
Additional File 1:
Algorithm Description

1 Overview

The hemozoin detection algorithm is based on a) detection of radial symme-
try, and b) clustering in HSV color space. This document gives details of
the algorithm. Sub-sections include Masking, Radial Symmetry, Color, and
Classifier Structure. Figure 1 shows a schematic of the algorithm.

Figure 1: Schematic of diagnosis system. The pre-processed thumbnail is analysed
on two parallel tracks, radial symmetry and color. The two results combine to give
a classification.
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2 Masking

Each object is masked by applying an adaptive threshold to its grayscale
DF 50x thumbnail im. This threshold includes a component proportional
to the difference between each image’s background level back(im) (e.g. the
median pixel value of the “empty”, or darkest, sections) and a mid-range
value midV al (fixed for all images).

maskThresh = (1− α)back(im) + (α)midV al, (1)

where α is a fixed scalar in [0,1].
The goal of maskThresh is to capture the relevant signal given the variable

exposure levels. Because midV al is fixed (independent of sample), mask-
Thresh has an upper bound that prevents samples with very high contrast
(e.g. very bright spots) having such high thresholds that valuable but fainter
information is lost. Also, midV al is high enough to (ideally) ensure that cell
information due to hemoglobin is rejected, regardless of the exposure level of
the sample.

To mask an image, all pixels with grayscale value > maskThresh are
retained.The particular method of grayscaling is not critical. The resulting
masked image is then centered about the weighted centroid of the largest
connected piece. No rotation is applied.

3 Shape/Radial Symmetry

Hemozoin forms in crystals spread around a ring-shaped parasite. Thus the
masked images of hemozoin typically have irregular shape. In contrast, the
images of bubbles and dust particles tend to be radially symmetric. This is
the physical basis for using radial symmetry as a feature for classification.
There are various methods available to isolate this feature, including use of
angular variances, convexity statistics such as perimeter/area, and angular
Fourier transforms. The angular Fourier transform is discussed here. There
are three main steps: Polar Transform; Fourier Transform; and Combining
Terms.

3.0.1 Polar Transform

As a first step, each masked, grayscaled object is transformed to polar (angle,
radius) coordinates. The polar image has angle (0 to 359.5) along the x-axis,
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and radius along the y-axis. See Figure 2.

Figure 2: Masked Hemozoin (top) and Distractor (bottom) object images (left),
and their polar transforms (right). 0 degrees (the left hand column of the polar
image) corresponds to the ray pointing straight left from the center of the Cartesian
image.

This transform includes the following steps:
1. 16x upsampling via bilinear interpolation (e.g. Matlab’s interp2(image,2));
2. Standard discrete polar transform, in which each pixel x,y maps as

(x, y)⇒ (round(arctan(y/x)), round(
√
x2 + y2); (2)

3. 25x downsampling via non-zero median of 5x5 blocks, i.e. each 5x5
block maps to the median of its non-zero elements;

4. Bilinear interpolation of each column.
The final vertical interpolation (step 4) is necessary because a discrete

(i.e. pixelated) image does not map to the entire polar image space (e.g.
there are only 4 pixels at distance 1 from the center, but there are 360 pixels
corresponding to radius 1 in the polar image). Vertical interpolation (along
the radius axis) is used since the Fourier transform is taken horizontally
(along the angle axis).

3



The radial coordinate of a transformed pixel requires rounding, since the
radial distance to a pixel is rarely an integer. Due to interpolations and
rounding, the polar transform inevitably introduces noise. The purpose of
the up- and downsampling (steps 1 and 3) is to mitigate this noise and smooth
the resulting polar transform.

3.1 Radial Fourier Transform

The continuous Fourier transform for a function f(x) is defined as:

F (θ) =

∫
f(x)e−iθxdx, θ ∈ [0, 2π) (3)

The discrete Fourier transform (including the FFT) at k ∈ Z of a vector
f(n) of length N is defined as:

F (k) =
N−1∑
n=0

f(n)e−2πikn/N , k ∈ [0, N − 1] (4)

Given a polar image of an object, a standard FFT is applied along the
angle axis (i.e. along each row). This gives an image where each row consists
of the Fourier coefficients w.r.t. angle at a fixed radius, i.e. the angular
frequency content of the circle with that radius in the image. Since the
specific goal here is to detect radial symmetry (i.e. change w.r.t. angle), no
Fourier transform is taken along the radius axis (vertically).

In the continuous case, perfect radial symmetry gives pure DC Fourier
coefficients. In the discrete case, imperfect radial symmetry of discrete images
and noise intrinsic to the polar transform of a discrete image combine to
give small, roughly uniform, frequency content at all frequencies for even a
“perfect” discrete image circle. However, higher values at low frequencies
distinguishes less radially symmetric images.

3.2 Combining Terms

To condense the data, coefficients at each frequency are first summed over
all radii, giving a 1D vector fftCoeffs where each entry corresponds to an
angular frequency. Then the cumulative sum,

cumulSum(n) =

∑n
i=1 fftCoeffs(i)∑end
j=0 fftCoeffs(j)

, (5)

4



gives a measure of the proportion of frequency content at or below the n’th
frequency. The DC component is included in the denominator, but not in
the numerator. In the continuous case, perfect radial symmetry would thus
give cumulSum ≡ 0 (since angular frequency content is pure DC). In the
discrete case, a flatter curve and the small values of cumulSum correspond
to radially symmetric images. See Figure 3.

Because it emphasizes DC and low frequencies, this method gives better
discrimination of radial symmetry than simply using the variances of the
pixels at each radius, which is equivalent (by Parseval’s theorem) to using
the full squared sums of the Fourier coefficients of the mean-subtracted pixels
at each radius. Also, it allows use of interior pixel information, unlike the
statistic perimeter/area, which assumes a binary image.

Figure 3: Cumulative sums from the radial FFT. The red band shows the median
+/- σ for the cumulative sums of hemozoin objects. The blue band shows the
median +/- σ for the cumulative sums of non-hemozoin objects. Objects with
near-perfect radial symmetry have low, flat curves. Objects are thresholded by
taking a vertical slice through the graph at n = 10. FTthresh is applied to these
values.

Objects are classified using a simple threshold on the objects’ cumulSums
at some fixed frequency, say n = 10. Objects with cumulSum(n) < FTthresh
are classed as a distractor. For example, in Figure 3, a threshold = 0.1 with
n = 10 would cull the bottom tranche (i.e. over half) of negatives as well
as 3 positives. FTthresh = 0.16 would cull the vast majority of negatives
as well as 6 positives. FTthresh is determined by requiring some minimum
sensitivity over a training set (discussed in “Tuning The Classifier” below).
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4 Color

The crystal hemozoin has particular light-scattering properties. Roughly
speaking, hemozoin scatters blue light [3], while objects such as bubbles and
dust scatter more uniformly white light. This is the basis for using color as
a feature.

To create color-based features, the masked full-color RGB dark field
thumbnail is converted to Hue-Saturation-Intensity (Value) coordinates. Note
that here “saturation” means “purity of color”, not saturation of pixels due
to too much light. For clarity we refer to Hue-Purity-Intensity. “Hue” refers
to which color; “Intensity” is similar to grayscale value. All values are on [0,
1]. On the Hue axis, 0 = red, 0.3-0.4 = green, and 0.6-0.7 = blue. A pure
grayscale pixel (i.e. one with equal values for R, G and B) has Purity = 0
and Hue = 0.

For each object, two statistics are found using the masked pixels: the
mean of Hue values (meanHue) and the mean of Purity values (meanPurity).
These statistics use only the non-saturated masked pixels (i.e. pixel’s RGB
6= [1,1,1]), which implies Hue and Purity 6= 0.

To classify objects using color, meanHue and meanPurity are first scatter-
plotted against each other. Second, the hemozoin objects are clustered using,
for example, Expectation-Maximization (E-M, [1]) in the event of two clus-
ters; or E-M (trivially) or principal component analysis (PCA) in the case of
one cluster. This gives, for each cluster, a center and a Mahalanobis metric
to measure distance from this center (where 1 mahalanobis unit = 1 standard
deviation in the Euclidean metric [2]).

Classification using the color scatter-plot is by simple threshold: Let
MahDist be the Mahalanobis distance of the object’s color coordinates from
the centroid of the closest hemozoin cluster. Objects with MahDist > MDthresh
are classed as distractors.

4.1 Types of Hemozoin Objects in Color Space

This section discusses why objects from the saturated (over-exposed) slide
were removed from the dataset. Basically, saturating one or more colors in
a pixel changes the pixel’s clustering in color space.

The original dataset contains 72 hemozoin objects and 946 distractor ob-
jects. The hemozoin objects correspond to 6 gametocytes; 1 early ring (0-6
hours); and 64 mid-late rings (> 6 hours), trophozoites and schizonts. 18
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of the mid-late ring hemozoin objects come from one sample with an espe-
cially high exposure level. As a result, these 18 hemozoin objects images are
saturated, i.e. many pixels have values = (1,1,1). The rest of the hemozoin
objects are not saturated.

Figure 4: All Objects in Color Space: x-axis = Hue of object, y-axis = color Purity
of object. Blue = distractors (positive samples), Green = distractors (negative
samples), Red (+) = hemozoin from over-exposed images, Red (*) = hemozoin
from non-saturated images, Red (o) = gametocytes. Note that there are two
natural clusters of hemozoin objects. The lower left cluster consists of saturated
(over-exposed) hemozoin objects and gametocytes.
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When all these objects are mapped into Color space, the hemozoin objects
form two distinct clusters (see Figure 4). The top right cluster consists of
objects with blue color and high purity.These are precisely the non-saturated
(and non-gametocyte) hemozoin objects, i.e. objects from samples where the
exposure levels were low enough that the pixels of the objects did not start
saturating (RGB values did not reach 1). These objects cluster tightly and
are readily separated from distractor objects in Color space. The lower left
cluster consists of precisely two types of hemozoin objects: saturated objects
from the one slide that had very high exposure level, and gametocytes.

First consider the saturated objects: When an RGB pixel saturates its
blue (B) value, its hue and purity decrease (assuming R < G). For example, a
pixel with RGB values = (0.28, 0.448, 0.7) is strongly blue (Hue = 0.6, Purity
= 0.6). As the pixel saturates, the RGB values become (0.7, 1, 1) since pixel
value cannot exceed 1. This is equivalent to Hue = 0.5, Purity = 0.3. Thus,
saturating the pixels of an object in the top right cluster moves it down and
to the left, into the second cluster. If the imaging protocol is adjusted to
avoid over-exposure and saturated pixels, most of the objects in the lower
left hemozoin cluster disappear. Saturation of distractor objects does not
cause the opposite problem, because distractor object Hue and Purity values
are also shifted down and left by pixel saturation.

Next consider the gametocytes. These contain a great deal of hemozoin.
They also display a large range of color, perhaps because the crystals are in
a wide range of orientations, and hemozoin crystals viewed end-on scatter
other colors than blue [3]. Gametocytes are very distinctive, and can be
readily detected in various ways. However, the meanHue statistic used by
the algorithm fails, since it assumes roughly uniform color.

We assume that gametocytes can be identified with a dedicated algo-
rithm (for example, one can combine the first detail of a wavelet analysis of
pixel hue with the histograms of pixel hue in an object). Similarly, we as-
sume that saturated hemozoin objects can be avoided with modified device
protocols (i.e. limiting exposure times). We therefore remove both these cat-
egories from the dataset. The resulting dataset consists of 51 non-saturated
hemozoin objects from mid-late rings, trophozoites and schizonts, and 923
distractor objects. For this dataset, the hemozoin objects form one distinct
cluster in Color space (see Figure 5, left hand plot) because there are no
saturated objects or gametocytes.
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5 Classifier Structure

The classifier has two stages. In the first, the radial FFT threshold is applied
to the test object. If the object is not rejected as a distractor, then in the
second stage the Color threshold is applied.

(FFTstage == Distractor) || (ColorStage == Distractor) ⇒
class = Distractor.

(6)

The effect of the AND structure is that objects in the top right of Figure
5 (right hand plot) are labeled as ‘positive’.

Figure 5: Left hand plot: Color Space plot of modified dataset, i.e. no saturated
hemozoin or gametocytes. x-axis = Hue, y-axis = color Purity. Blue = distractors
(positive samples). Green = distractors (negative samples). Red = hemozoin.
Note the clear hemozoin cluster. Right hand plot: color Purity vs radial symmetry.
x-axis = measure of radial symmetry, high being radial asymmetric. y-axis =
color Purity, identical to the y-axis of left hand plot. Red = hemozoin, blue =
distractors (positive objects). The few distractor objects with high color Purity
have low radial asymmetry. AND structure on the two features thus gives high
classification accuracy.

5.1 Setting Thresholds

The two thresholds are set by specifying two desired sensitivities, Desired
FFT Sensitivity, and Desired Overall Sensitivity, then applying the classifier
to the training set of objects.
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First, the FFT threshold is set to be as high as possible while still ensuring
that the sensitivity of the FFT stage, when applied to the training set, is
greater than the Desired FFT Sensitivity :

FTthresh = max{all thresholds that give sensitivity ≥
Desired FFT Sensitivity on training set}

(7)

This ensures that the FFT specificity is as high as possible given the
tuning constraint Desired FFT Sensitivity.

Second, the Color threshold is determined using those training objects
that were classed as positive by the FFT stage. The Color threshold is set
as low as possible while still ensuring that the algorithm’s overall sensitivity
≥ Desired Overall Sensitivity :

colorThresh = min {all thresholds that give sensitivity ≥
Desired Overall Sensitivity on training set}

(8)

This ensures that the overall specificity is as high as possible given the
tuning constraint Desired Overall Sensitivity. In general, high tuning con-
straints give a classifier with high sensitivity and lower specificity. Low tuning
constraints give high specificity and lower sensitivity.
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