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SUPPLEMENTAL METHODS

Simulating self-mate-pair frequencies for contiguous sequence domains

To identify a suitable self-mate-pair frequency threshold for determining whether
read clusters are physically distant in the genome, we simulated paired reads drawn
from a contiguous domain of length L surrounded by a 200 kb buffer of “other”

sequence on either side. The parameters for this simulation include:

1. R, the mean high-quality read length in HuRef (~675 bp on reads with =75
continuous bases with phred>20)

2. C, average high-quality base coverage in HuRef, where ~6.3x = (~29 million
paired/unpaired reads) * (~675 mean high-quality bp/read) / (~3.1 billion bp
in the haploid genome)

3. M, proportion of high-quality reads with high-quality mate pairs (0.588)

4. D, the categorical distribution of mate pair insert lengths used in the HuRef
genome (Levy et al. 2007)[1].

The simulation draws N reads so that the average coverage by paired reads in the
simulated region will equal the average coverage by paired reads in the genome
(N=M* (L+200000) * C / R). Each read’s start position is drawn uniformly along
the length of the simulated region. An insert type is chosen according to the
categorical distribution D, and insert size is determined according to a normal
distribution with the insert type’s mean size and standard deviation. If both the
read and the mate pair occur within the domain of length L, they are each
considered “self-paired reads.” If a read but not its mate pair occurs within the
domain, it is labeled as an “other-paired read.” We calculate the final self-mate-pair
(self-MP) frequency as the number of self-MP reads/(number of self-MP reads +
number of other-paired reads). The simulation was performed for L with a range of
10,000 to 500,000 bp (in increments of 10,000 bp). For each value of L, we ran 1,000

iterations and reported the distribution of self-MP frequencies across these



iterations. As shown below, a self-mate-pair threshold of 0.8 eliminates >94% of

simulated regions 100kb or shorter.
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Results of self-mate-pair frequency simulations. Above is an illustration of the simulated region
from which paired reads are drawn according the mate pair types in the HuRef genome. Below are
violin plots representing the distribution of self-MP frequencies calculated for each domain size over
1,000 iterations of the simulation. The overlaid table shows the proportion of iterations of each

domain size that pass a self-MP frequency threshold of 0.8.

Spectral clustering of feature vectors

In order to perform clustering of the high-dimensional HSat2,3 feature vector data,
without a priori information on the shape and number of clusters, we use a
hierarchical spectral clustering technique that also accounts for mate pair
relationships, a natural extension of the standard spectral clustering technique (see

e.g. [2-4]). The basic idea is to construct a graph whose vertices are the data points



(in this case, each point represents a feature vector for one HSat2,3 read) and whose
edges connect neighboring data points, with an edge weight representing the
similarity of the data points it connects (measured as the Euclidean distance
between those vertices). The connectivity of such a graph can be used to define
clusters in the data, i.e. regions that are highly intra-connected but with sparse
inter-connections. The notion of conductance is one way to quantify this inter vs.
intra connectivity; a subset of a graph with small conductance will have highly
interconnected vertices but a relatively small number of edges exiting the subset.
While finding subsets of low conductance is NP-hard, the problem may be relaxed
into a much easier problem, that of computing a few eigenvectors of a Laplacian (or,
alternatively, a random walk) operator on the graph. Such operators capture the
properties of diffusions on the graph, which is intuitively and formally related to the
ideas above: if diffusion of heat is started in a cluster with small conductance, it will
take a long time before a significant portion of heat escapes the cluster, since there
are so few edges connecting the cluster to the rest of the graph. A more formal

description follows.
1.1. Basic definitions. We will need the following definitions (e.g., [5]) :

Definition 1.1. Let (G,W) be a weighted, undirected, connected graph in which G
represents the vertices and W represents the edge weights. The degree matrix is

the diagonal matrix defined by D;; = }; Wij. The random walk is the matrix

1 1
P:= D™'W. The normalized Laplacian is the matrix L := I — D z2WD ..

In the definition above we are of course assuming that D;; > 0 for all i’s, i.e. that
there are no isolated vertices; if this is not the case we simply remove the isolated
vertices. Also, we shall assume in what follows that the graph is connected, for

otherwise the analysis below can be performed on each connected component.

Definition 1.2. Let us define the conductance of a subset S of a weighted graph (G,
W) as



ZxES,yES W(X, y) _ ZxES,yeS W(X, y)
min {ZxES,yES W(X, y)' erS,yES W(X, y)} min (UOI(S)' UO[(SC) ’

B3, (S) =

where vol(S) = X, ,es W(x, )

Note that ¢,,,(.5) is small if the total weight of the edges in (G, W) that go across S

and S° is small compared to the total weight of the edges connecting points within S

(or S¢, whichever is smaller).

While finding a set of vertices S with minimum conductance is NP-hard, there exist
approximation algorithms; here we resort to a simple and commonly used algorithm,
although there exist algorithms with better guarantees. Our first objective will be to
partition the graph into two parts, each having small conductance. To do so, we let
L, =4p,fori=01,..and0 =1y < 4y <-+ < A; <--bethe
eigendecomposition of L. Note that 4, < A; since we assumed that G is connected.
We think of ¢,, also called the Fiedler vector, as a function on G, since it is a vector of
length equal to the number of vertices of G; it is well known that the two sets

S, = {x EG: @, (x) 2 O} and S_ = {x EG: o, (x) < 0} are connected, and
have small conductance ¢, @_. We split G into S, and S_, and then we repeat the
procedure on the corresponding induced subgraphs, in a hierarchical fashion,

stopping when a split does not produce subsets of small enough conductance.
1.2. Application to hierarchical clustering of 5-mer feature vectors.

Definition 1.3. Let X represent the D x n matrix whose (i, j)-th entry is the
frequency of the i-th 5-mer in the j-th read. We normalize X by standardizing the

rows to have mean 0 and standard deviation 1.

A weighted graph (G, W,,,,) is constructed from X as follows: the vertices of G are the

columns of X, and the edge connecting vertices xi and xj is assigned weight

2
||X,'—Xj||

(Wsim)ij = exp (— ) if x; is among the 50 closest points to x; (otherwise no

Ei€;

edge is created), and where ||x - y|| is Euclidean distance (in st) and €; is the



distance between x; and its 10-th nearest neighbor (see e.g. [4]). Since this
construction leads to a non-symmetric weight matrix W;,, (as x; may be among the

50 nearest neighbors of x; without x; being among the 50 nearest neighbors of x)),

(W/sim + I/I/simT)'

N =

we symmetrize W;, and define the final weights to be W;,, :=

In addition to this similarity-driven graph, we have a second graph (G, W,,)
modeling exogenous information not captured by similarities. This graph may be
much sparser than (G, W) if this information is given on a small subset of pairs of
vertices. In our case the edges in (G, W,,) represent paired read relationships, and
are assigned maximal weight (1). This mate pair information is critical for selecting
clusters that not only have different sequence patterns but also occupy physically
distinct regions of the genome. We combine the two graphs (G, Wy;,,) and (G, W,,)
into (G, W) by combining the similarity matrices linearly: W= Wj;,, + W,,.
However, our measure of conductance when evaluating each iterative split will be

entirely based on W,,,.

Our algorithm extends the standard recursive spectral bisection technique (e.g. [4-
6]) and proceeds as follows. We construct the normalized Laplacian matrix L on (G,

W) and compute the smallest 10 eigenvalues and eigenvectors of L : L, = 4,,, with
0=2,< 44 £ A, <+, where 4; >0 as the graph is connected. For each
eigenvector ., ..., ¢,, and for a grid of values of & in [min ¢,, maxe,], we consider
the cluster S;; = { i+ @(x) > 6} and its complement .Sj s, and compute the

corresponding conductance ¢,,, (S;;). We find the pair (/1,67) that minimizes
pen
¢y, (Si5)- The resulting S, 5. and S}, 5. are good clusters since they indicate that
pen

we found a cluster that is good not only with respect to similarity, since cuts based
on the first eigenvectors of L tend to lead to clusters with small conductance ¢,,, but
also with respect to the exogenous conductance measure based on paired read

information ¢, . We split the graph into S, 5. and S, 5. by severing the edges
pen

connecting these two subsets and repeat the splitting procedure on the

corresponding induced subgraphs, i.e. computing the normalized Laplacians on each



of the two subgraphs, and using the corresponding eigenfunctions to split each
cluster into two as above. We stop whenever the clusters have fewer vertices than a

threshold v or the conductance associated with a cut is smaller than a threshold

min»

(pmin'

A comparison of this spectral clustering approach with k-means clustering confirms
the advantage of our method for identifying irregularly shaped clusters with high
self-mate-pair frequencies, due to the fact that our method selects clusters with high
nearest-neighbor connectivity and explicitly accounts for mate pair connectivity

when making cluster divisions (see figure below).



Spectral clustering of combined graph k-means, k=2

HSat3A

0.985 0.989 0.781 0.245

HSat2A

0.832 0.979 0.492 0.553

Comparison of unsupervised clustering approaches. Shown above are PCA projections
illustrating the results of binary clustering of the HSat3A and HSat2A subgraphs, which both have
ring-like topologies, using both our method (which clusters based on graph connectivity and
explicitly accounts for mate pair information) and k-means. Below each plot are the self-mate-pair
frequencies that result from these divisions. As shown, in cases of irregular topology which are
common to our dataset, our clustering method outperforms k-means at identifying physically distinct

clusters.

1.3. Results on 5-mers. We set the parameters as follows: v,,;, = 1000, ¢ = 0.2.1f
we allowed splits with large conductance we would obtain more clusters. The value
of ¢ . was picked by calculating conductance values for simulated interspersed
contiguous sequence arrays in a range of sizes (see above). This conductance

threshold is expected to eliminate contiguous domains smaller than 100kb. In the



particular case of this data set, the 2nd eigenfunction is chosen most often for

splitting, but occasionally higher order eigenfunctions (up to order 4) are chosen.

Localizing unmapped scaffolds using WCS data

Whole chromosome shotgun (WCS) read depth was determined over single-copy
sites in the genome. In order to define unique regions on our set of unmapped
scaffolds, we identified all non-RepeatMasked 24-mers for which no other 24-mer in
the complete HuRef assembly (including unmapped scaffolds/contigs) is within a 2-
bp edit distance. This requires the assumption that 24-mers that are present in a
single copy in the HuRef assembly are present in a single copy in the genomes of all
individuals (i.e. they are not sequence or copy number polymorphic, and the HuRef
assembly contains all fixed copies of each 24-mer). Unique 24-mers were aligned to
the full HuRef assembly (including all mapped and unmapped scaffolds) using BWA
[6]. 24-mers with mapping qualities of 0 or with suboptimal alignments within an
edit distance of 2 were discarded. We performed a similar analysis with
GRCh37/hg19 chromosome reference sequences, utilizing available mappability

tracks ("CRG Align 24", [7]).

Each single-copy 24-mer defines a small upstream region where an overlapping
read alignment is likely to begin. Based on the empirical aligned read length
distribution, we defined this ‘valid unique region’ for each 24-mer as the upstream
400 bp. Thus, for a given single-copy 24-mer with position i, a read alignment with a
starting position in the interval (i-400, i) and with an exact match to that 24-mer has
a roughly uniform probability of starting at any base in that interval. We can model
the number of reads aligning to any valid position as a Poisson distribution, and
thus we can also model the total number of reads aligning to valid regions on any

given scaffold with a Poisson distribution. With these conditions, we evaluated



18,779 unmapped HuRef scaffolds (containing =100 valid base pairs and > 1
mapped WCS read).

We expected unmapped scaffolds to localize to more than one chromosome if they
contain recently duplicated sequences that may have been collapsed in the assembly
[8,9]. To predict single or multiple chromosome localizations, we used a binary
“localization vector” of length 24, with each position indicating whether it localizes
to a particular chromosome (1) or not (0). There are 224 -1 = 16,777,215 possible
valid states that this vector can take. However, any given scaffold is unlikely to map
to most or all chromosomes. To reduce our search space, we only performed
likelihood calculations for localization vectors whose sum is between 1 and 5
(55,454 total), effectively setting the prior to 0 for all localization vectors with more
than 5 chromosome assignments. For each of the 18,779 unmapped scaffolds, we
define a vector of length 32 with each entry indicating the number of reads from one
of the 32 WCS samples with unique alignments starting on valid positions on that

scaffold.

Let Ybe an 18,779 x 32 matrix containing these vectors as rows.

Let n be a vector of length 18,779 indicating the total number of valid
positions on each scaffold.

Let X be a 24x32 matrix containing the number of reads from each WCS
sample with unique alignments starting on valid positions on each of the 24
chromosomes.

Let m be a vector of length 24 indicating the total number of valid positions
on each chromosome.

Let @ be a 55,454 x 24 matrix containing all possible localization vectors.
Let €= ©(X/m), a 55,454 x 32 matrix representing the probability for a
particular localisation state that a valid position is an alignment start for each
WCS sample.

Let Pbe a 55,454 x 1 column vector containing the prior probability of each

localization state. We used a prior that sets uniform total probability to each

10



subset of localization vectors summing to 1, 2, 3, 4, or 5 (with each subset’s

total probability distributed uniformly to all of its localization states).

Let Y, | ©,, ~ Poisson (n,C,,,), where [ is the localization state (55,454 total), s is the
scaffold index (18,776 total) an dw is the WCS sample index (32 total). Thus the

likelihood can be expressed as:
32

L(OllYS) & 1_[[(115, Clw)ste_nSClw]

w=1

with the log likelihood as:

100,1Y) o X3Eq[Ys, 10g(n,Cr)) — nsCiy]

=Yt Yoo log(n) + Xi%, Yo, 10g(C) — n Xikq Cup
For each unmapped scaffold we calculated analytically the likelihood of each of the
55,545 possible localization states given the available WCS alignment data. We then
multiplied each likelihood by each localization state’s prior, and we rescaled their
posterior probabilities to sum to 1. For each scaffold we then calculated the
marginal posterior probability for each chromosome by summing the posterior
probabilities of all localization states containing that chromosome. A marginal
posterior probability above a threshold of 0.9 resulted in an assignment to that
chromosome.
We repeated this analysis for a different set of unmapped scaffolds, belonging to the
set of “decoy sequences” compiled by the 1000 Genomes Project as a set of
nonredundant read mapping targets not present in the GRCh37 assembly [10].
Together with GRCh37, these decoy sequences form a reference called hs37d5. This
reference includes GRCh37 unmapped scaffolds plus HuRef scaffolds that are not
present in hg19 (including large mapped and unmapped scaffolds in the HuRef
assembly), BAC/fosmid sequences present in Genbank, and ALLPATHS-LG contigs
from the NA12878 assembly. We used hs37d5 for identifying unique 24-mers and

mapping WCS reads, and we report localization results for all scaffolds containing at
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least >100 valid base pairs and > 1 at least one mapped WCS read (see Dataset S3).
For HuRef scaffolds localized by both analyses, we report the localization
probabilities from the analysis done with the HuRef assembly, as it is more

comprehensive than the hs37d5 assembly owing to its inclusion of smaller contigs

Evaluating WCS-based HSat2,3 subfamily mapping results

We compared our WCS-based mapping results (Table S7) to published experimental
mapping results of available HSat2,3 clone sequences (Table S1) and HSat2,3
sequences in hg19 (Table S8), as well as published mapping locations of
oligonucleotide probes specific to HSat2 (found primarily on chromosomes 1, 2, 10
and 16 but also on 7, 15, 17, and 22) or HSat3 (found primarily on chromosome 9
but also on chromosomes 1, 5, 10, 13, 14, 15, 17, 20, 21, and 22) (Tagarro et al.
1994). Importantly, we found that the oligonucleotide used by Tagarro et al. to
identify HSat3 is only found in the HSat3B clade (not in the HSat3A clade, which
includes the dominant families on the Y chromosome). Our WCS model predicts
HSat3B5 localization to chromosome 8, which contradicts published mapping
results. This discrepancy likely owes to the fact that the only available WCS sample
for chromosome 8 is mixed with chromosome 9, and chromosome 9 is also
represented in another WCS sample from a different donor. Because our WCS model
does not account for array size variability between WCS donor individuals, our
model will likely assign any ‘extra’ HSat3B5 from one individual onto another
chromosome present in the mixed sample (i.e. chr8). Our model also predicts minor
HSat3A6 localization to chromosome 7 (~94 kb), which would contradict
hybridization-based methods finding HSat3A6 to be specific to males. This could
represent a real array on chr7 that is polymorphic or simply too small to be reliably
detected by hybridization-based methods (as is likely the case for many small

domains of HSat2,3 sequence found on hg19).

REFERENCES

12



1. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, et al. (2007) The diploid genome
sequence of an individual human. PLoS Biol 5: e254.

2. Ravi Kannan SV, and Adrian Vetta (2004) On clusterings: good, bad and spectral. ]
ACM 51:497-515.

3.A.Ng M]J, and Y. Weiss. (2002) On spectral clustering: Analysis and an algorithm.
Advances in neural information processing systems 2: 849-856.

4. Zelnik-Manor L. PP (2004) Self-tuning spectral clustering. Advances in neural
information processing systems: 1601-1608.

5. Chung FRK (1997) Spectral Graph Theory. CBMS Regional Conference Series in
Mathematics Volume 92.

6. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics 26: 589-595.

7. Derrien T EJ, Marco Sola S, Knowles DG, Raineri E, Guigé R, Ribeca P. (2012) Fast
computation and applications of genome mappability. PLoS ONE 7: e30377.

8. Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, et al. (2002) Recent segmental
duplications in the human genome. Science 297: 1003-1007.

9. She X, Jiang Z, Clark RA, Liu G, Cheng Z, et al. (2004) Shotgun sequence assembly
and recent segmental duplications within the human genome. Nature 431:
927-930.

10. Genovese G, Handsaker, R. E,, Li, H., Kenny, E. E., & McCarroll, S. A. (2013)
Mapping the Human Reference Genome’s Missing Sequence by Three-Way
Admixture in Latino Genomes. The American Journal of Human Genetics 93:
411-421.

11. Choo KHA, Earle E, Vissel B, Filby RG (1990) Identification of two distinct
subfamilies of alpha satellite DNA that are highly specific for human
chromosome 15. Genomics 7: 143-151.

12. Nakahori Y, Mitani K, Yamada M, Nakagome Y (1986) A human Y-chromosome
specific repeated DNA family (DYZ1) consists of a tandem array of
pentanucleotides. Nucleic Acids Res 14: 7569-7580.

13. Moyzis RK, Albright KL, Bartholdi MF, Cram LS, Deaven LL, et al. (1987) Human
chromosome-specific repetitive DNA sequences: novel markers for genetic
analysis. Chromosoma 95: 375-386.

14. Cooke HJ, Hindley ] (1979) Cloning of human satellite IIl DNA: different
components are on different chromosomes. Nucleic Acids Res 6: 3177-3197.

15. Jeanpierre M (1994) Human satellites 2 and 3. Ann Genet 37: 163-171.

16. Jackson MS, Mole SE, Ponder BAJ (1992) Characterisation of a boundary
between satellite Il and aiphoid sequences on human chromosome 10.
Nucleic acids research 20: 4781-4787.

17.Jackson MS, Slijepcevic P, Ponder BA (1993) The organisation of repetitive
sequences in the pericentromeric region of human chromosome 10. Nucleic
Acids Res 21: 5865-5874.

18. Jeanpierre M, Weil D, Gallano P, Creau-Goldberg N, Junien C (1985) The
organization of two related subfamilies of a human tandemly repeated DNA
is chromosome specific. Human genetics 70: 302-310.

13



19. Bandyopadhyay R, McQuillan C, Page SL, Choo KH, Shaffer LG (2001)
Identification and characterization of satellite III subfamilies to the
acrocentric chromosomes. Chromosome Res 9: 223-233.

20. Choo KH, Earle E, McQuillan C (1990) A homologous subfamily of satellite III
DNA on human chromosomes 14 and 22. Nucleic Acids Res 18: 5641-5648.

21. Higgins M], Wang HS, Shtromas I, Haliotis T, Roder JC, et al. (1985) Organization
of a repetitive human 1.8 kb Kpnl sequence localized in the heterochromatin
of chromosome 15. Chromosoma. pp. 77-86.

22.Choo KH, Earle E, Vissel B, Kalitsis P (1992) A chromosome 14-specific human
satellite IIl DNA subfamily that shows variable presence on different
chromosomes 14. Am ] Hum Genet. pp. 706-716.

23. Vissel B, Nagy A, Choo KH (1992) A satellite III sequence shared by human
chromosomes 13, 14, and 21 that is contiguous with alpha satellite DNA.
Cytogenet Cell Genet 61: 81-86.

24. Deininger PL, Jolly D], Rubin CM, Friedmann T, Schmid CW (1981) Base
sequence studies of 300 nucleotide renatured repeated human DNA clones. ]
Mol Biol 151:17-33.

25. Tagarro I, Fernandez-Peralta AM, Gonzalez-Aguilera J] (1994) Chromosomal
localization of human satellites 2 and 3 by a FISH method using
oligonucleotides as probes. Hum Genet 93: 383-388.

26.1000 Genomes Project Consortium (2010) A map of human genome variation
from population-scale sequencing. Nature 467: 1061-1073.

14



