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Supplementary Methods

Calculation of transition probabilities

The general formula for the transition probabilities of the HMM (equation 20) can be simplified and its evaluation

can be made more efficient by recognizing several distinct scenarios for the joint configuration of the previous local

tree T n
i−1, the current local tree T n

i , and the recombination Rn
i . We will consider two main cases, corresponding to

the presence (Rn−1
i 6= /0) and absence (Rn−1

i = /0) of “old” (previously sampled) recombinations, respectively (see

Figure S1-1). In addition, we will consider three subcases of each of these main cases. Throughout this section, we

will use the notation yi−1 = (xi−1, ti−1) and yi = (xi, ti) to indicate the previous and current coalescence points for

the resampled branch, respectively, with each xi indicating a branch and each ti a time point. We will assume yi−1 is

indexed by l and yi by m, and we will assume their time points are indexed by a and b, respectively (i.e., ti−1 = sa,

ti = sb). In addition, zi = (wi,ui) will denote a new recombination between positions i−1 and i, with wi indicating a

branch and ui a time point in T n
i−1. We will use v to indicate the new branch that is being threaded into the ARG. We

will assume the single sequence threading operation, so v must be an external branch, but the subtree threading setting

is very similar (as discussed in later sections). We will also use the notation S(u) to indicate the index of the time point

associated with a node u in a local tree.

Major Case #1: No Old Recombinations

Let us first consider the case in which there are no old recombinations, Rn−1
i = /0. Because of the restriction of at most

one recombination per genomic position, this is the only case in which a new recombination is possible (zi 6= /0). The

three subcases for the transition probabilities are as follows:

1. Recoalescence to different branches: xi−1 6= xi. In this subcase, the recombination must have occurred on the

new branch, wi = v, as discussed in the section entitled “Sampling a Recombination Threading” in the main

text. In addition, the time of the recombination, ui, must range between 0 and the minimum of ti−1 and ti. Thus,

ai−1
l,m = ∑

zi

P(R̄n−1
i ,zi | T̄ n−1

i−1 ,yi−1 = l) P(T̄ n−1
i ,yi = m | R̄n−1

i ,zi, T̄ n−1
i−1 ,yi−1 = l)

=
min(a,b)

∑
k=0

P(R̄n−1
i = /0,zi = (v,sk) | T̄ n−1

i−1 ,yi−1 = l) P(T̄ n−1
i ,yi = m | R̄n−1

i = /0,zi = (v,sk), T̄ n−1
i−1 ,yi−1 = l)

(S1)
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Supplementary Text Figure S1-1: Examples of thread transitions. (A) When no old recombinations are present
(Rn−1

i = /0) the thread state yi can change if a new recombination zi added. If this recombination is added to the new
branch v (blue), that branch may re-coalesce anywhere else in the local tree. Alternatively, the new recombination can
be placed on the branch associated with the previous thread state, xi−1, in which case the recoalescence must occur
on the new branch v (B) or on branch xi−1 (C). When an old recombination is present (Rn−1

i 6= /0), the associated SPR
operation often does not affect the thread location. However, it can cause the thread state to change its branch (D)
or its time (E) in a deterministic manner. (F) If the recoalescence point is the same as the thread point, the thread
state can change to recombination-bearing branch wi and any time within the interval between the recombination and
recoalescence times, ti ∈ [ui, t]. The thread state can also change to the branch above the recoalescence point and keep
the same time (not shown).

where, for simplicity, we drop the explicit conditioning on the model parameters ρ and N. Notice that this sum

has no more than K +1 terms.

As in the general case, the first term in equation S1 is given by equation 5 and the second term by equation 13

from the main text. However, these equations simplify in this case. Because we have assumed that Rn−1
i = /0

and we can assume that zi = (v,sk) represents a valid recombination, we can write the following in place of

equation 5,

P(R̄n−1
i = /0,zi = (v,sk) | T̄ n−1

i−1 ,yi−1 = l) =
1

A′k
· Bk ∆sk

C
·
[
1− exp(−ρ|T n

i−1|)
]
, (S2)

where,

A′k =

2 if sk = sr

Ak otherwise
(S3)

and all other terms are as defined for equation 5. Similarly, equation 13 simplifies in this case to,

P(T̄ n−1
i ,yi = m | R̄n−1

i = /0,zi = (v,sk), T̄ n−1
i−1 ,yi−1 = l) =

1

A(−v)
b

P(sb | v, sk, T n
i−1) (S4)

where P(sb | v, sk, T n
i−1) is given by equations 10–12.

2. Recoalescence to same branch at different times: xi−1 = xi, ti−1 6= ti. In this case, the recombination may

have occurred either on the new branch v or on the recoalescence branch xi. If the recombination occurred on
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branch v, then, as above, its time index can range between 0 and the minimum of a and b (the indices of ti−1

and ti, respectively). If it occurred on branch xi, then its time index can range between the time index at which

xi came into existence, which is given by S(xi), and the minimum of ti−1 and ti. Thus,

ai−1
l,m = ∑

zi

P(R̄n−1
i ,zi | T̄ n−1

i−1 ,yi−1 = l) P(T̄ n−1
i ,yi = m | R̄n−1

i ,zi, T̄ n−1
i−1 ,yi−1 = l)

=
min(a,b)

∑
k=0

P(R̄n−1
i = /0,zi = (v,sk) | T̄ n−1

i−1 ,yi−1 = l) P(T̄ n−1
i ,yi = m | R̄n−1

i = /0,zi = (v,sk), T̄
n−1

i−1 ,yi−1 = l)

+
min(a,b)

∑
k=S(xi)

P(R̄n−1
i = /0,zi = (xi,sk) | T̄ n−1

i−1 ,yi−1 = l) P(T̄ n−1
i ,yi = m | R̄n−1

i = /0,zi = (xi,sk), T̄
n−1

i−1 ,yi−1 = l)

(S5)

As in case (1), the first term in each of these sums is given by equation S2 and the second term is given by

equation S4. Each of these sums also has no more than K +1 terms.

3. Recoalescence to same branch at same time: xi−1 = xi, ti−1 = ti. This case is similar to the previous one,

except that it must also allow for the possibility of no recombination between positions i− 1 and i (zi = /0).

Thus,

ai−1
l,l = ∑

zi

P(R̄n−1
i ,zi | T̄ n−1

i−1 ,yi−1 = l) P(T̄ n−1
i ,yi = l | R̄n−1

i ,zi, T̄ n−1
i−1 ,yi−1 = l)

= exp
(
−ρ|T n

i−1|
)

+
a

∑
k=0

P(R̄n−1
i = /0,zi = (v,sk) | T̄ n−1

i−1 ,yi−1 = l) P(T̄ n−1
i ,yi = m | R̄n−1

i = /0,zi = (v,sk), T̄
n−1

i−1 ,yi−1 = l)

+
a

∑
k=S(xi)

P(R̄n−1
i = /0,zi = (xi,sk) | T̄ n−1

i−1 ,yi−1 = l) P(T̄ n−1
i ,yi = m | R̄n−1

i = /0,zi = (xi,sk), T̄
n−1

i−1 ,yi−1 = l) (S6)

Major Case #2: Old Recombinations

The other major case to consider is when a recombination is already given, Rn−1
i = (wi,sk) 6= /0. Our modeling

assumptions prohibit a new recombination in this case, so it must be true that zi = /0. Thus,

ai−1
l,m = ∑

zi

P(R̄n−1
i = (wi,sk),zi | T̄ n−1

i−1 ,yi−1 = l) P(T̄ n−1
i ,yi = m | R̄n−1

i = (wi,sk),zi, T̄ n−1
i−1 ,yi−1 = l)

= P(R̄n−1
i = (wi,sk),zi = /0 | T̄ n−1

i−1 ,yi−1 = l) P(T̄ n−1
i ,yi = m | R̄n−1

i = (wi,sk),zi = /0, T̄ n−1
i−1 ,yi−1 = l) (S7)

Because we can assume in this setting that R̄n−1
i represents a valid recombination, the first term has a form similar to

that of equation S2, that is,

P(T̄ n−1
i ,yi = m | R̄n−1

i = (wi,sk),zi = /0, T̄ n−1
i−1 ,yi−1 = l) =

1
A′k
· Bk ∆sk

C
·
[
1− exp(−ρ|T n

i−1|)
]
, (S8)
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where A′k is given by equation S3 and all other terms are as defined for equation 5. Similarly, the second term has a

form similar to that of equation S4,

P(T̄ n−1
i ,yi = m | R̄n−1

i = (wi,sk),zi = /0, T̄ n−1
i−1 ,yi−1 = l) =

1

A(−wi)
b

P(sb | wi, sk, T n
i−1). (S9)

The calculation of these transition probabilities can be further simplified by considering three subcases. In defining

these cases, we use the notation (x′i, t
′
i) to indicate the recoalescence point associated with the old recombination Rn−1

i =

(wi,ui). Notice that, in the case of an old recombination, this is not the same as the state yi = (xi, ti), which represents

the new coalescence point for branch v (not branch wi). Here, the time index b corresponds to the recoalescence time

t ′i , that is, sb = t ′i .

1. Deterministic case. If the previous state yi−1 = (xi−1, ti−1) does not equal either the recoalescence point (x′i, t
′
i)

or the recombination point zi = (wi,sk), then the transition process is completely deterministic, meaning that

there is only one transition with non-zero probability. A series of well-defined rules identifies the state yi that

must follow yi−1 (Figure S1-2). Note that, because the HMM is unnormalized, the probability of the permitted

state transition will generally not be equal to one.

2. Recombination-point case. If the previous state yi−1 equals the recombination point zi = (wi,sk), then the

recombination point can be either above the new branch v or below it. If the recombination is above branch v,

then the new state must be the same as the old one, yi = yi−1. If, on the other hand, the recombination is below

branch v, then branch xi−1 “escapes” and the new branch v must coalesce up higher in the tree (see Figure S1-2

for a similar calculation).

3. Recoalescence-point case. If the previous state equals the recoalescence point, (xi−1, ti−1) = (x′i, t
′
i), we must

consider the possibility that the recombining branch wi recoalesces at (x′i, t
′
i) as well as the possibility that wi

recoalesces at any location along the new branch v. The reason is that all such scenarios allow T n−1
i to have

the same configuration after removal of v. Note that this case is always distinct from case (2) because the

recoalescence cannot be on the same branch as the recombination (this would imply a bubble, which are not

allowed in the SMC process). The destination states yi that are relevant for this scenario are yi = (xi−1, ti), yi =

(p(wi), t ′i), and yi = (wi, tl), where p(wi) is the new parent of wi (and xi−1), and tl ≤ t ′i is any valid recoalescing

point along v. Since the recombination point Rn−1
i = (wi,sk) is not the same as the state yi−1 = (xi−1, ti−1) in

this case, there is no ambiguity about the location of the recombination.

Dynamic programming

A limiting step in the calculation of the transition probabilities described in the previous sections is the evaluation of

equation 10. A naive evaluation of this equation requires O(K) time, resulting in a running time of O(K2) for the

calculation of individual transition probabilities.
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f u n c t i o n g e t d e t e r m i n i s t i c t r a n s i t i o n ( (xi−1, ti−1) , (wi,sk) , (x′i, t
′
i ) , mapping ) {

i f ( (xi−1, ti−1) == (x′i, t
′
i ) | | (xi−1, ti−1) == (wi,sk) ) {

/ / n o t a d e t e r m i n i s t i c case
re turn NULL

} e l s e i f ( xi−1 6= wi ) {
/ / SPR o n l y removes a s u b s e t o f d e s c e n d e n t s , i f any
/ / t r a c e up from r e m a i n i n g l e a f t o f i n d c o r r e c t new s t a t e
d i s r u p t = f a l s e
i f ( xi−1 . i s l e a f ( ) ) {

/ / SPR ca nn o t d i s r u p t l e a f branch
xi = xi−1

} e l s e {
i f ( wi == xi−1 . c h i l d r e n [ 0 ] ) {

/ / l e f t c h i l d i s n o t d i s r u p t e d
xi = mapping [ xi−1 . c h i l d r e n [ 0 ] ]
d i s r u p t = t rue

} e l s e i f ( wi == xi−1 . c h i l d r e n [ 1 ] ) {
/ / r i g h t c h i l d i s n o t d i s r u p t e d
xi = mapping [ xi−1 . c h i l d r e n [ 1 ] ]
d i s r u p t = t rue

} e l s e {
/ / xi i s n o t d i s r u p t e d
xi = mapping [ xi−1 ]

}
}
/ / o p t i o n a l l y walk up , i f c o a l e s c e n c e o c c u r s under t h r e a d
i f ( ( x == xi−1 && t ′i < ti−1 ) | | ( x′i == xi && t ′i < ti−1 ) | | ( d i s r u p t && x == xi && t <= ti−1 ) )

xi = xi . p a r e n t
re turn (xi, ti−1)

} e l s e {
/ / SPR i s on same branch as t h r e a d
i f ( sk > ti−1 ) {

/ / t h r e a d moves w i t h SPR s u b t r e e
re turn ( mapping [ wi ] , ti−1 )

} e l s e {
/ / SPR s u b t r e e moves o u t from u n d e r n e a t h th read , t h e r e f o r e t h e new
/ / branch c o a l e s c e s w i t h t h e branch above t h e s u b t r e e
p a r e n t = wi . p a r e n t
ti = p a r e n t . age
o t h e r = wi . s i b l i n g ( )
xi = mapping [ o t h e r ]
i f ( o t h e r == x′i ) xi = xi . p a r e n t
re turn ( xi , ti )

}
}

}

Supplementary Text Figure S1-2: Deterministic rules. When a previous recombination is given (Rn−1
i = (wi,sk) 6= /0),

most transitions are deterministic and can be determined by the set of rules shown here. The basic idea of this procedure
is that the recombination Rn−1

i and recoalescence yi = (xi, ti) together define a subtree pruning and regrafting (SPR)
operation on the local tree T n

i−1 such that the coalescence point yi of the new branch v is unambiguous given yi−1 and
the other available information. The variable mapping maps nodes in T n−1

i−1 to equivalent nodes in T n−1
i .
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Let us re-express equation 10 as,

P(s j |w, sk, T n
i−1, Θ)= exp

−Ck, j−2−
B(−w)

j−1 ∆s j−1, j− 1
2

2N j−1

×
1− exp

−B(−w)
j−1 ∆s j− 1

2 , j

2N j−1
−

B(−w)
j ∆s j, j+ 1

2

2N j

 , (S10)

where,

Ck,m =
m

∑
l=k

B(−w)
l ∆sl

2Nl
. (S11)

Notice that,

Ck,m =
m

∑
l=k

B(−w)
l ∆sl

2Nl

=

(
m

∑
l=0

B(−w)
l ∆sl

2Nl

)
−

(
k−1

∑
l=0

B(−w)
l ∆sl

2Nl

)
=C0,m−C0,k−1. (S12)

The values of the form C0,m can be computed recursively in a preprocessing step for m = 0, . . . ,K, as follows:

C0,m =

0 m = 0

C0,m−1 +
B(−w)

m ∆sm
2Nm

1≤ m≤ K.

(S13)

Thus, after preprocessing, the evaluation of equation 10 can be accomplished in constant time and the calculation

of individual transition probabilities can be accomplished in O(K) time.

Further optimization of forward algorithm

Implemented in a direct manner, the forward algorithm would require O(Ln2K2) time. However, by taking advantage

of redundancies in the transition probabilities we can reduce this running time to O(LnK2). The approach used here is

similar to that used by Paul et al. [1].

Recall that the forward algorithm computes a table of values of the form,

fi,m =P(T n−1
1:i ,Rn−1

1:i ,T n
1:i,yi = m |Θ)

=bi
m(D

n
i )∑

l
fi−1,l ai−1

l,m , (S14)

where bi
m(D

n
i ) is the emission probability for state m and alignment column i, and ai−1

l,m is the transition probability

from state l to state m at position i−1 (see section entitled “Stochastic Traceback” in main text for complete details).

Again, let the state variable yi be defined by a branch xi and a time ti. In addition, let C (xi, j) be the index for

state yi = (xi, ti = s j), where s j is the jth time point. These indices define the orders of the rows and columns of the

transition matrix for position i, denoted Ai. Now, observe that, for many choices of consecutive states l = C (xi−1, j)
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and m = C (xi,k), the transition probability ai
l,m does not depend on xi−1 and xi but only depends on the time indices

j and k. In particular, if xi−1 6= xi, the transition probability is independent of the identity of the branches, because of

the symmetry among all branches at each time point in the coalescent model.

These symmetries mean that the true dimensionality of Ai is considerably reduced. To exploit this reduced di-

mensionality, let us define a reduced transition matrix A′i = {a′ij,k} indexed by the time points (i.e., 0 ≤ j ≤ K and

0≤ k≤ K), such that a′ij,k gives the transition probability from time point j to time point k assuming that xi 6= xi+1. We

can now rewrite the recurrence in the forward algorithm as follows, assuming that k is the time point associated with

index m:

fi,m =bi
m(D

n
i )∑

l
fi−1,lai−1

l,m

=bi
m(D

n
i )

[(
∑

l:xi 6=xi−1

fi−1,lai−1
l,m

)
+

(
∑

l:xi=xi−1

fi−1,lai−1
l,m

)]

=bi
m(D

n
i )

[(
K

∑
j=0

∑
l:l=C (xi−1, j),xi 6=xi−1

fi−1,la′i−1
j,k

)
+

(
∑

l:xi=xi−1

fi−1,lai−1
l,m

)]

=bi
m(D

n
i )

[(
K

∑
j=0

a′i−1
j,k ∑

l:l=C (xi−1, j),xi 6=xi−1

fi−1,l

)
+

(
∑

l:xi=xi−1

fi−1,lai−1
l,m

)]

=bi
m(D

n
i )

[(
K

∑
j=0

a′i−1
j,k f ′i−1, j

)
+

(
∑

l:xi=xi−1

fi−1,lai−1
l,m

)]
(S15)

where

f ′i−1, j = ∑
l:l=C (xi−1, j),xi 6=xi−1

fi−1,l

=

(
∑

l:l=C (xi−1, j)
fi−1,l

)
− fi−1,C (xi, j), (S16)

and fi−1,C (xi, j) is zero if the state (xi,s j) does not exist.

Notice that the f ′i−1, j terms can be reused in calculating fi,m for all values of m. As a result, computing each column

of the forward table takes O(nK2) time instead of O(n2K2) time, and the total running time of the algorithm is reduced

to O(LnK2).

Subtree sampling

In this section, we outline our strategy for subtree sampling (i.e., resampling of internal branches in the local trees)

in greater detail. As described in the main text, subtree sampling is needed to enable efficient mixing of the MCMC

sampler with more than few sequences. Unlike the single-sequence threading operation, subtree sampling allows the

“deep structure” of the ARG to be perturbed in a reasonably efficient manner.

For each local tree T n
i , imagine that one of the internal branches v is removed, thus producing two trees: a main
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tree T M,n
i and a subtree T S,n

i . The main tree has the same root node as the original full tree T n
i and has a basal branch

that extends to the maximum time sK . The subtree T S,n
i has v as its root node and does not have a basal branch. In this

setting, the effect of the recoalescence operation is to allow the partial local tree (T M,n
i ,T S,n

i ) to be reconnected into a

full local tree. This is accomplished by allowing introducing a lineage leading to v and allowing it to recoalesce with

the main tree. Notice that this is a direct generalization of the single sequence recoalescence operation. In that case, v

is required to be a leaf node, but in the general case, it is allowed to be any node (other than the root) in the local tree.

As in the single sequence case, we can denote the recoalescence point at site i by yi = (xi, ti).

Let the age of the subtree root v be sq. Notice that the structures of the main tree and the subtree below age sq do

not affect the coalescence rate of the new branch v. Thus, resampling the coalescence point for the internal branch

is essentially the same as resampling the coalescence point for an external branch. The only restriction is that the

recoalesce point must be at least as old as sq. This operation can be used within any local block having a single local

tree, i.e., for which T n
i = T n

j for all i and j. However, a new problem arises in the case in which the local trees differ

across sites, as discussed in the next section.

Resampling internal branches across multiple local blocks

Internal branches can also be resampled across multiple local blocks. This involves removing one branch from each

tree in T n to create a list of main trees TM,n and subtrees T S,n. A coalescence threading Y can then be sampled to

define how each subtree recoalesces to the corresponding main tree, thereby defining a new collection of complete

local trees T n.

The problem is that a poor choice of a series of internal branches to remove and resample can result in a highly

constrained threading distribution. To see why this is true, imagine that the selected series of internal branches is

such that the branch for each local block is completely unrelated (e.g., in a different subtree of the full phylogeny) to

the previous one. In this case, if a new recombination is sampled within a local block during the subtree threading

operation, that recombination will have to be “undone” by the end of the local block to allow the new local tree for that

block to be reconciled with the main tree and subtree for the next block. Thus, any “move” in ARG space must involve

tightly coordinated sequences of recombinations that cancel one another out, in a sense. Because such sequences will

be difficult to find, there will be a strong tendency to simply resample the previous threading, and the sampler will not

mix well.

The solution to this problem is to select sequences of internal branches that are in some way mutually “compatible,”

so that these constraints on the reconciliation of local trees across blocks are relaxed. It turns out that it is sufficient to

select sequences of branches such that adjacent branches in the sequence share ancestry, as defined below.

In order to identify such sequences we use an auxiliary data structure called a branch graph (Figure S1-3). The

branch graph B is derived from the local trees T n and recombinations Rn. To construct B we only need one local tree

from each non-recombining block. Let this subset of trees and recombinations be represented by the vectors T and

R, respectively (we will drop the superscript for simplicity). For each local tree Ti and node vi, j ∈V (Ti), we create a

node ui, j ∈V (B). Then we add a directed edge (ui, j,ui+1,k) ∈ E(B) if, and only if, the branches above vi, j and vi+1,k
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Supplementary Text Figure S1-3: Use of branch graph to select a series of internal branches for removal. The
branch graph B (bottom) describes which branches in the local trees (top) share ancestry. Each node in the local trees
has a corresponding node in the branch graph as indicated by the numbering scheme. Directed edges connect nodes in
neighboring blocks if, and only if, the corresponding nodes in the local trees share ancestry. A path along the branch
graph (blue at bottom) represents a valid series of branches (blue at top) in the local trees for removal and resampling.

share ancestry.

We define “shared ancestry” as follows. Let zi+1 = (wi+1,ui+1) represent the recombination point and yi+1 =

(xi+1, ti+1) represent the recoalescing point leading from local tree Ti to local tree Ti+1. In addition, let M be a

mapping such that M(vi, j) = vi+1,k if vi, j and vi+1,k represent precisely the same coalescent event in trees Ti and Ti+1,

respectively. Notice that the node above the recombination branch wi+1 does not map to any node in Ti+1, that is,

M(p(wi+1)) = /0. Also, the new node created in Ti+1 by recoalescence, which we denote v+i+1, does not have any node

mapping to it. However, all other nodes in Ti and Ti+1 have a one-to-one mapping.

Shared ancestry can occur in three ways. Consider two arbitrary nodes in adjacent local trees, vi, j and vi+1,k.

First, if M(vi, j) 6= /0 and vi+1,k 6= v+i+1, then vi, j and vi+1,k share ancestry if, and only if, M(vi, j) = vi+1,k. Second, if

M(vi, j) = /0—meaning that vi, j = p(wi+1) is the node that is eliminated by the recombination between i and i+ 1—

then vi, j and vi+1,k share ancestry if, and only if, vi+1,k is the remaining child of the eliminated node. By “remaining

child” we mean that vi+1,k = M(sibling(wi+1)) if sibling(wi) 6= xi or vi+1,k = p(M(sibling(wi+1))) otherwise. Finally,

if vi+1,k = v+i+1, then vi, j and vi+1,k share ancestry if, and only if, the recoalescence occurs on the branch above vi, j,

that is, vi, j = xi.

These rules produce a graph B such that, for each local block i, there is one node (the one above which the

recoalescence occurs) with an out-degree of two, while all other nodes have an out-degree of one. Similarly, for each

local block, there is one node with in-degree of two (the remaining child of the node eliminated by the recombination)

and all other nodes have an in-degree of one. A directed path in the branch graph indicates a series of branches valid

for removal.

The number of directed paths indicates the number of possible ways to remove internal branches according to this

9



scheme. This number can be computed in a straightforward way using dynamic programming. Let Pi, j represent the

number of paths ends in block i on branch j. This value can be computed recursively as follows:

Pi, j =

1, if i = 1

∑k Pi−1,kI[(vi−1,k,vi, j) ∈ E(B)], otherwise.
(S17)

Thus, the total number of directed paths can be computed as ∑ j Pm, j where m is the index of the last local block. Paths

can be sampled uniformly using a standard traceback procedure. Starting with the last block m, the last node j can be

chosen with probability

Pm, j

∑ j Pm, j
. (S18)

Given a chosen node vi, j, the next node vi−1,k in the traceback can be chosen with probability,

Pi−1,k

Pi, j
. (S19)

Gibbs and Metropolis-Hastings Sampling of ARGs

Our goal is to sample ARGs Gn from the posterior distribution given the model parameters Θ = (N ,µ,ρ) and the data

Dn, namely

P(Gn |Θ,Dn). (S20)

Using our threading method, we can define both Gibbs and generalized Metropolis-Hastings Markov chain Monte

Carlo (MCMC) methods for sampling ARGs. Let g and g′ be two possible values for the random variable Gn. Let

q(g→ g′) give the probability of proposing g′ given g under some proposal procedure. The Metropolis-Hastings

algorithm requires that the acceptance probability for the proposed move must be,

A(g→ g′) =min
(

1,
P(Gn = g′ |Θ,Dn)

P(Gn = g |Θ,Dn)

q(g′→ g)
q(g→ g′)

)
. (S21)

Let us now consider a particular type of probabilistic proposal procedure. Let S be a random variable representing

a random subgraph of an ARG g and let S(g) give a restricted set of subgraphs of g. Given a current ARG g, randomly

choose a subgraph S = s and then sample from the posterior a new ARG g′ in which the subgraph s is held fixed (i.e.,

all changes occur outside of s). We can now write the proposal probability as,

q(g→ g′) = ∑
s∈S(g)

P(S = s | Gn = g) P(Gn = g′ | S = s,Θ,Dn)

= ∑
s∈S(g,g′)

P(S = s | Gn = g) P(Gn = g′ | S = s,Θ,Dn), (S22)
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where we use the notation S(g,g′) to indicate S(g)∩S(g′), thereby enforcing the constraint that the sampled subgraph

s must belong to the restricted sets for both the original ARG g and the proposed ARG g′. This proposal probability

can be further simplified as follows:

q(g→ g′) = ∑
s∈S(g,g′)

P(S = s | Gn = g)
P(Gn = g′,S = s |Θ,Dn)

∑h:s∈S(h) P(Gn = h,S = s |Θ,Dn)

= ∑
s∈S(g,g′)

P(S = s | Gn = g)
P(Gn = g′ |Θ,Dn)

∑h:s∈S(h) P(Gn = h |Θ,Dn)

=P(Gn = g′ |Θ,Dn) ∑
s∈S(g,g′)

P(S = s | Gn = g)

[
∑

h:s∈S(h)
P(Gn = h |Θ,Dn)

]−1

(S23)

where the simplification in the second line is possible because S is a subgraph of Gn.

If we choose subgraphs uniformly from the set S(g), such that P(S = s |Gn = g) = 1/|S(g)|, we can then write the

acceptance probability as

A(g→ g′)

=min

(
1,

P(Gn = g′|Θ,Dn)

P(Gn = g|Θ,Dn)

P(Gn = g|Θ,Dn)∑s∈S(g,g′) P(S = s|Gn = g′)
[
∑h:s∈S(h) P(Gn = h|Θ,Dn)

]−1

P(Gn = g′|Θ,Dn)∑s∈S(g,g′) P(S = s|Gn = g)
[
∑h:s∈S(h) P(Gn = h|Θ,Dn)

]−1

)

=min

(
1,

∑s∈S(g,g′) |S(g′)|−1
[
∑h:s∈S(h) P(Gn = h|Θ,Dn)

]−1

∑s∈S(g,g′) |S(g)|−1
[
∑h:s∈S(h) P(Gn = h|Θ,Dn)

]−1

)

=min

(
1,
|S(g)|∑s∈S(g,g′)

[
∑h:s∈S(h) P(Gn = h|Θ,Dn)

]−1

|S(g′)|∑s∈S(g,g′)
[
∑h:s∈S(h) P(Gn = h|Θ,Dn)

]−1

)

=min
(

1,
|S(g)|
|S(g′)|

)
. (S24)

For cases where |S(g)|= |S(g′)| the acceptance probability is always 1 and the procedure is a valid a Gibbs sampler.

This is true for the case when S(g) is the set of subgraphs of g where one sequence is removed from the ARG. If there

are n sequences then |S(g)|= n.

For resampling internal branches, |S(g)| is not as trivial to calculate, but it can be calculated using dynamic pro-

gramming (see previous section). However, |S(g)| will not always be equal to |S(g′)| and therefore there is a chance

of rejection.

The rationale for using a proposal procedure based on conditioning on the subgraph is that uses the data to drive

the proposal. Without such a strategy, the acceptance probability would be driven by changes in likelihood which can

vary wildly when resampling large ARGs.

In order to establish that the stationary distribution of this Markov chain equals the desired posterior distribution,

we must show that the chain is irreducible, aperiodic, and positive recurrent. First, the chain is irreducible because,

given any two ARGs g and g′, it is possible to find a sequence of proposed moves that will transform g to g′. To see

that this is true, consider a subgraph S(g,L) of g that is defined by removing threads from g until only a set of leaves L
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remains. First consider the base case of a single leaf, L = {l}. In this case, we trivially have S(g,L) = S(g′,L), because

both subgraphs are simply trunk genealogies. Now let us add one leaf at a time to L. Each time we add a leaf l to the

set L, we can ensure that S(g,L) = S(g′,L) by removing the thread for l from g and then re-threading l in such a way

that S(g,L) = S(g′,L). In this way, we can obtain any g′ from any g using the threading operation.

Next, to see that the chain is aperiodic and positive recurrent, note that self-transitions g→ g have nonzero proba-

bility. In addition, every transition in the Markov chain is reversible. Specifically, for any transition g→ g′, we choose

a subgraph s and then sample g′ conditional on s. Notice that based on the design of our branch removal procedure,

if g′ was sampled conditioned on s, then s can be obtained by applying the branch removal procedure to g′. Since s

is a subgraph of g, g can be sampled by the threading procedure conditioned on s. Thus, the reverse transition g′→ g

must have non-zero probability. Together, nonzero self transitions and reversible non-self transitions guarantee that

the chain is aperiodic. The chain is positive recurrent because it has a finite state space and is irreducible.

Supplementary Data Analysis

Evaluation of Discretized Sequentially Markov Coalescent in Data Generation

Following McVean and Cardin [2], we compared data sets generated under the DSMC with ones generated under the

sequentially Markov coalescent (SMC) and the coalescent-with-recombination (CwR). First, we simulated 100 kb re-

gions of 20 sequences using our standard simulation parameters including four different µ/ρ ratios (see Methods). We

carried out parallel simulations under the DSMC, the SMC, and the CwR, assuming various numbers of time intervals

(K) for the DSMC. At all recombination rates, the DSMC, SMC, and CwR models produced very similar distribu-

tions of recombination counts (Supplementary Figure S1A). These distributions were essentially indistinguishable at

lower recombination rates, and the DSMC exhibited only a slight excess of recombinations events at higher rates.

Interestingly, the DSMC appeared not to be highly sensitive to the number of time intervals K, although the excess in

recombination events at high rates was most pronounced under the most coarse-grained discretization scheme (K = 9).

In a second simulation experiment, we assumed a single ratio of µ/ρ = 2 and considered four effective population

sizes (N), ranging from 10,000 to 30,000 individuals. In this comparison, we used the number of segregating sites as

the summary statistic of interest. As expected, this statistic increases approximately linearly with N under all models.

Once again, we found that the CwR, SMC, and DSMC models produced nearly identical distributions of counts,

with only a minor inflation under the coarsest discretization schemes (Supplementary Figure S1B). Overall, these

comparisons indicate that the discretization scheme used by the DSMC has at most a minimal effect on measurable

patterns of mutation and recombination at realistic parameter values for human populations, suggesting that the model

will be adequate for use in inference.
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Information in the ARG about Population Phylogenies

To explore the usefulness of ARGweaver in demographic analysis, we attempted to infer a population phylogeny with

admixture edges for the 11 human populations represented in the Complete Genomics data set (see Supplementary

Figure S20 for a list of populations). We began by extracting genealogies from two loci per ∼2-Mb block, such that

each genealogy was approximately 1 Mb from the next one. We then computed a consensus tree at each locus using

a standard majority rule for edges across the sampled local trees. Here we considered every 100th sample from our

ARGweaver sampling run (21 trees per locus). In addition, we collapsed identical adjacent local consensus trees into

a single tree. In the end, our analysis considered 2,304 trees from 1,376 ∼2-Mb blocks. Next, we reduced each tree

to a single representative of each of the 11 represented populations by selecting one haploid sample per population at

random, and extracting the subtree spanning these 11 leaves.

We then analyzed these 11-leaf trees with the PhyloNet program. PhyloNet finds a population tree that mini-

mizes the number of “deep coalescences” required for reconciliation with a given set of local trees, allowing both for

phylogenetic discordance from incomplete lineage sorting (see, e.g., [3]) and for a specified number of hybridization

(admixture) events between groups [4, 5]. We ran PhyloNet version 3.5.0 on the 11-leaf consensus trees using the

InferNetwork parsimony option and specifying a maximum number of hybridization nodes in the range 0–5. Identical

phylogenies and networks were obtained for four different random choices of haploid samples per population.

In the absence of hybridization (0 nodes), PhyloNet recovers the expected phylogeny for these populations, with the

deepest divergence event between African and Eurasian populations, and successively more recent events separating

the European from the Asian populations, the South Asian Indian population from the East Asian Han Chinese and

Japanese, and the West African Yoruba from the East African Luhya and Maasai (Supplementary Figure S20A). The

most recent events separate the relatively geographically and ethnically similar Han Chinese and Japanese populations,

Luhya and Massai populations, and Tuscan and CEU (Utah residents of Northern and Western European ancestry)

populations (Supplementary Figure S20A). The Mexican and Puerto Rican individuals cluster with the Europeans,

and the African American individual clusters with the West African Yorubans, consistent with recent analyses of these

admixed populations [6].

When admixture nodes are permitted, PhyloNet uses them to explain gene flow in several populations identified

as admixed in other analyses [6, 7], including the Maasai (MKK), African Americans (ASW), Mexicans (MXL), and

Puerto Ricans (PUR) (Supplementary Figure S20B). In most cases, the inferred source populations are consistent

with previous studies, but there are two major anomalies in the inferred networks. The first anomaly is the use of the

Gujarati Indians (GIH) as a source population for the admixed MXL and PUR populations. This may be a consequence

of the absence in this data set of a better surrogate for Native American source populations for the MXL and PUR

or it may reflect European admixture in India [7]. The second anomaly is the inference of admixture from the MXL

and Tuscan (TSI) individuals in the CEU sample. Overall, it appears that the program correctly identifies a complex

pattern of gene flow among the Latino, European, and African populations but is unable to reconstruct the precise

topology of this subnetwork.
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