
Extended Experimental Procedures

Statistical methods for MIST-Seq analysis
Here we detail the statistical methods used to obtain robust estimates of decay rates for 
the 3’ isoforms of a gene and to calculate the significance in the difference between two 
decay rates. Here we apply it to S. cerevisiae but the same strategy could be extended 
to any time course measurement of transcript stabilities following transcriptional arrest.

Experimental outline 
We profiled RNA abundance by 3’ specific isoform sequencing (3’T-fill) (Wilkening et al., 
2013) at different time points following transcriptional arrest in S. cerevisiae strain 
rpb1-1. To normalize the sequencing counts of the decaying RNA population across 
each time point, we spiked in a small amount of foreign RNA (i.e., S. pombe) while 
preparing the libraries for sequencing. We used these "spiked-in" RNA as size factors to 
normalize the size of libraries at each time point when applying normalizing procedures. 
As a result, we see the number of reads mapping to S. cerevisiae decrease while the 
number of reads mapping to S. pombe (representing a constant number of molecules 
across time points) increase due to the decaying population of S. cerevisiae molecules.

Data processing
The details of our pipeline are provided in a Sweave document (Supplemental File S1) 
that allows others to reproduce our analysis and adapt the pipeline for their studies. We 
used our previously described sequencing pipeline (Wilkening et al., 2013) to obtain 
read counts for individual 3’ isoforms for each time point in our two biological replicate 
experiments. We use the ‘CountDataSet’ data structure of the "DESeq" Bioconductor 
package (Anders and Huber, 2010) to organize the data and later use the package's 
features to calculate dispersion and corresponding variance estimates. As a 
consequence of overall lower counts at the later time points, there are also more 
isoforms with lower count values. This increases the variance within the replicates and 
decreases the correlation between the replicates (Figure 2A). We therefore addressed 
these issues using the approach detailed below.

Decay rate calculation
In order to calculate the half-life for each isoform, we assume a single parameter 
exponential decay model

A(t) = A(0).e-ßt

where ß denotes the decay rate, A(t) denotes normalized isoform expression counts at 
time point 't' after the transcriptional arrest, and A(0) denotes the normalized expression 
counts before transcriptional inhibition. Given this equation the half-life of the isoform 
can be calculated as log(2)/ß. The value of the decay rate ß is calculated from the slope 
of the linear regression on the above equation, log transformed:

log( A(t) ) = log( A(0) ) - ßt

Due to higher variance in the later time points, the regression fit might lead to inaccurate 



estimations of decay rates by giving the later time points (with lower reproducibility due 
to lower counts) the same weight as the earlier time points (with higher reproducibility 
due to higher counts). We resolve this issue by assigning less weight to time points with 
lower counts. In general, this strategy amounts to assigning lesser weight to the isoform 
counts at the later time points following transcriptional arrest. 

It is known from the weighted least squares theory that the optimal weight corresponds 
to 1/variance for each observation. If µ = E(k) denotes the expected value of the 
normalized count distribution  its variance using the Negative Binomial model 
implemented in “DESeq” is given by 

Var(k) = µ + αµ2

 where the parameter ‘α’ is commonly called the dispersion. For sufficiently smooth 
transformation ƒ a first order Taylor approximation leads to the formula:

Var[ f(k) ] ≈ ( ƒ’(E[k] ) . Var(k)

Applying the formula to our counts data represented by log-transformed values ln(k) for 
every isoform this becomes,

Var[ ln(k) ] ≈ 1/µ + α

In principle, this allows us to compute a variance for every observed count value. 
However, we do not have replication at the observation level. Thus, we use the 
replication on the gene level and estimate dispersion for every condition (time point) we 
have, using a robust fitting method implemented in DESeq. (Note that taking size 
factors into account changes the above formula slightly, the "shot-noise" is 1/raw counts 
instead of 1/normalized counts. Since the variance in our analysis is dominated by the 
dispersion this does not have a huge influence).
This allows us to forecast the variance of a single observation by the variance formula 
above, treating an observed count ‘k’ as an expected value. We then use these variance 
estimates to fit a weighted regression line to the log-transformed counts. Thus, the 
weight for a count is given by the reciprocal of:

1/k + α

Comparing two decay rates
From any regression fit for each isoform we obtain a value for the slope (the decay rate) 
along with the standard error in estimating the slope. Therefore, to compare between 
two slopes we can derive the standard-normally distributed (assuming is true) test-
statistic from the central limit theorem: 

(ß1 – ß2)/√ se(ß1)2 +se(ß2)2

where ß1, ß2 are the estimated decay rates for 2 isoforms and  se(ß1), (se(ß2) are the 
standard errors in estimating these decay rates.




