP pathway             | 27    | 4.363E-02 | 0.124836896 |
| 5  | Development_Thrombospondin-1 signaling                                   | 28    | 4.521E-02 | 0.124836896 |
| 6  | G-protein signaling_RAC1 in cellular process                             | 35    | 5.622E-02 | 0.124836896 |
| 7  | Regulation of metabolism Bile acids regulation of glucose and lipid meta | 37    | 5.934E-02 | 0.124836896 |
| 8  | Cell adhesion Cell-matrix glycoconjugates                                | 38    | 6.090E-02 | 0.124836896 |
| 9  | Apoptosis and survival APRIL and BAFF signaling                          | 39    | 6.245E-02 | 0.124836896 |
| 10 | Immune response_Alternative complement pathway                           | 39    | 6.245E-02 | 0.124836896 |

### Table S2.

### List of E2-regulated signature genes requiring chromatin recruitment of ERK5 for their hormonal regulation

| Gene Name                                                                                            | Gene Symbol |
|------------------------------------------------------------------------------------------------------|-------------|
| S-phase kinase-associated protein 2 (p45)                                                            | SKP2        |
| exonuclease 1                                                                                        | EXO1        |
| glycyl-tRNA synthetase                                                                               | GARS        |
| cell division cycle 45 homolog (S. cerevisiae)                                                       | CDC45       |
| CHK1 checkpoint homolog (S. pombe)                                                                   | CHEK1       |
| minichromosome maintenance complex component 10                                                      | MCM10       |
| solute carrier family 7 (cationic amino acid transporter, y+ system), member 5                       | SLC7A5      |
| polymerase (DNA directed), theta                                                                     | POLQ        |
| CDC28 protein kinase regulatory subunit 1B                                                           | CKS1B       |
| polo-like kinase 4 (Drosophila)                                                                      | PLK4        |
| serine hydroxymethyltransferase 2 (mitochondrial)                                                    | SHMT2       |
| RAD54-like (S. cerevisiae)                                                                           | RAD54L      |
| centromere protein N                                                                                 | CENPN       |
| ribonuclease P/MRP 40kDa subunit                                                                     | RPP40       |
| GINS complex subunit 3 (Psf3 homolog)                                                                | GINS3       |
| spindle and kinetochore associated complex subunit 1                                                 | SKA1        |
| Bloom syndrome, RecQ helicase-like                                                                   | BLM         |
| tyrosyl-tRNA synthetase                                                                              | YARS        |
| phosphoserine aminotransferase 1                                                                     | PSAT1       |
| minichromosome maintenance complex component 2                                                       | MCM2        |
| chromatin licensing and DNA replication factor 1                                                     | CDT1        |
| protein kinase, membrane associated tyrosine/threonine 1                                             | PKMYT1      |
| flap structure-specific endonuclease 1                                                               | FEN1        |
| excision repair cross-complementing rodent repair deficiency, complementation group 6-like           | ERCC6L      |
| methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclohydrolase | MTHFD2      |
| RAD51 associated protein 1                                                                           | RAD51AP1    |
| argininosuccinate synthase 1                                                                         | ASS1        |
| methionyl-tRNA synthetase                                                                            | MARS        |
| minichromosome maintenance complex component 4                                                       | MCM4        |
| minichromosome maintenance complex component 6                                                       | MCM6        |
| cell division cycle 25 homolog A (S. pombe)                                                          | CDC25A      |
| chloride channel CLIC-like 1                                                                         | CLCC1       |
| defective in sister chromatid cohesion 1 homolog (S. cerevisiae)                                     | DSCC1       |

| nei endonuclease VIII-like 3 (E. coli)                                         | NEIL3    |
|--------------------------------------------------------------------------------|----------|
| RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae)                          | RAD51    |
| asparagine synthetase (glutamine-hydrolyzing)                                  | ASNS     |
| suppressor of variegation 3-9 homolog 1 (Drosophila)                           | SUV39H1  |
| nucleolar and coiled-body phosphoprotein 1                                     | NOLC1    |
| replication factor C (activator 1) 3, 38kDa                                    | RFC3     |
| minichromosome maintenance complex component 3                                 | MCM3     |
| calcyclin binding protein                                                      | CACYBP   |
| centromere protein M                                                           | CENPM    |
| minichromosome maintenance complex component 5                                 | MCM5     |
| eukaryotic translation initiation factor 4E binding protein 1                  | EIF4EBP1 |
| phosphoserine phosphatase                                                      | PSPH     |
| translocase of inner mitochondrial membrane 8 homolog A (yeast)                | TIMM8A   |
| chromatin assembly factor 1, subunit B (p60)                                   | CHAF1B   |
| uracil-DNA glycosylase                                                         | UNG      |
| ASF1 anti-silencing function 1 homolog B (S. cerevisiae)                       | ASF1B    |
| interleukin 1 receptor accessory protein                                       | IL1RAP   |
| solute carrier family 7 (cationic amino acid transporter, y+ system), member 1 | SLC7A1   |
| malic enzyme 2, NAD(+)-dependent, mitochondrial                                | ME2      |
| REX2, RNA exonuclease 2 homolog (S. cerevisiae)                                | REXO2    |
| cysteinyl-tRNA synthetase                                                      | CARS     |
| TIMELESS interacting protein                                                   | TIPIN    |
| nuclear autoantigenic sperm protein (histone-binding)                          | NASP     |
| Fanconi anemia, complementation group G                                        | FANCG    |
| polymerase (DNA directed), delta 1, catalytic subunit 125kDa                   | POLD1    |
| activating transcription factor 3                                              | ATF3     |
| CCAAT/enhancer binding protein (C/EBP), gamma                                  | CEBPG    |
| GINS complex subunit 4 (Sld5 homolog)                                          | GINS4    |
| activating transcription factor 4 (tax-responsive enhancer element B67)        | ATF4     |
| myosin XIX                                                                     | MYO19    |
| transmembrane protein 194A                                                     | TMEM194A |
| solute carrier family 1 (neutral amino acid transporter), member 5             | SLC1A5   |
| denticleless homolog (Drosophila)                                              | DTL      |
| chromatin assembly factor 1, subunit A (p150)                                  | CHAF1A   |
| thymopoietin                                                                   | ТМРО     |
| translocase of inner mitochondrial membrane 44 homolog (yeast)                 | TIMM44   |

| neurofibromin 2 (merlin)                                                        | NF2     |
|---------------------------------------------------------------------------------|---------|
| transmembrane protein 38B                                                       | TMEM38B |
| polymerase (DNA directed), epsilon 2 (p59 subunit)                              | POLE2   |
| cell division cycle 6 homolog (S. cerevisiae)                                   | CDC6    |
| replication factor C (activator 1) 5, 36.5kDa                                   | RFC5    |
| methyltransferase like 1                                                        | METTL1  |
| tripeptidyl peptidase II                                                        | TPP2    |
| branched chain amino-acid transaminase 1, cytosolic                             | BCAT1   |
| centromere protein Q                                                            | CENPQ   |
| embryonic ectoderm development                                                  | EED     |
| EMG1 nucleolar protein homolog (S. cerevisiae)                                  | EMG1    |
| DNA cross-link repair 1B (PSO2 homolog, S. cerevisiae)                          | DCLRE1B |
| leucine zipper-EF-hand containing transmembrane protein 1                       | LETM1   |
| primase, DNA, polypeptide 1 (49kDa)                                             | PRIM1   |
| non-SMC condensin I complex, subunit H                                          | NCAPH   |
| breast cancer 1, early onset                                                    | BRCA1   |
| WD repeat and HMG-box DNA binding protein 1                                     | WDHD1   |
| nuclear protein, transcriptional regulator, 1                                   | NUPR1   |
| GINS complex subunit 2 (Psf2 homolog)                                           | GINS2   |
| protein tyrosine phosphatase, receptor type, G                                  | PTPRG   |
| retinoblastoma binding protein 8                                                | RBBP8   |
| breast cancer 2, early onset                                                    | BRCA2   |
| Scm-like with four mbt domains 1                                                | SFMBT1  |
| GDNF family receptor alpha 1                                                    | GFRA1   |
| dedicator of cytokinesis 4                                                      | DOCK4   |
| zinc finger protein 232                                                         | ZNF232  |
| YEATS domain containing 4                                                       | YEATS4  |
| neurexin 3                                                                      | NRXN3   |
| solute carrier family 7, (cationic amino acid transporter, y+ system) member 11 | SLC7A11 |
| laminin, alpha 3                                                                | LAMA3   |
| zinc finger protein 174                                                         | ZNF174  |
| CD44 molecule (Indian blood group)                                              | CD44    |
| notchless homolog 1 (Drosophila)                                                | NLE1    |
| zinc finger protein 33B                                                         | ZNF33B  |
| inhibitor of growth family, member 2                                            | ING2    |
| basic helix-loop-helix family, member e41                                       | BHLHE41 |

| phosphoenolpyruvate carboxykinase 2 (mitochondrial)                           | PCK2      |
|-------------------------------------------------------------------------------|-----------|
| PDX1 C-terminal inhibiting factor 1                                           | PCIF1     |
| tetraspanin 5                                                                 | TSPAN5    |
| ADP-ribosylation factor 3                                                     | ARF3      |
| glutamate decarboxylase 1 (brain, 67kDa)                                      | GAD1      |
| B9 protein domain 1                                                           | B9D1      |
| solute carrier family 25 (mitochondrial oxodicarboxylate carrier), member 21  | SLC25A21  |
| solute carrier family 1 (glutamate/neutral amino acid transporter), member 4  | SLC1A4    |
| solute carrier family 22 (organic cation/ergothioneine transporter), member 4 | SLC22A4   |
| stanniocalcin 2                                                               | STC2      |
| progesterone receptor                                                         | PGR       |
| BCL2-associated athanogene 2                                                  | BAG2      |
| chromosome 14 open reading frame 139                                          | C14orf139 |
| eukaryotic translation initiation factor 2B, subunit 3 gamma, 58kDa           | EIF2B3    |