Fig. S1. (A) A schematic of the extracellular domain (EC1-5) of Dsg2 and Dsc2a fused to Fc protein, and tagged with Cy5 for visualization. (B) Coomassie Blue-stained SDS-PAGE of Dsg2Fc and Dsc2aFc with expected molecular masses of ~120 kD. A lane between the samples has been deleted for simplification purposes (dashed line) (C) Cy3 labeled collagen IV was printed onto a silanized coverslip using PDMS stamps, and Cy5 labeled Dsg2Fc or Dsc2aFc was then backfilled onto the non-collagen IV coated areas, making a dual-striped surface where a single MDCK cells can spread onto multiple stripes (D) Immunofluorescence staining of desmoplakin (DP I/II) between MDCK cells. (E) Epifluorescence images of Cy5 tagged Dsg2Fc or Dsc2aFc printed on the surface, corresponding DP I/II TIRF images from Fig.1 and a merged image of the two. Scale bar is 10 μm.

Fig. S2. Histograms showing the distribution of rupture forces between desmosomal cadherins for each loading rate. As the loading rate is increased a larger rupture force is necessary to break the bonds. This relationship is seen in all conditions above nonspecific binding (A) Dsc2a-Dsc2a, (B) Dsc2a-Dsg2 with Ca²⁺ and Dsc2a-Dsg2 in the presence of the Ca²⁺ chelator EGTA.

Fig. S3. Still images from movies 5-7 showing localization of the integrin focal adhesions; visualized with VinGFP. Focal adhesion clusters are localized over collagen IV stripes, and excluded from stripes containing: (A) Dsg2Fc, (B) Dsc2aFc or (C) Dsg2Fc+Dsc2aFc. Scale bar is 10 μm.

SUPPLEMENTAL FIGURE 1

C.

Collagen IV Dsg2Fc+Dsc2aFc

D.

SUPPLEMENTAL FIGURE 2

Dsc2a-Dsc2a w/ Ca++

Β.

Dsc2a-Dsg2 w/ Ca++

Dsc2a-Dsg2 w/ EGTA

SUPPLEMENTAL FIGURE 3

Movie 1. Membrane mobility of Dsg2W2A_GFP. FRAP movie of MDCK cells transfected with GFP-tagged proteins Dsg2W2A_GFP. Images were analyzed by time-lapse epifluorescence microscopy on a custom-built inverted microscope (Intelligent Imaging Innovations (3i); Zeiss Axiovert 200M). Frames were taken every 10 s for 10 min. An arrow marks the spot where the photobleaching took place.

Movie 2. Membrane mobility of Dsg2_GFP. FRAP movie of MDCK cells transfected with GFP-tagged proteins Dsg2_GFP. Images were analyzed by time-lapse epifluorescence microscopy on a custom-built inverted microscope (Intelligent Imaging Innovations (3i); Zeiss Axiovert 200M). Frames were taken every 10 s for 10 min. An arrow marks the spot where the photobleaching took place.

Movie 3. Membrane mobility of Dsc2aW2A_GFP. FRAP movie of MDCK cells transfected with GFP-tagged proteins Dsc2aW2A_GFP. Images were analyzed by time-lapse epifluorescence microscopy on a custom-built inverted microscope (Intelligent Imaging Innovations (3i); Zeiss Axiovert 200M). Frames were taken every 10 s for 10 min. An arrow marks the spot where the photobleaching took place.

Movie 4. Membrane mobility of Dsc2a_GFP. FRAP movie of MDCK cells transfected with GFP-tagged proteins Dsc2a_GFP. Images were analyzed by time-lapse epifluorescence microscopy on a custom-built inverted microscope (Intelligent Imaging Innovations (3i); Zeiss Axiovert 200M). Frames were taken every 10 s for 10 min. An arrow marks the spot where the photobleaching took place.

Movie 5. MDCK migration on dual-patterned substrates of collagenIV and Dsg2Fc+Dsc2aFc. Single MDCK cells stably expressing VinGFP migrating on surfaces functionalized with collagenIV-Cy3 stripes (red) and backfilled with Dsg2Fc+Dsc2aFc. Images were analyzed by time-lapse epifluorescence microscopy on a custom-built inverted microscope (Intelligent Imaging Innovations (3i); Zeiss Axiovert 200M) with a 40X objective. Frames were taken every 10 min for 6-10 hrs. Still of the first frame of each movie are shown in supplemental figure 3.

Movie 6. MDCK migration on dual-patterned substrates of collagen IV and Dsg2Fc. Single MDCK cells stably expressing VinGFP migrating on surfaces functionalized with collagenIV-Cy3 stripes (red) and backfilled with Dsg2Fc. Images were analyzed by time-lapse epifluorescence microscopy on a custom-built inverted microscope (Intelligent Imaging Innovations (3i); Zeiss Axiovert 200M) with a 40x objective. Frames were taken every 10 min for 6-10 hrs. Still of the first frame of each movie are shown in supplemental figure 3.

Movie 7. MDCK migration on dual-patterned substrates of collagen IV and Dsc2aFc. Single MDCK cells stably expressing VinGFP migrating on surfaces functionalized with collagenIV-Cy3 stripes (red) and backfilled with Dsc2aFc. Images were analyzed by time-lapse epifluorescence microscopy on a custom-built inverted microscope (Intelligent Imaging Innovations (3i); Zeiss Axiovert 200M) with a 40X objective. Frames were taken every 10 min for 6-10 hrs. Still of the first frame of each movie are shown in supplemental figure 3.