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More Details in the EM Algorithm

The EM algorithm is an iterative procedure to find the parameter value @ that max-

imizes the likelihood function Z(@|u). The observed data likelihood function is
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The complete data likelihood function is
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1. The E step:
The E step is to evaluate the expectation of the complete data log-likelihood
with respect to the conditional distribution of the hidden states S, given the
observation u, and assuming the parameter vector 0 is equal to O(m), the value
of 6 determined in iteration m of the algorithm: Eg,, oo (¢(6]u, s)), where £ is
an abbreviation for log .Z.

The expectation with respect to the conditional probability of the hidden states,
th

given the observations w and the parameters 8™ obtained from the m™ iter-



ation is
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where Py (w) = P(S,, = k|u,8™), Py(w) = P(Sy = k, Spp1 = l|u, 8™) at the
th

iteration, and the equality following (3) can be demonstrated as follows.

First, note that expression (1) reduces to
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We omit the superscript (m) here for simplicity. Also we omit (m) through the
end of the E-step description. But the probabilities that appear here do depend

on the current @ value and change with iterations.



Next, (2) may be simplified as
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Finally, expression (3) may be written as
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The numeric values of Py(w) = W and Py(w) = P(S”:];;f;”‘;:l’u‘e)

can be evaluated using the forward-backward algorithm, which was introduced
by Rabiner and Juang (1986). The forward probability fi(w) is defined as
the probability of having state k£ at window w, and having the observations
{uq,...,u,} from window 1 to window w, given the parameter 0, i.e., fy(w) =
P(uy,...,uy, Sy = k|@). The backward probability bi(w) is defined as the
probability of having the observations {1, ..., uw} from window w + 1 to
window W, given the state k at window w, the observations from window
1 to window w, and the parameter 0, i.e., by(w) = P(tyi1,...,uw|Sy =
k,uy,..., Uy, 0). The forward and backward probabilities can be obtained us-
ing recursions: fi,(1) = mP(uy|Sy = k,0), bp(W) = 1, fu(w) = 1, filw —
Dag(w—1)P(wy|Sw = k,8) forw = 2,..., W, and b (w) = 31, a(w) P(wps1|Swi1 =
Lo (w+1) forw=W—-1,... 1.



Consequently,
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2. The M step:
The M step of EM algorithm is to find the value of @ that makes Eg,,, gom (£(0]u, s))
obtain the maximum. This maximizing value is the updated parameter e(m+1)

for the (m + 1)th iteration.
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Equating to zero the derivative of Eg,, oom (£(0|u, s)) with respect to py yields
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Letting fo;f P’Z—:Zw) = h, k=1,...,4, we find the value of h; that maximizes
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for each k with p initially fixed at its value from the previous EM iteration (p™).
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Then a new p value can be obtained by py(w) = Eﬂ:lh—f’”(m, k,l=1...,4,
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I # k. Now, an updated value of p can be obtained by directly maximizing

Go(p, p) + G3(p, p) with respect to p, using the new p value.

After obtaining a pair of values of p and p that maximize Gs(p, p) +Gs(p, p), we
estimate the values for «, 8, ¢ and v by maximizing G4. EM iteration continues
until all parameter values getting converge, at which point we obtain an updated

") value.

Derivation for Equation (4)

Here we provide a detailed derivation for equation (4). Conditional on the hidden
copy number state for window w, the joint distribution for the target and the reference

read counts at window w is
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According to (3),
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The last integral is a integral of a Gamma distribution with parameters ull + 4l + o

and vgjco + 14 [ so is equal to 1. Then we have
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which is equation (4).



