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Reconstructing Source-Sink Dynamics in a Population with a
Pelagic Dispersal Phase

Supplemental File

The Covariate Data

The covariate data, i.e. the x’s, used in the jellyfish source-sink reconstructions can be downloaded at
http://homepage.stat.uiowa.edu/~kchan/source-sink.htm

Bootstrap

Define the set of centered residuals {ěi = êi − 1
Tq

∑Tq
j=1 êj ; i = 1, ..., T q}. We randomly select Tq error

terms with replacement, e+ = (e+1 , ..., e
+
Tq), from the set of centered residuals and formulate the bootstrap

sample y+ = ŷ+ e+. The bootstrap estimates of the parameters are then found by fitting the bootstrap
data using the proposed penalized estimation method. This process is repeated a number of times (400
times in the numerical work herein) to obtain the bootstrap distributions of the parameters of interest.

Model Fitting and Diagnostics

The optimization of the objective function is conducted by an iterative algorithm which alternately
updates the parameters source by source until convergence, as follows. Suppose we want to update

all the parameters related to the hth source. Let y
(h)
j,t = yj,t −

∑K
k 6=h(dkvj,k

∑p
i=1 ui,kxi,j,k,t). Upon

fixing all parameters except those of the hth source, the optimization problem becomes minimizing∑
j,t{y

(h)
j,t − dhvj,h

∑p
i=1 ui,hxi,j,h,t}2 +λh

∑p
i=1

∑q
j=1 wi,j,h|dhui,hvj,h| with respect to (dh, ui,h, vj,h), i =

1, . . . , p, j = 1, . . . , q. This much simpler problem can be efficiently solved by an alternating lasso
method; see [1] for details. We use AIC to determine the optimal value of λh. Denote the optimizer as

(d̂
(λh)
h , û

(λh)
i,h , v̂

(λh)
j,h ), with the tuning parameter being λh. Define

AIC(λh) = log(SSE(λh)) +
2

Tq
df(λh),

where SSE(λh) =
∑
j,t{y

(h)
j,t − d̂

(λh)
h v̂

(λh)
j,h

∑p
i=1 û

(λh)
i,h xi,j,h,t}2. Following [2], the degrees of freedom is

given by

df(λh) =

p∑
i=1

I(û
(λh)
i,h 6= 0) +

q∑
j=1

I(v̂
(λh)
j,h 6= 0)− 1,

where I(·) is the indicator function. We compute the solutions over a grid of 100 equally spaced λh values
on the log scale, between λmin = 0 and λmax, the smallest λh value at which all coefficients become
zero [1]. The best λh is selected as the one yielding the smallest AIC. Following [2], the selection of
the K regularization parameters is nested within the iterative algorithm, in order to avoid the compu-
tationally expensive high-dimensional grid search. For the fitted pre-1990 model, the optimal tuning
parameters are 0.010, 0.018, 0.003 and 0.013 (×10−5), for Alaska Peninsula, Bristol Bay, Pribilof Islands
and St. Matthew Island, respectively; their post-1990 model counterparts are 0.015, 0.041, 0.001 and
0.001 (×10−5). While these λ values may seem small in magnitude, the degree of penalization is also
determined by the adaptive weights wi,j,k = (d̃kũi,kṽj,k)−2 where (d̃k, ũi,k, ṽj,k) are the least squares
estimators [3]. Besides, the enforced nonnegativity constraints also promote sparsity in the estimates of
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the u’s and v’s, thereby lessening the penalty needed for recovering certain sparsity pattern.

The variability in the observed jellyfish CPUE data yj,t is substantial, which reflects the complexity
and inhomogeneity of the spatial/temporal dynamics of the distribution of jellyfish. Most of the CPUE ob-
servations in the data are small, with the 50th and 75th percentiles being 0.57 and 2.03, respectively; a few
observations are quite large, with the 95th percentile and the maximum being 7.26 and 22.9, respectively,
indicating occasional large fluctuations in the jellyfish biomass. To alleviate the influence/domination of
the few large observations, the natural log-transformed CPUE, log(yj,t + 1), is found to fit the proposed

source-sink model well, i.e. log(yj,t + 1) = fj,t + ej,t where fj,t =
∑K
k=1{dkvj,k

∑p
i=1 ui,kxi,j,k,t}. Since

log(yj,t + 1) ≈ yj,t when yj,t is small, this transformation has little effect on the majority of the observa-
tions in the data. In fact, the linearity of the model remains to hold approximately. To see this, let fj be
the expected value of fj,t. By Taylor expansion, yj,t ≈ (fj,t−fj +1) exp (ej,t + fj) when fj,t−fj is small,
which means that yj,t is approximately linearly related to fj,t. Therefore, the model interpretations in
the source-sink reconstruction with the log-transformed data remain valid. For future research, it would
be worthwhile to consider a more complex model with the original data, by incorporating a thick-tail
distribution that accounts for the occasional large observations.

We have evaluated the goodness of fit of the fitted source-sink reconstruction model, by checking
whether the errors satisfy the independent and identical distribution (i.i.d.) assumption. The resid-
uals from the pre-1990 and post-1990 periods are combined and standardized region by region. The
autocorrelation patterns of the residuals from each region have been checked, and no significant autocor-
relation is found up to lag 12 for each residual series. The cross correlation patterns between each pair
of prewhitened regional residual series (28 pairs) have also been examined. There are only 4 significant
cross correlations in all pairs of residuals up to lag 6 (13 cross correlations per each pair), i.e. the number
of significant lags is about 1%. Hence, the standardized residuals appear to satisfy the i.i.d. assumption.

We have also checked the normality assumption with the residuals. Fig. S6 displays the Normal
Q-Q plots for the combined residuals, and no clear departure form normality can be seen. Based on the
Shapiro-Wilk normality test, the normality of each set of residuals are not rejected at the 5% significance
level. We note that our proposed method does not require the error term to be normally distributed.
Fig. S7 displays (1) the residuals vs. the fitted values and (2) the observed values vs. the fitted values.
Our model appears to fit the data well, and except for a few possible outliers, the residuals do not show
any discernible pattern.

We use a permutation approach to further assess the model validity, especially to assess the significance
of the structural change in the source-sink dynamics starting in 1990. Under the null hypothesis of no
change in the source-sink dynamics, we can shuffle the datacases by permuting the year. For each
permutated data, we refit the model to the two separate periods (pre- and post-1990) and compute a test
statistic defined as the sum of the AIC of the model using data from the “pre-1990” period and the AIC
of that from the “post-1990” period. This procedure is repeated 500 times, and a reference distribution
is built for the test statistic. The observed test statistic using the actual data is 4.56, and it is smaller
than all the 500 values based on permuted data, i.e., the estimated p-value of no change, computed as
the fraction of the 500 values based on permutated datasets being less than the observed value 4.56 based
on true data, is < 0.002. This result provides strong evidence that a change occurred in the source-sink
dynamics starting 1990.

Altogether, we can conclude from these model diagnostics that our fitted model is correctly specified
and provides a good fit to the data.
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