# Additional file 1: Appendix 1

## More Details in the EM Algorithm

The EM algorithm is an iterative procedure to find the parameter value  $\theta$  that maximizes the likelihood function  $\mathcal{L}(\theta|u)$ . The observed data likelihood function is

$$\mathscr{L}_{\text{(obs)}} = \mathscr{L}(\boldsymbol{\theta}|\boldsymbol{u}) = \sum_{\boldsymbol{s}} \pi_{s_1} \prod_{w=1}^{W-1} a_{s_w s_{w+1}}(w) \prod_{w=1}^{W} P(\boldsymbol{u}_w | \boldsymbol{s}, \alpha, \beta, c_0, \boldsymbol{q}, \boldsymbol{v}).$$

The complete data likelihood function is

$$\mathcal{L}_{\left(\text{comp}\right)} = \mathcal{L}(\boldsymbol{\theta}|\boldsymbol{u}, \boldsymbol{s}) = \pi_{s_1} \prod_{w=1}^{W-1} a_{s_w s_{w+1}}(w) \prod_{w=1}^{W} P(\boldsymbol{u}_w | \boldsymbol{s}, \alpha, \beta, c_0, \boldsymbol{q}, \boldsymbol{v}).$$

#### 1. The E step:

The E step is to evaluate the expectation of the complete data log-likelihood with respect to the conditional distribution of the hidden states S, given the observation u, and assuming the parameter vector  $\theta$  is equal to  $\theta^{(m)}$ , the value of  $\theta$  determined in iteration m of the algorithm:  $E_{S|u,\theta^{(m)}}(\ell(\theta|u,s))$ , where  $\ell$  is an abbreviation for  $\log \mathcal{L}$ .

The expectation with respect to the conditional probability of the hidden states, given the observations u and the parameters  $\theta^{(m)}$  obtained from the  $m^{\text{th}}$  iter-

ation is

$$E_{\boldsymbol{S}|\boldsymbol{u},\boldsymbol{\theta}^{(m)}}(\ell(\boldsymbol{\theta}|\boldsymbol{u},\boldsymbol{s}))$$

$$= \sum_{s} P(S = s | \boldsymbol{u}, \boldsymbol{\theta}^{(m)}) \left[ \log \pi_{s_1} + \sum_{w=1}^{W-1} \log \left( a_{s_w s_{w+1}}(w) \right) + \sum_{w=1}^{W} \log P(\boldsymbol{u}_w | \boldsymbol{s}, \alpha, \beta, c_0, \boldsymbol{q}, \boldsymbol{v}) \right]$$

$$= \sum_{s} P(\mathbf{S} = \mathbf{s} | \mathbf{u}, \boldsymbol{\theta}^{(m)}) \log \pi_{s_1}$$
 (1)

$$+\sum_{\mathbf{s}} P(\mathbf{S} = \mathbf{s} | \mathbf{u}, \boldsymbol{\theta}^{(m)}) \sum_{w=1}^{W-1} \log \left( a_{s_w s_{w+1}}(w) \right)$$
(2)

$$+\sum_{\mathbf{s}} P(\mathbf{S} = \mathbf{s} | \mathbf{u}, \boldsymbol{\theta}^{(m)}) \sum_{w=1}^{W} \log P(\mathbf{u}_w | \mathbf{s}, \alpha, \beta, c_0, \mathbf{q}, \mathbf{v})$$
(3)

$$= \sum_{k=1}^{4} P_k(1) \log(\pi_k) + \sum_{w=1}^{W-1} \sum_{k=1}^{4} \sum_{l=1}^{4} P_{kl}(w) \log(a_{kl}(w))$$

$$+\sum_{w=1}^{W}\sum_{k=1}^{4}P_k(w)\log P(\boldsymbol{u}_w|\boldsymbol{S}_w=k,\alpha,\beta,c_0,\boldsymbol{q},\boldsymbol{v}),$$

where  $P_k(w) = P(S_w = k | \boldsymbol{u}, \boldsymbol{\theta}^{(m)}), P_{kl}(w) = P(S_w = k, S_{w+1} = l | \boldsymbol{u}, \boldsymbol{\theta}^{(m)})$  at the  $m^{\text{th}}$  iteration, and the equality following (3) can be demonstrated as follows.

First, note that expression (1) reduces to

$$\sum_{s} \sum_{k=1}^{4} P(\mathbf{S} = s | \mathbf{u}, \boldsymbol{\theta}) \mathbb{I}_{\{S_1 = k\}} \log(\pi_k)$$

$$= \sum_{k=1}^{4} \sum_{s} P(\mathbf{S} = s | \mathbf{u}, \boldsymbol{\theta}) \mathbb{I}_{\{S_1 = k\}} \log(\pi_k)$$

$$= \sum_{k=1}^{4} P_k(1) \log(\pi_k),$$

We omit the superscript (m) here for simplicity. Also we omit (m) through the end of the E-step description. But the probabilities that appear here do depend on the current  $\theta$  value and change with iterations.

Next, (2) may be simplified as

$$\sum_{s} P(\mathbf{S} = s | \mathbf{u}, \boldsymbol{\theta}) \sum_{w=1}^{W-1} \log \left( a_{s_{w}s_{w+1}}(w) \right)$$

$$= \sum_{s} P(\mathbf{S} = s | \mathbf{u}, \boldsymbol{\theta}) \sum_{w=1}^{W-1} \sum_{k=1}^{4} \sum_{l=1}^{4} \mathbb{I}_{\{S_{w} = k\}} \mathbb{I}_{\{S_{w+1} = l\}} \log(a_{kl}(w))$$

$$= \sum_{w=1}^{W-1} \sum_{k=1}^{4} \sum_{l=1}^{4} \left[ \sum_{s} P(\mathbf{S} = s | \mathbf{u}, \boldsymbol{\theta}) \mathbb{I}_{\{S_{w} = k\}} \mathbb{I}_{\{S_{w+1} = l\}} \right] \log(a_{kl}(w))$$

$$= \sum_{w=1}^{W-1} \sum_{k=1}^{4} \sum_{l=1}^{4} P_{kl}(w) \log(a_{kl}(w)).$$

Finally, expression (3) may be written as

$$\sum_{s} P(\boldsymbol{S} = \boldsymbol{s} | \boldsymbol{u}, \boldsymbol{\theta}) \sum_{w=1}^{W} \log P(\boldsymbol{u}_{w} | \boldsymbol{s}, \alpha, \beta, c_{0}, \boldsymbol{q}, \boldsymbol{v})$$

$$= \sum_{w=1}^{W} \sum_{k=1}^{4} \sum_{s} P(\boldsymbol{S} = \boldsymbol{s} | \boldsymbol{u}, \boldsymbol{\theta}) \mathbb{I}_{\{S_{w} = k\}} \log P(\boldsymbol{u}_{w} | S_{w} = k, \alpha, \beta, c_{0}, \boldsymbol{q}, \boldsymbol{v})$$

$$= \sum_{w=1}^{W} \sum_{k=1}^{4} P_{k}(w) \log P(\boldsymbol{u}_{w} | S_{w} = k, \alpha, \beta, c_{0}, \boldsymbol{q}, \boldsymbol{v}).$$

The numeric values of  $P_k(w) = \frac{P(S_w = k, u | \boldsymbol{\theta})}{P(\boldsymbol{u} | \boldsymbol{\theta})}$  and  $P_{kl}(w) = \frac{P(S_w = k, S_{w+1} = l, u | \boldsymbol{\theta})}{P(\boldsymbol{u} | \boldsymbol{\theta})}$  can be evaluated using the forward-backward algorithm, which was introduced by Rabiner and Juang (1986). The forward probability  $f_k(w)$  is defined as the probability of having state k at window w, and having the observations  $\{\boldsymbol{u}_1, \ldots, \boldsymbol{u}_w\}$  from window 1 to window w, given the parameter  $\boldsymbol{\theta}$ , i.e.,  $f_k(w) = P(\boldsymbol{u}_1, \ldots, \boldsymbol{u}_w, S_w = k | \boldsymbol{\theta})$ . The backward probability  $b_k(w)$  is defined as the probability of having the observations  $\{\boldsymbol{u}_{w+1}, \ldots, \boldsymbol{u}_W\}$  from window w+1 to window w, given the state k at window w, the observations from window 1 to window w, and the parameter  $\boldsymbol{\theta}$ , i.e.,  $b_k(w) = P(\boldsymbol{u}_{w+1}, \ldots, \boldsymbol{u}_w | S_w = k, \boldsymbol{u}_1, \ldots, \boldsymbol{u}_w, \boldsymbol{\theta})$ . The forward and backward probabilities can be obtained using recursions:  $f_k(1) = \pi_k P(\boldsymbol{u}_1 | S_1 = k, \boldsymbol{\theta})$ ,  $b_k(W) = 1$ ,  $f_k(w) = \sum_{l=1}^4 f_l(w-1)a_{lk}(w-1)P(\boldsymbol{u}_w|S_w = k, \boldsymbol{\theta})$  for  $w = 2, \ldots, W$ , and  $b_k(w) = \sum_{l=1}^4 a_{kl}(w)P(\boldsymbol{u}_{w+1}|S_{w+1} = l, \boldsymbol{\theta})b_l(w+1)$  for  $w = W-1, \ldots, 1$ .

Consequently,

$$P(S_w = k, \boldsymbol{u}|\boldsymbol{\theta})$$

$$= P(\boldsymbol{u}_1, \dots, \boldsymbol{u}_W, S_w = k|\boldsymbol{\theta})$$

$$= P(\boldsymbol{u}_1, \dots, \boldsymbol{u}_w, S_w = k|\boldsymbol{\theta})P(\boldsymbol{u}_{w+1}, \dots, \boldsymbol{u}_W|S_w = k, \boldsymbol{u}_1, \dots, \boldsymbol{u}_w, \boldsymbol{\theta})$$

$$= f_k(w)b_k(w),$$

and

$$P(S_{w} = k, S_{w+1} = l, \mathbf{u} | \boldsymbol{\theta})$$

$$= P(\boldsymbol{u}_{1}, \dots, \boldsymbol{u}_{w}, S_{w} = k | \boldsymbol{\theta}) \cdot P(\boldsymbol{u}_{w+1}, S_{w+1} = l | S_{w} = k, \boldsymbol{u}_{1}, \dots, \boldsymbol{u}_{w}, \boldsymbol{\theta})$$

$$\cdot P(\boldsymbol{u}_{w+2}, \dots, \boldsymbol{u}_{W} | S_{w} = k, S_{w+1} = l, \boldsymbol{u}_{1}, \dots, \boldsymbol{u}_{w+1}, \boldsymbol{\theta})$$

$$= f_{k}(w)P(\boldsymbol{u}_{w+1}, S_{w+1} = l | S_{w} = k, \boldsymbol{\theta})b_{l}(w+1)$$

$$= f_{k}(w)a_{kl}(w)P(\boldsymbol{u}_{w+1} | S_{w+1} = l, \boldsymbol{\theta})b_{l}(w+1).$$

### 2. The M step:

The M step of EM algorithm is to find the value of  $\boldsymbol{\theta}$  that makes  $E_{\boldsymbol{S}|\boldsymbol{u},\boldsymbol{\theta}^{(m)}}(\ell(\boldsymbol{\theta}|\boldsymbol{u},\boldsymbol{s}))$  obtain the maximum. This maximizing value is the updated parameter  $\boldsymbol{\theta}^{(m+1)}$  for the  $(m+1)^{\text{th}}$  iteration.

$$E_{S|\mathbf{u},\boldsymbol{\theta}^{(m)}}(\ell(\boldsymbol{\theta}|\mathbf{u}, \mathbf{s}))$$

$$= \sum_{s} P(S|\mathbf{u}, \boldsymbol{\theta}) \Big[ \log \pi_{s_{1}} + \sum_{w=1}^{W-1} \log (a_{s_{w}s_{w+1}}(w)) + \sum_{w=1}^{W} \log P(\mathbf{u}_{w}|\mathbf{s}, \alpha, \beta, c_{0}, \mathbf{q}, \mathbf{v}) \Big]$$

$$= \sum_{k=1}^{4} P_{k}(1) \log(\pi_{k}) + \sum_{w=1}^{W-1} \sum_{k=1}^{4} \sum_{l=1}^{4} P_{kl}(w) \log(a_{kl}(w))$$

$$+ \sum_{w=1}^{W} \sum_{k=1}^{4} P_{k}(t) \log P(\mathbf{u}_{w}|S_{w} = k, \alpha, \beta, c_{0}, \mathbf{q}, \mathbf{v})$$

$$= \sum_{k=1}^{4} P_{k}(1) \log(\pi_{k}) + \sum_{w=1}^{W-1} \sum_{k=1}^{4} P_{kk}(w) \log \left(1 - \left(\sum_{l' \neq k} p_{kl'}\right) \left(1 - e^{-\rho d_{w}}\right)\right)$$

$$+ \sum_{w=1}^{W-1} \sum_{k=1}^{4} \sum_{l \neq k} P_{kl}(w) \log \left(p_{kl}\left(1 - e^{-\rho d_{w}}\right)\right)$$

$$+ \sum_{w=1}^{W} \sum_{k=1}^{4} P_{k}(w) \log P(\mathbf{u}_{w}|S_{w} = k, \alpha, \beta, c_{0}, \mathbf{q}, \mathbf{v})$$

$$\triangleq G_{1}(\pi_{k}) + G_{2}(\mathbf{p}, \rho) + G_{3}(\mathbf{p}, \rho) + G_{4}(\mathbf{s}, \alpha, \beta, c_{0}, \mathbf{q}, \mathbf{v}).$$

Equating to zero the derivative of  $E_{S|u,\theta^{(m)}}(\ell(\theta|u,s))$  with respect to  $p_{kl}$  yields

$$\frac{\partial G_2(\boldsymbol{p},\rho)}{\partial p_{kl}} + \frac{\partial G_3(\boldsymbol{p},\rho)}{\partial p_{kl}} \triangleq 0 \quad (k,l=1,\dots,4;l \neq k)$$

$$\Rightarrow \qquad \sum_{w=1}^{W-1} \frac{(1-e^{-\rho d_w})P_{kk}(w)}{1-(1-e^{-\rho d_w})\sum_{l\neq k}p_{kl}} = \sum_{w=1}^{W-1} \frac{P_{kl}(w)}{p_{kl}} \quad (k,l=1,\dots,4;l \neq k)$$

$$\Rightarrow \qquad \sum_{w=1}^{W-1} \frac{P_{k1}(w)}{p_{k1}} = \dots = \sum_{w=1}^{W-1} \frac{P_{k4}(w)}{p_{k4}} = \sum_{w=1}^{W-1} \frac{(1-e^{-\rho d_w})P_{kk}(w)}{1-(1-e^{-\rho d_w})\sum_{l\neq k}p_{kl}}$$

for  $k, l = 1, \ldots, 4$  and  $l \neq k$ .

Letting  $\sum_{w=1}^{W-1} \frac{P_{kl}(w)}{p_{kl}} = h_k$ ,  $k = 1, \ldots, 4$ , we find the value of  $h_k$  that maximizes

$$\sum_{w=1}^{W-1} P_{kk}(w) \log \left( 1 - \left( \frac{\sum_{l' \neq k} \sum_{w=1}^{W-1} P_{kl'}(w)}{h_k} \right) \left( 1 - e^{-\rho d_w} \right) \right) + \sum_{w=1}^{W-1} \sum_{l \neq k} P_{kl}(w) \log \left( \frac{\sum_{w=1}^{W-1} P_{kl}(w)}{h_k} \left( 1 - e^{-\rho d_w} \right) \right)$$

for each k with  $\rho$  initially fixed at its value from the previous EM iteration  $(\rho^{(m)})$ . Then a new  $\boldsymbol{p}$  value can be obtained by  $p_{kl}(w) = \frac{\sum_{w=1}^{W-1} P_{kl}(w)}{h_k}, \ k, l = 1 \dots, 4,$   $l \neq k$ . Now, an updated value of  $\rho$  can be obtained by directly maximizing  $G_2(\boldsymbol{p}, \rho) + G_3(\boldsymbol{p}, \rho)$  with respect to  $\rho$ , using the new  $\boldsymbol{p}$  value.

After obtaining a pair of values of  $\boldsymbol{p}$  and  $\rho$  that maximize  $G_2(\boldsymbol{p}, \rho) + G_3(\boldsymbol{p}, \rho)$ , we estimate the values for  $\alpha, \beta, \boldsymbol{q}$  and  $\boldsymbol{v}$  by maximizing  $G_4$ . EM iteration continues until all parameter values getting converge, at which point we obtain an updated  $\boldsymbol{\theta}^{(m+1)}$  value.

# Derivation for Equation (4)

Here we provide a detailed derivation for equation (4). Conditional on the hidden copy number state for window w, the joint distribution for the target and the reference read counts at window w is

$$\begin{split} P^{(*)}(U_w^{[t]} &= u_w^{[t]}, U_w^{[r]} = u_w^{[r]} | S_w = k, \boldsymbol{\theta}) \\ &= \int_0^\infty P(U_w^{[t]} = u_w^{[t]}, U_w^{[r]} = u_w^{[r]}, \lambda_w^{[r]} | S_w = k, \boldsymbol{\theta}) d\lambda_w^{[r]} \\ &= \int_0^\infty P(U_w^{[t]} = u_w^{[t]}, U_w^{[r]} = u_w^{[r]} | \lambda_w^{[r]}, S_w = k, \boldsymbol{\theta}) P(\lambda_w^{[r]} | S_w = k) d\lambda_w^{[r]} \\ &= \int_0^\infty P(U_w^{[t]} = u_w^{[t]} | \lambda_w^{[r]}, S_w = k, \boldsymbol{\theta}) P(U_w^{[r]} = u_w^{[r]} | \lambda_w^{[r]}, S_w = k, \boldsymbol{\theta}) P(\lambda_w^{[r]} | S_w = k) d\lambda_w^{[r]} \end{split}$$

According to (3),

$$U_w^{[t]}|(\lambda_w^{[r]}, S_w = k) \sim \sum_{j=1}^4 q_{kj} \operatorname{Poisson}(v_{kj}c_0\lambda_w^{[r]}),$$

we have

$$P(U_w^{[t]} = u_w^{[t]} | \lambda_w^{[r]}, S_w = k, \boldsymbol{\theta})$$

$$= \sum_{j=1}^4 q_{kj} \frac{(v_{kj} c_0 \lambda_w^{[r]})^{u_w^{[t]}} e^{-v_{kj} c_0 \lambda_w^{[r]}}}{u_w^{[t]}!}$$

So

$$\begin{split} P^{(*)}(U_w^{[t]} &= u_w^{[t]}, U_w^{[r]} = u_w^{[r]} | S_w = k, \pmb{\theta}) \\ &= \sum_{j=1}^4 q_{kj} \int_0^\infty \frac{(v_{kj} c_0 \lambda_w^{[r]})^{u_w^{[t]}} e^{-v_{kj} c_0 \lambda_w^{[r]}}}{u_w^{[t]}!} \cdot \frac{(\lambda_w^{[r]})^{u_w^{[r]}} e^{-\lambda_w^{[r]}}}{u_w^{[r]}!} \cdot \frac{\beta^\alpha (\lambda_w^{[r]})^{\alpha - 1} e^{-\beta \lambda_w^{[r]}}}{\Gamma(\alpha)} d\lambda_w^{[r]} \\ &= \sum_j q_{kj} \frac{\Gamma(u_w^{[t]} + u_w^{[r]} + \alpha)(v_{kj} c_0)^{u_w^{[t]}} \beta^\alpha}{\Gamma(\alpha) u_w^{[r]}! u_w^{[t]}! (v_{kj} c_0 + 1 + \beta)^{u_w^{[t]} + u_w^{[r]} + \alpha}} \\ &\int_0^\infty \frac{(v_{kj} c_0 + 1 + \beta)^{u_w^{[t]} + u_w^{[r]} + \alpha} (\lambda_w^{[r]})^{u_w^{[r]} + u_w^{[t]} + \alpha - 1} e^{-(v_{kj} c_0 + \beta + 1)} \lambda_w^{[r]}}{\Gamma(u_w^{[t]} + u_w^{[r]} + \alpha)} d\lambda_w^{[r]} \end{split}$$

The last integral is a integral of a Gamma distribution with parameters  $u_w^{[r]} + u_w^{[t]} + \alpha$  and  $v_{kj}c_0 + 1 + \beta$  so is equal to 1. Then we have

$$P^{(*)}(U_w^{[t]} = u_w^{[t]}, U_w^{[r]} = u_w^{[r]} | S_w = k, \boldsymbol{\theta})$$

$$= \sum_{j} q_{kj} \frac{\Gamma(u_w^{[t]} + u_w^{[r]} + \alpha)(v_{kj}c_0)^{u_w^{[t]}} \beta^{\alpha}}{\Gamma(\alpha)u_w^{[r]}!u_w^{[t]}!(v_{kj}c_0 + 1 + \beta)^{u_w^{[t]} + u_w^{[r]} + \alpha}},$$

which is equation (4).