

Non-cancer morbidity among Estonian Chernobyl cleanup workers: a register-based cohort study

Manuscript ID: K Article Type: F Date Submitted by the Author: Z Complete List of Authors: F K F	BMJ Open bmjopen-2013-004516 Research 20-Nov-2013 Rahu, Kaja; National Institute for Health Development, Department of Epidemiology and Biostatistics Bromet, Evelyn; Stony Brook University School of Medicine, Department of Psychiatry and Behavioral Science Hakulinen, Timo; Finnish Cancer Registry,
Article Type: F Date Submitted by the Author: 2 Complete List of Authors: F F F F	Research 20-Nov-2013 Rahu, Kaja; National Institute for Health Development, Department of Epidemiology and Biostatistics Bromet, Evelyn; Stony Brook University School of Medicine, Department of Psychiatry and Behavioral Science
Date Submitted by the Author: 2 Complete List of Authors: F	20-Nov-2013 Rahu, Kaja; National Institute for Health Development, Department of Epidemiology and Biostatistics Bromet, Evelyn; Stony Brook University School of Medicine, Department of Psychiatry and Behavioral Science
Complete List of Authors:	Rahu, Kaja; National Institute for Health Development, Department of Epidemiology and Biostatistics Bromet, Evelyn; Stony Brook University School of Medicine, Department of Psychiatry and Behavioral Science
E F F	Epidemiology and Biostatistics Bromet, Evelyn; Stony Brook University School of Medicine, Department of Psychiatry and Behavioral Science
F L F	Auvinen, Anssi; University of Tampere, School of Health Sciences; Radiation and Nuclear Safety Authority, Uusküla, Anneli; University of Tartu, Department of Public Health Rahu, Mati; National Institute for Health Development, Department of Epidemiology and Biostatistics
Primary Subject Heading :	Epidemiology
Secondary Subject Heading: 0	Occupational and environmental medicine
	alcohol-induced disorders, Chernobyl nuclear accident, Estonia, MENTAL HEALTH, morbidity, radiation effects

SCHOLARONE[™] Manuscripts

0,14

BMJ Open

Non-cancer morbidity among Estonian Chernobyl cleanup workers: a register-based cohort study

Kaja Rahu,¹* Evelyn J Bromet,² Timo Hakulinen,³ Anssi Auvinen,^{4,5} Anneli Uusküla,⁶ Mati Rahu¹

¹ Department of Epidemiology and Biostatistics, National Institute for Health Development, Tallinn, Estonia

² Department of Psychiatry and Behavioral Science, Stony Brook University School of

Medicine, Stony Brook, NY, USA

³ Finnish Cancer Registry, Helsinki, Finland

⁴ School of Health Sciences, University of Tampere, Tampere, Finland

⁵ Radiation and Nuclear Safety Authority, Helsinki, Finland

⁶ Department of Public Health, University of Tartu, Tartu, Estonia

* Address for correspondence: K. Rahu, Department of Epidemiology and Biostatistics,

National Institute for Health Development, Hiiu 42, 11619 Tallinn, Estonia.

E-mail: kaja.rahu@tai.ee

Tel: +372 659 3943

Fax: +372 659 3901

Keywords: alcohol-induced disorders, Chernobyl nuclear accident, Estonia, mental health,

morbidity, radiation effects

Running head: Morbidity among Estonian Chernobyl cleanup workers

Word count: 3075

ABSTRACT

Objective: To examine non-cancer morbidity in the Estonian Chernobyl cleanup workers cohort in comparison to the unexposed population controls with special attention to radiation-related diseases and mental health disorders.

Design: Register-based cohort study.

Setting: Estonia.

Participants: A total of 3680 cleanup workers (exposed cohort) and 7631 population controls (unexposed cohort) were followed 2004–2012 through the Population Registry and Health Insurance Fund database.

Methods: Morbidity in the exposed cohort compared to the unexposed controls was estimated in terms of rate ratio (RR) with 95% confidence intervals (CI) using Poisson regression models.

Results: Elevated morbidity in the exposed cohort was found for diseases of the nervous system, digestive system, musculoskeletal system, ischemic heart disease, and for external causes. The most salient excess risk was observed for thyroid diseases (RR=1.69; 95% CI 1.38–2.07), intentional self-harm (RR=1.47; 95% CI 1.04–2.09), and selected alcohol-related diagnoses (RR=1.25; 95% CI 1.12–1.39). No increase in morbidity for stress reactions, depression, headaches or sleep disorders was detected.

Conclusions: No obvious excess morbidity consistent with biological effects of radiation was seen in the exposed cohort, with the possible exception of benign thyroid diseases. Increased alcohol-induced morbidity reflects alcohol abuse, and could underlie some of the higher morbidity rates. Mental disorders in the exposed cohort were probably underreported. The future challenge will be to study mental and physical co-morbidities in the Chernobyl cleanup workers cohort.

ARTICLE SUMMARY

Article focus

- Psychological aftermath of the accident at the Chernobyl nuclear power station has been acknowledged as the major long-term public health concern in the exposed populations (including cleanup workers), but the number of publications on this issue is limited.
- Earlier studies of Estonian cleanup workers revealed higher incidence of alcoholrelated cancers and excess of suicide.

Key messages

- No obvious excess morbidity consistent with biological effects of radiation was found in the cleanup workers cohort, with the possible exception of benign thyroid diseases.
- Increased alcohol-induced morbidity in the cleanup workers cohort reflects alcohol abuse, and could underlie some of the higher morbidity rates.
- It is important to study and treat mental and physical co-morbidities in the Chernobyl cleanup workers cohorts.

Strengths and limitations of this study

- Morbidity information provided in this study was obtained from population-based registries via electronic record linkages using personal identification number as the key variable.
- This study was limited to morbidity cases in 2004–2012, no prior information was available.
- The documented radiation doses were not entirely reliable.

INTRODUCTION

In the aftermath of the accident at the Chernobyl nuclear power station in April, 1986, about 600,000 men from throughout the former Soviet Union were commissioned to the area to clean up the environment.[1] Among them were nearly 5000 (mostly) military reservists from Estonia who worked in the contaminated area for three months on average; their mean received cumulative whole-body radiation dose was 0.1 Gy.[2]

Epidemiological evidence of non-cancer disease risk in the cohorts exposed to ionizing radiation is mainly based on mortality since administratively registered death records are available and easy to use for linkages. Dose-dependent risk of death for the broad categories of the circulatory, respiratory and digestive systems has been found among atomic-bomb survivors,[3] but not in other environmentally exposed populations,[4] or in nuclear industry workers.[5] Most of these studies focused on circulatory diseases, the major cause of death in developed countries. Excess mortality from stroke and heart disease was observed in atomic-bomb survivors; however the association below dose of 0.5 Gy was not significant.[6]

A few studies have reported morbidity outcomes. The most informative non-cancer disease incidence study in atomic-bomb survivors found significant radiation effects for thyroid diseases, liver disease, cataract, and calculus of the kidney and ureter.[7] The morbidity study of Mayak nuclear weapons facility workers demonstrated an increasing dose-related trend for cerebrovascular diseases [8] and ischemic heart disease,[9] but did not provide information on risk at doses below 0.2 Gy. Analyses of non-cancer morbidity in a cohort of Russian Chernobyl cleanup workers have shown dose-dependent excess (per 1 Gy) for endocrine and metabolic diseases, mental disorders, diseases of the nervous system, diseases of the digestive system, cerebrovascular diseases, hypertension, and ischemic heart disease.[10, 11] However, risk estimates at low doses still remain uncertain.[12]

BMJ Open

Although the psychological aftermath of the Chernobyl accident has been acknowledged as the major long-term public health problem in the exposed populations,[1, 13] the mental health of cleanup workers has only been assessed in small-scale studies in Ukraine.[14–15] There is an urgent need to examine mental health along with somatic diseases when considering the health of cleanup workers.[15]

An updated analysis of mortality and cancer incidence in the Estonian Chernobyl cohort revealed higher incidence of alcohol-related cancers and excess of suicide.[2] Suicide risk has been persistently elevated since the beginning of follow-up.[16, 17] The current research provides the first overview of morbidity other than cancer in the Estonian cohort of Chernobyl cleanup workers with special attention to radiation-related diseases and mental health disorders.

METHODS

Sample and follow-up

The Estonian cohort of Chernobyl cleanup workers (exposed cohort) includes 4831 men recruited in 1986–1991 to the area by the Soviet authorities for decontamination, building and other related activities. Detailed information on the assembly and description of the cohort is given elsewhere.[18] To examine morbidity in this cohort, we used data from the Estonian Health Insurance Fund (EHIF) database available since January 2004. Thus, for the morbidity analyses we identified all cohort members aged 35–69 years and living in Estonia on January 1, 2004 (3680 men). An unexposed population-based comparison cohort was selected corresponding to the age distribution of the exposed ratio of 1:2 and 5% extra men in each age group was extracted from the Estonian Population Registry (EPR). After excluding 87 men

who had worked in the Chernobyl area, 7631 men remained in the unexposed cohort (Table 1).

The cohort of cleanup workers was linked to the EPR to update vital status (emigration or death with corresponding date), ethnicity and education. Each person in both cohorts was followed up from January 1, 2004 until death, emigration or December 31, 2012 (whichever date came first). From the EHIF database, we obtained dates and ICD-10 codes for each contact with a health provider. All linkages were performed using the unique personal identification number (assigned to all permanent residents of Estonia) as the key variable. EHIF manages the mandatory universal health insurance system that is based on solidarity and covers 95% of the Estonian population.[19] All employees and self-employed persons contribute 13% of their wages, some groups of the population are financed by the State (e.g. registered unemployed, Chernobyl veterans), and some groups are insured without contribution (e.g. children, students, pensioners). People without coverage from the above mentioned sources can pay the tax voluntarily.

Health care contacts were identified from the EHIF database for 2004–2012 using the first occurrence of the three-digit ICD-10 code. All diseases (except cancer, ICD-10 C00–C97), external causes of morbidity, and examinations or counseling were considered. Four-digit codes were taken separately only for some alcohol-induced diseases. A combined category of alcohol-induced diagnoses included mental disorders due to alcohol (F10), degeneration of the nervous system due to alcohol (G31.2), alcoholic cardiomyopathy (I42.6), alcoholic liver disease (K70), alcohol-induced pancreatitis (K86.0), accidental poisoning by alcohol (X45), intentional self-poisoning by alcohol (X65), and poisoning by alcohol, undetermined intent (Y15). The accuracy of the diagnosis was the responsibility of the physician issuing the invoice to EHIF for ambulatory or hospital care.

BMJ Open

Morbidity measures and statistical analysis

We estimated morbidity in the cleanup workers cohort by means of rate ratio (RR) with 95% confidence intervals (CI) using Poisson regression models with the logarithm of the personyears at risk (summed by five-year age groups) as the offset.[20] At first, we performed analysis comparing the exposed cohort with the unexposed cohort (external analysis) to obtain an overview of morbidity rate ratios. Diagnoses were grouped into broad categories with selected specific diagnoses (Table 2). Analyses were adjusted for age at diagnosis by five-year age groups.

Additionally, analysis was done between different subgroups within the exposed cohort (internal analysis) to assess possible effects of year of arrival to Chernobyl area (1986; 1987–1991), duration of stay (<92; ≥ 92 days), documented whole-body radiation dose (<5.0; 5.0-9.9; ≥ 10.0 cGy), education (higher or secondary; basic or less), and ethnicity (Estonian; non-Estonian (mainly Russians)) on morbidity risk. We used year of arrival and duration of stay as proxy variables for radiation exposure estimates for two reasons – radiation doses documented in military passports were unreliable,[18] and for 15% of the cohort members the dose was not recorded. Ethnicity and educational level were included in the analysis as surrogates for health behavior. Smoking and heavy alcohol consumption are more prevalent in less educated men in Estonia.[21, 22] Although population-based health (behavior) prevalence studies do not report differences in smoking and drinking habits between Estonians and non-Estonians,[21, 22] mortality is higher in non-Estonians than in Estonians,[23] particularly alcohol-related mortality.[24]

Analyses within the exposed cohort focused on disease risks previously reported in atomic-bomb survivors and Chernobyl cleanup workers (Table 3). The first set of models included the year of arrival in the Chernobyl area, duration of stay, age at diagnosis, education and ethnicity. One hundred and seventy four subjects with missing information for

any characteristic were excluded from the analysis. In the second set of models we included documented radiation dose; due to unrecorded values, an additional 452 subjects were excluded.

We used Visual FoxPro 6.0 (Microsoft Corporation, Redmond, WA, USA) for database management, and Stata 12 (StataCorp LP, College Station, TX, USA) for statistical modeling.

RESULTS

Description of the exposed and unexposed cohorts

We followed 3680 exposed and 7631 unexposed men from January 1, 2004 until December 31, 2012 (Table 1). The exposed and unexposed cohorts contributed 30,674 and 65,112 person-years, respectively. Mean age at the start of follow-up was 48 years in both cohorts. During the follow-up, 12.9% of the exposed cohort and 10.5% of the unexposed cohort died. The proportions of non-Estonians (mainly Russians) and less educated persons were higher in the exposed cohort, although educational level was unknown for the 16.4% of the subjects in the unexposed cohort. Two-thirds of the cleanup workers entered the Chernobyl area in 1986; the mean and median durations of the mission were 102 and 92 days, respectively (range: 1–833 days). The cohort was exposed to low-level whole-body radiation with the mean and median documented radiation doses of 9.9 and 8.9 cGy, respectively (range: 0.0–54.5 cGy).

Nearly all men had at least one record in the EHIF database (93.6% of the exposed and 95.3% of the unexposed cohort). On average, members of both cohorts had 12 different diagnoses (three-digit ICD-10 codes). Men in the exposed cohort had their first health services contact on average half a year earlier than their unexposed counterparts (52.1 vs. 52.6 years of age).

(Insert Table 1 here)

BMJ Open

Morbidity in the exposed cohort in relation to the unexposed cohort (external analysis) In the external analysis (Table 2), we observed a very small increase of borderline significance in all-disease risk among Chernobyl cleanup workers (RR=1.01; 95% CI 1.00– 1.03). From the non-cancer late effects that might be related to the Chernobyl accident (UNSCEAR 2011), we found significantly elevated morbidity for diseases of thyroid gland (RR=1.69; 95% CI 1.38–2.07) and ischemic heart disease (RR=1.09; 95% CI 1.00–1.18). There was no evidence for excess cataract cases in the exposed cohort. Stress reactions, depression, severe headaches and sleep disorders were not diagnosed more frequently in the exposed cohort than in the reference cohort.

Increased morbidity was apparent for the broad categories of diseases of the nervous system, digestive system, musculoskeletal system, and alcohol-induced diagnoses. Morbidity from external causes in the exposed cohort exceeded that in the unexposed cohort (RR=1.07; 95% CI 1.03–1.11). Significantly higher morbidity was registered for falls, intentional self-harm and exposure to excessive cold. Cleanup workers did not undergo medical observations for suspected diseases (ICD-10 Z03) more frequently than unexposed men (RR=1.06; 95% CI 0.94–1.19).

(Insert Table 2 here)

Differences between subgroups in the exposed cohort (internal analysis)

Internal analysis revealed more depressive disorders and stress reactions (RR=1.27; 95% CI 1.00–1.62), and severe headaches (RR=1.69; 95% CI 1.10–2.60) among cleanup workers who entered the area shortly after the accident than in those arriving later (Table 3). Higher thyroid diseases morbidity was not related to year of arrival in the contaminated area. Longer mission did not increase the morbidity of any disease. Acute myocardial infarction, cerebrovascular diseases, diseases of liver, calculus of kidney and ureter, headaches, and alcohol-induced morbidity occurred more frequently among non-Estonians, while mental

disorders were more frequent among Estonians. Less educated cleanup workers had higher risk for diseases of the nervous system, cerebrovascular diseases, intentional self-harm, and alcohol-induced morbidity, and lower risk for in situ and benign neoplasms.

Including education and ethnicity in the model did not alter markedly the point estimates of RR for year of arrival or duration of stay. Higher documented radiation dose (5.0–9.9 or \geq 10.0 vs. <5.0 cGy) was not associated with higher morbidity of thyroid diseases (RR=0.92; 95% CI 0.60–1.40; 0.92; 0.60–1.40, respectively), cataract (RR=1.26; 95% CI 0.80–1.98; 1.13; 0.70–1.83, respectively), or any of the other selected diseases.

(Insert Table 3 here)

DISCUSSION

The first non-cancer morbidity analysis of the Estonian cohort of Chernobyl cleanup workers revealed elevated morbidity for diseases of the nervous system, digestive system, musculoskeletal system, ischemic heart disease, and for external causes. The most salient excess risk was observed for thyroid diseases, and as expected, for intentional self-harm and selected alcohol-induced diagnoses.

Limitations

First, this study was limited to morbidity cases in 2004–2012. We had no information about morbidity prior to this time period. Thus, it was not possible to specify incident cases or assess early effects of exposure. Among given diseases there could be suspicions or preliminary diagnoses unconfirmed afterwards. We are aware of the possibility of diagnostic errors associated with the use of an reimbursement-administrative database. A small number of cases might have been diagnosed by commercial health care providers and not reported to the EHIF. However, because of universal health insurance, these limitations would be

BMJ Open

expected to affect the exposed and unexposed cohorts in a similar fashion (non-differential misclassification).

Second, the documented radiation doses are not entirely accurate, and there could be incorrect readings in both directions as discussed elsewhere.[2, 18] Although no correlation was observed between individual doses from military passports (lists) and the biodosimetry estimates for the sub-cohort of cleanup workers, it is estimated that the cohort was exposed to low-dose radiation around 0.1 Gy on average.[25, 26] A similar dose level was reported for Latvian and Lithuanian Chernobyl cleanup workers.[27] Thus, we used year of arrival and duration of stay as proxy variables for radiation exposure. Given these limitations, our conclusions are duly tempered.

Possible radiation effects?

Thyroid diseases have been under close surveillance after the Chernobyl accident since radioiodine (mainly ¹³¹I with a half-life of eight days) released during the explosion is concentrated in the thyroid gland. Ron and Brenner [28] summarized the evidence of benign thyroid diseases after radiation exposure. They concluded that associations have been weak and elevated risk occurred mainly in subjects with high doses, exposed at young ages, and in women. Keeping in mind that the cohort of cleanup workers includes only adult men who were exposed to low doses, we cannot attribute the thyroid findings to radiation. This interpretation is supported by the lack of general increase in thyroid diseases in the exposed cohort as well as lack of more pronounced excess among the early entrants or subjects with the highest documented radiation doses. During thyroid screening among the Estonian cleanup workers in 1995, no clear correlation was found between the prevalence of thyroid nodules and the year of arrival or recorded radiation dose.[29]

High radiation doses increase the risk of circulatory diseases, but less is known about the effect of low or moderate doses (<0.5 Gy). Difficulty in estimating dose-response at low dose levels is due to paucity of large cohorts with high-quality data on doses and confounders.[30] As the Estonian cohort of cleanup workers is small and with low average radiation dose, we cannot attribute the small increase in ischemic heart disease morbidity seen in the cohort to biological effects of radiation exposure. This conclusion is also supported by the mortality analyses, where no excess deaths from circulatory diseases were found.[2]

An increased risk of cataract, observed in atomic-bomb survivors [7] and Ukrainian cleanup workers,[31] did not emerge in the Estonian cohort. Although cataract has been conventionally regarded as a late deterministic effect of radiation with a threshold dose of 0.5 Gy, recent studies have suggested a need to lower this dose limit and reconsider the threshold model.[30, 32] Nevertheless, it is unlikely that radiation-related cataracts will be detectable among the Estonian cleanup workers in the future, given the low dose level.

Mental and neurological disorders

Natural or man-made disasters can inflict psychological consequences to the affected populations. Radiation events evoke images of the bombings of Hiroshima and Nagasaki, and mental health effects such as post-traumatic stress, depression, anxiety, and somatization can be long-lasting.[33] After the Chernobyl accident, the mental health of the local population and cleanup workers was considered to be the main public health concern.[1, 13] Cleanup workers were exposed not only to radiation, but also to the lack of protective gear and to the poor living conditions, sometimes doing meaningless jobs, and drinking large amounts of alcohol (mainly home-distilled).[18, 34] Misleading or no information about the possible long-term health effects generated rumors and misapprehensions, and radiation fears were exaggerated.[35, 36] The situation bred profound mistrust of all authorities. One of the most

BMJ Open

difficult lessons from Chernobyl has been to gain the public's trust and to deliver scientific information about the radiation risks, as there exists an insuperable gap between the experts' and public's perceptions about radiation.[37–39]

To date, the persistently elevated suicide risk in the Estonian cohort has been the definitive indication of psychological impairment as a result of working as a Chernobyl cleanup worker.[2] However, the current morbidity analyses showed a mixed pattern of mental and neurological disorders. Based on the results from a study of Ukrainian cleanup workers,[14] we expected higher rates of depression, anxiety, post-traumatic stress disorder, and headaches. Yet, there was no overall increase of mental disorders as a group (RR=1.00), or of physician-diagnosed depression or anxiety. During the follow-up period, the cleanup workers used health care services significantly less frequently for stress reactions than the unexposed cohort. No excess of severe headaches or sleep disorders was found among cleanup workers. However, depression and stress reactions, and severe headaches were more frequent in the early entrants. Elevated morbidity due to intentional self-harm is also an indicator of psychological distress. This finding is consistent with the increased suicide rate in the cohort,[2] which is strongly related to alcohol dependence among middle-aged men in Estonia.[40]

Excess morbidity emerged for alcohol-induced diseases – mental disorders due to alcohol and degeneration of nervous system due to alcohol. Morbidity from alcohol-induced diagnoses as a group was 25% higher among cleanup workers than in the unexposed cohort. Considering common alcohol abuse among men in Estonia (especially with lower educational level),[22] it is not surprising that cleanup workers used alcohol to cope with stressful situation, and still do. Higher morbidity due to excessive cold is most likely attributable to homelessness and suggests that periods of homelessness were more common in cleanup workers than in men in the comparison cohort. Results of our study demonstrate that the men

with Estonian ethnicity and/ or higher educational level coped better with Chernobyl consequences including alcohol abuse.

Although Ukrainian cleanup workers had more mental disorders than controls, no excess of alcoholism was observed.[14] This illustrates how analysis of similar cohorts with different design and risk measures can produce entirely opposite results. Very likely, mental disorders other than alcoholism were under-diagnosed in the Estonian cohort, and the prevalence of alcohol problems was underestimated in the Ukrainian cohort. It is common that people do not seek professional help for mental health problems.[33] Untreated mental disorders can manifest as unexplained physical complaints such as headache or back pain, or they are risk factors for somatic diseases (e.g. thyroid diseases of diseases of the digestive system).[41, 42] Thus, it is important to pay attention to both mental and somatic diseases of Chernobyl cleanup workers simultaneously.

CONCLUSIONS

No obvious excess morbidity consistent with biological effects of radiation was seen in the exposed cohort, with the possible exception of benign thyroid diseases. Increased alcoholinduced morbidity reflects alcohol abuse, and could underlie some of the higher morbidity rates. Mental disorders in the exposed cohort were probably underreported. The future challenge will be to study mental and physical co-morbidities in the Chernobyl cleanup workers cohort.

Acknowledgements The authors thank Triin Habicht and Elin Raaper from the Estonian Health Insurance Fund for data linkages.

BMJ Open

Contributors KR and MR designed the study. KR performed the statistical analyses and drafted the manuscript. EB, TH, AA, AU and MR contributed to the interpretation of the results and revised critically the manuscript. MR supervised the whole process. All authors have seen and approved the final version of the manuscript.

Funding This stage of the study was supported financially by the Estonian Research Council (IUT5-1), and by the Estonian Ministry of Education and Research (target funding SF0180060s09).

Competing interests None.

Ethics approval The study was approved by the Tallinn Medical Ethics Committee (no. 1939, February 11, 2010), and by the Estonian Data Protection Inspectorate (no. 2.2-3/10/120r, April 9, 2010).

Data sharing statement No additional data are available.

REFERENCES

- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation vol 2. New York: United Nations, 2011.
- Rahu K, Auvinen A, Hakulinen T, *et al.* Chernobyl cleanup workers from Estonia: follow-up for cancer incidence and mortality. *J Radiol Prot* 2013;33:395–411.
- Ozasa K, Shimizu Y, Suyama A, *et al.* Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. *Radiat Res* 2012;177:229–43.

- Boice JD Jr, Mumma MT, Blot WJ. Cancer incidence and mortality in populations living near uranium milling and mining operations in Grants, New Mexico, 1950– 2004. *Radiat Res* 2010;174:624–36.
 - Vrijheid M, Cardis E, Ashmore P, *et al.* Mortality from diseases other than cancer following low doses of ionizing radiation: results from the 15-Country Study of nuclear industry workers. *Int J Epidemiol* 2007;36:1126–35.
 - Shimizu Y, Kodama K, Nishi N, *et al.* Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. *BMJ* 2010;340:b5349.
- Yamada M, Wong FL, Fujiwara S, *et al.* Noncancer disease incidence in atomic bomb survivors, 1958–1998. *Radiat Res* 2004;161:622–32.
- Azizova TV, Muirhead CR, Moseeva MB, *et al.* Cerebrovascular diseases in nuclear workers first employed at the Mayak PA in 1948–1972. *Radiat Environ Biophys* 2011;50:539–52.
- 9. Azizova TV, Muirhead CR, Moseeva MB, *et al.* Ischemic heart disease in nuclear workers first employed at the Mayak PA in 1948–1972. *Health Phys* 2012;103:3–14.
- Ivanov VK, Maksioutov MA, Chekin SYu, *et al.* Radiation-epidemiological analysis of incidence of non-cancer diseases among the Chernobyl liquidators. *Health Phys* 2000;78:495–501.
- Ivanov VK, Maksioutov MA, Chekin SY, *et al.* The risk of radiation-induced cerebrovascular disease in Chernobyl emergency workers. *Health Phys* 2006;90:199– 207.
- 12. Preston RJ, Boice JD Jr, Brill AB, *et al.* Uncertanties in estimating health risks associated with exposure to ionising radiation. *J Radiol Prot* 2013;33:573–88.

BMJ Open

13.	Balonov MI. The Chernobyl Forum: major findings and recommendations. J Environ
	Radioact 2007;96:6–12.
14.	Loganovsky K, Havenaar JM, Tintle NL, et al. The mental health of clean-up workers
	18 years after the Chernobyl accident. Psychol Med 2008;38:481-8.
15.	Bromet EJ, Havenaar JM, Guey LT. A 25 year retrospective review of the
	psychological consequences of the Chernobyl accident. Clini Oncol (R Coll Radiol)
	2011;23:297–305.
16.	Rahu M, Tekkel M, Veidebaum T, et al. The Estonian study of Chernobyl cleanup
	workers: II. Incidence of cancer and mortality. Radiat Res 1997;147:653-7.
17.	Rahu K, Rahu M, Tekkel M, et al. Suicide risk among Chernobyl cleanup workers in
	Estonia still increased: an updated cohort study. Ann Epidemiol 2006;16:917-9.
18.	Tekkel M, Rahu M, Veidebaum T, et al. The Estonian study of Chernobyl cleanup
	workers: I. Design and questionnaire data. Radiat Res 1997;147:641-52.
19.	Koppel A, Kahur K, Habicht T, et al. Estonia: Health system review. Health Syst
	<i>Transit</i> 2008;10:1–230.
20.	Clayton D, Hills M. Statistical Models in Epidemiology. New York: Oxford
	University Press, 1993.
21.	Pärna K, Rahu K. Socio-economic differences in smoking. <i>Eesti Arst</i> 2008;88:57-62
	(in Estonian).
22.	Pärna K, Rahu K, Helakorpi S, et al. Alcohol consumption in Estonia and Finland:
	Finbalt survey 1994–2006. BMC Public Health 2010;10:261.
23.	Leinsalu M, Vågerö D, Kunst AE. Increasing ethnic differences in mortality in
	Estonia after the collapse of the Soviet Union. J Epidemiol Community Health
	2004;58:583–9.
	17

- 24. Rahu K, Pärna K, Palo E, et al. Contrasts in alcohol-related mortality in Estonia: education and ethnicity. Alcohol Alcohol 2009;44:517-22. 25. Bigbee WL, Jensen RH, Veidebaum T, et al. Biodosimetry of Chernobyl cleanup workers from Estonia and Latvia using the glycophorin A in vivo somatic cell mutation assay. Radiat Res 1997;147:215-24. 26. Littlefield LG, McFee AF, Salomaa SI, et al. Do recorded doses overestimate true doses received by Chernobyl cleanup workers? Results of cytogenetic analyses of Estonian workers by fluorescence in situ hybridization. Radiat Res 1998;150:237–49. 27. Rahu K, Hakulinen T, Smailyte G, et al. Site-specific cancer risk in the Baltic cohort of Chernobyl cleanup workers, 1986–2007. Eur J Cancer 2013;49:2926–33. 28. Ron E, Brenner A. Non-malignant thyroid diseases after a wide range of radiation exposures. Radiat Res 2010;174:877-88. 29. Inskip PD, Hartshorne MF, Tekkel M, et al. Thyroid nodularity and cancer among Chernobyl cleanup workers from Estonia. Radiat Res 1997;147:225-35. 30. Little MP. A review of non-cancer effects, especially circulatory and ocular diseases. Radiat Environ Biophys 2013;52:435–49. 31. Worgul BV, Kundiyev YI, Sergiyenko NM, et al. Cataracts among Chernobyl cleanup workers: implications regarding permissible eye exposures. *Radiat Res* 2007;167:233-43. 32. Hammer GP, Scheidemann-Wesp U, Samkange-Zeeb F, et al. Occupational exposure to low doses of ionizing radiation and cataract development: a systematic literature review and perspectives on future studies. Radiat Environ Biophys 2013;52:303–19.
 - 33. Bromet EJ. Lessons learned from radiation disasters. *World Psychiatry* 2011;10:83–4.
 - Tarlap T. Chernobyl 1986: Memoirs of an Estonian Cleanup Worker. Tallinn: IECM, 1995.

BMJ Open

35.	Rahu M. Health effects of the Chernobyl accident: fears, rumours and the truth. Eur J
	<i>Cancer</i> 2003;39:295–9.
36.	Balonov MI. On protecting the inexperienced reader from Chernobyl myths. J Radiol
	<i>Prot</i> 2012;32:181–9.
37.	Loewenberg S. Mikhail Balonov: understanding the legacy of Chernobyl. Lancet
	2006:367:1311.
38.	Thomas GA. Putting health risks from radiation exposure into context: lessons from
	past accidents. Ann Acad Med Singapore 2011;40:158-9.
39.	Perko T. Radiation risk perception: a discrepancy between the experts and the general
	population. J Environ Radioact Available online: 15 May 2013. doi:
	10.1016/j.jenvrad.2013.04.005.
40.	Kõlves K, Värnik A, Tooding LM, et al. The role of alcohol in suicide: a case-control
	psychological autopsy study. Psychol Med 2006;36:923-30.
41.	Ginzburg K, Solomon Z. Trajectories of stress reactions and somatization symptoms
	among war veterans: a 20-year longitudinal study. <i>Psychol Med</i> 2011;41:353-62.
42.	Sanna L, Stuart AL, Pasco JA, et al. Physical comorbidities in men with mood and
	anxiety disorders: a population-based study. BMC Med 2013;11:110.

1
2
3
4
5
6
7
0
0
9
10
11
12
13
1/
15
10
16
17
18
19
20
21
22
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
23
24
25
26
27
28
20
20
30
31
32
33
34
35
36
27
31
38
39
41
42
43
44
45
46
47
48
49
50
51
52
52 53
54
55
56
57
58
59
09

1

Table 1 Characteristics of the Estonian cohort of Chernobyl cleanup workers (exposed cohort) and the unexposed population cohort

No. 3680 3132 474 74 1265 1850 536 29 4718.4 15,513.5 9303.9 1138.6 30,674.4	(%) (100) (85.1) (12.9) (2.0) (34.4) (50.3) (14.6) (0.8) (15.4) (50.6) (30.3) (3.7)	No. 7631 6795 798 38 2645 3738 1186 62 9416.1 32,825.3	(%) (100) (89.0) (10.5) (0.5) (34.7) (49.0) (15.5) (0.8) (14.5) (50.4)
3132 474 74 1265 1850 536 29 4718.4 15,513.5 9303.9 1138.6	(85.1) (12.9) (2.0) (34.4) (50.3) (14.6) (0.8) (15.4) (50.6) (30.3)	6795 798 38 2645 3738 1186 62 9416.1 32,825.3	(89.0) (10.5) (0.5) (34.7) (49.0) (15.5) (0.8) (14.5)
474 74 1265 1850 536 29 4718.4 15,513.5 9303.9 1138.6	(12.9) (2.0) (34.4) (50.3) (14.6) (0.8) (15.4) (50.6) (30.3) (15.4) (15.4) (15.4) (15.6) (1	798 38 2645 3738 1186 62 9416.1 32,825.3	(10.5) (0.5) (34.7) (49.0) (15.5) (0.8) (14.5)
474 74 1265 1850 536 29 4718.4 15,513.5 9303.9 1138.6	(12.9) (2.0) (34.4) (50.3) (14.6) (0.8) (15.4) (50.6) (30.3) (15.4) (15.4) (15.4) (15.6) (1	798 38 2645 3738 1186 62 9416.1 32,825.3	(10.5) (0.5) (34.7) (49.0) (15.5) (0.8) (14.5)
74 1265 1850 536 29 4718.4 15,513.5 9303.9 1138.6	(2.0) (34.4) (50.3) (14.6) (0.8) (15.4) (50.6) (30.3)	38 2645 3738 1186 62 9416.1 32,825.3	(0.5) (34.7) (49.0) (15.5) (0.8) (14.5)
1265 1850 536 29 4718.4 15,513.5 9303.9 1138.6	(2.0) (34.4) (50.3) (14.6) (0.8) (15.4) (50.6) (30.3)	38 2645 3738 1186 62 9416.1 32,825.3	(0.5) (34.7) (49.0) (15.5) (0.8) (14.5)
1850 536 29 4718.4 15,513.5 9303.9 1138.6	(34.4) (50.3) (14.6) (0.8) (15.4) (50.6) (30.3)	2645 3738 1186 62 9416.1 32,825.3	(34.7) (49.0) (15.5) (0.8) (14.5)
1850 536 29 4718.4 15,513.5 9303.9 1138.6	(50.3) (14.6) (0.8) (15.4) (50.6) (30.3)	3738 1186 62 9416.1 32,825.3	(49.0) (15.5) (0.8) (14.5)
1850 536 29 4718.4 15,513.5 9303.9 1138.6	(50.3) (14.6) (0.8) (15.4) (50.6) (30.3)	3738 1186 62 9416.1 32,825.3	(49.0) (15.5) (0.8) (14.5)
536 29 4718.4 15,513.5 9303.9 1138.6	(14.6) (0.8) (15.4) (50.6) (30.3)	1186 62 9416.1 32,825.3	(15.5) (0.8) (14.5)
29 4718.4 15,513.5 9303.9 1138.6	(0.8) (15.4) (50.6) (30.3)	62 9416.1 32,825.3	(0.8)
4718.4 15,513.5 9303.9 1138.6	(15.4) (50.6) (30.3)	9416.1 32,825.3	(14.5)
15,513.5 9303.9 1138.6	(50.6) (30.3)	32,825.3	· · ·
15,513.5 9303.9 1138.6	(50.6) (30.3)	32,825.3	· · ·
9303.9 1138.6	(30.3)	,	
1138.6	· /	20,126.9	(30.9)
	(3.7)	20,120.9	(4.2)
30,074.4	(100)		· · ·
	(100)	65,111.8	(100)
2026	(55.2)	1(00	((1, 5))
	· · ·		(61.5)
	· /		(37.3)
1	(0.0)	93	(1.2)
222	(0, 0)	11.50	(15.0)
	· · ·		(15.2)
			(52.6)
			(15.7)
88	(2.4)	1255	(16.4)
	· /		
	· /		
	· /		
417	(11.3)		
67	(1.8)		
81	(2.2)		
220	(6.0)		
1487	(40.4)		
1163	(31.6)		
648	(17.6)		
60	(1.6)		
102	(2.8)		
	× /		
810	(22.0)		
	· /		
	· /		
	· /		
	· · ·		
	2036 1643 1 322 2446 824 88 1154 1128 13 820 417 67 81 220 1487 1163 648 60 102	$\begin{array}{c} 2036 (55.3) \\ 1643 (44.6) \\ 1 (0.0) \\ 322 (8.8) \\ 2446 (66.5) \\ 824 (22.4) \\ 88 (2.4) \\ 1154 (31.4) \\ 1128 (30.7) \\ 13 (0.4) \\ 820 (22.3) \\ 417 (11.3) \\ 67 (1.8) \\ 81 (2.2) \\ 220 (6.0) \\ 1487 (40.4) \\ 1163 (31.6) \\ 648 (17.6) \\ 60 (1.6) \\ 102 (2.8) \\ 810 (22.0) \\ 1022 (27.8) \\ 555 (15.1) \\ 519 (14.1) \\ 195 (5.3) \\ 21 (0.6) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

BMJ Open

Table 2 Number of morbidity cases and age-adjusted morbidity rate ratios* (RR) with 95% confidence intervals (CI) in the Estonian cohort of Chernobyl cleanup workers (exposed cohort) in relation to the unexposed population cohort, 2004–2012

ICD-10	Diagnosis/ external cause of morbidity		f cases	RR (95% CI)
		Exposed cohort	Unexposed cohort	
A00–R99, V01–Z99	All diagnoses and external causes	41,370	86,441	1.02 (1.01-1.03
A00–R99, V01–299 A00–R99,	All diseases, except cancer	31,757	66,799	1.01 (1.00–1.03
except C00–C97	An diseases, except cancer	51,757	00,799	1.01 (1.00-1.05
A00–B99	Infectious diseases	1338	3022	0.94 (0.88-1.00
A00–B99 A15–A16	Respiratory tuberculosis	41	73	1.19 (0.81–1.74
D00–D48	In situ and benign neoplasms	517	1060	1.04 (0.94–1.16
D50–D48 D50–D89	Diseases of the blood and blood-forming organs	97	195	1.07 (0.84–1.36
E00–E90	Endocrine, nutritional and metabolic diseases	806	1754	0.98 (0.90–1.07
E00–E90	Diseases of thyroid gland	167	211	1.69 (1.38–2.07
F00–F99	Mental disorders	1380	2918	1.00 (0.94–1.07
F10	Mental disorders due to alcohol	328	570	1.21 (1.06–1.39
F32–F33	Depressive disorders	290	633	0.97 (0.84–1.11
F32-F33 F41	Anxiety disorders	290 119	275	0.97 (0.84–1.11
	-	55		
F43	Stress reactions		162	0.72 (0.53-0.97
G00–G99	Diseases of the nervous system	1352	2550	1.13 (1.06–1.21
G31.2	Degeneration of nervous system due to alcohol	48	68	1.51 (1.04–2.18
G40	Epilepsy	148	223	1.40 (1.14-1.73
G43–G44	Migraine and other headache	125	256	1.03 (0.83-1.28
G50–G59	Nerve, nerve root and plexus disorders	447	829	1.15 (1.02-1.29
F51, G47	Sleep disorders	267	529	1.08 (0.93-1.25
H00–H59	Diseases of the eye	2004	4592	0.93 (0.89-0.98
H25–H26, H28	Cataract	155	449	0.77 (0.64-0.92
H40, H42	Glaucoma	109	247	0.96 (0.77-1.20
H60–H95	Diseases of the ear	1228	2707	0.97 (0.91–1.04
100–199	Diseases of the circulatory system	4432	9477	1.00 (0.97–1.04
I10–I15	Hypertensive diseases	1936	4210	0.98 (0.93-1.04
120–125	Ischemic heart disease	773	1537	1.09 (1.00–1.18
I21	Acute myocardial infarction	104	214	1.05 (0.83–1.33
I60–I69	Cerebrovascular diseases	291	606	1.05 (0.91–1.20
J00–J99	Diseases of the respiratory system	4699	10,079	0.99 (0.95–1.02
J30–J39	Diseases of upper respiratory tract	592	1431	0.87 (0.79–0.96
J40–J47	Lower respiratory diseases	580	1130	1.10 (1.00–1.22
K00–K93	Diseases of the digestive system	3179	6068	1.11 (1.07–1.16
K20–K31	Diseases of oesophagus, stomach and duodenum	1415	2648	1.14 (1.06–1.2)
K25–K27	Peptic ulcer	464	857	1.15 (1.02-1.28
K70–K77	Diseases of liver	194	357	1.16 (0.97-1.38
K70	Alcoholic liver disease	68	117	1.23 (0.91-1.66
K85–K86	Diseases of pancreas	128	213	1.27 (1.02-1.58
K86.0	Alcohol-induced pancreatitis	25	41	1.27 (0.77-2.09
L00-L99	Diseases of the skin	1793	3730	1.02 (0.97-1.08
M00-M99	Diseases of the musculoskeletal system	6296	12,623	1.06 (1.03-1.09
M15-M19	Arthrosis	925	1881	1.06 (0.98-1.14
M54	Dorsalgia	1475	2817	1.11 (1.04–1.18
N00–N99	Diseases of the genitourinary system	1518	3648	0.89 (0.84-0.9
N20	Calculus of kidney and ureter	140	321	0.93 (0.76-1.14
N40	Hyperplasia of prostate	418	1032	0.88 (0.79-0.99
R00–R99	Findings, not elsewhere classified	1091	2297	1.01 (0.94–1.09
V01-Y98	External causes of morbidity	5084	10,055	1.07 (1.03–1.1
V01–V99	Transport accidents	171	423	0.85 (0.71–1.02
W00-W19	Falls	2010	3817	1.11 (1.06–1.18
W20–W49	Exposure to mechanical forces	1864	3799	1.03 (0.98–1.0
X31	Excessive cold	26	32	1.74 (1.04–2.92
X40–X49	Accidental poisoning	20 34	69	1.05 (0.69–1.5
X60–X84	Intentional self-harm	53	09 76	1.47 (1.04–2.09
Z00–Z99	Contact with health services	4135	8862	0.99 (0.96–1.03
Z00–Z99 Z03	Medical observation for suspected disease	389	788	1.06 (0.94–1.19
	INCULATIONS VATION TO SUSDECTED UISEASE	207	/00	1.00.00.74-1.15

F10, G31.2, I42.6, K70,	Selected alcohol-induced diagnoses and	528	896	1.25 (1.12–1.39)
K86.0, X45, X65, Y15	external causes of morbidity			
* * 1				

* Adjusted for age at diagnosis

Table 3 Adjusted morbidity rate ratios* (RR) with 95% confidence intervals (CI) by exposure for selected diagnoses and external causes of morbidity in the Estonian cohort of Chernobyl cleanup workers (exposed cohort), 2004–2012

ICD-10	Diagnosis/	Year of arrival	Duration of stay	Ethnicity	Education
	external cause of morbidity	1986†	≥92 days‡	Non-Estonian§	Basic or less
D00–D48	In situ and benign	1.15 (0.95–1.39)	0.77 (0.64-0.92)	1.09 (0.91-1.30)	0.76 (0.61-0.96)
	neoplasms				
E00-E07	Diseases of thyroid gland	0.94 (0.68-1.31)	1.00 (0.73-1.38)	0.85 (0.62-1.17)	0.82 (0.55-1.22)
F00-F99	Mental disorders	1.08 (0.96-1.21)	0.85 (0.76-0.95)	0.82 (0.74-0.92)	1.11 (0.97-1.27)
F32–F33, F43	Depressive disorders and stress reactions	1.27 (1.00–1.62)	0.72 (0.58-0.90)	0.53 (0.41–0.67)	0.88 (0.66–1.17)
G00–G99	Diseases of the nervous system	1.01 (0.90–1.13)	0.93 (0.83–1.04)	0.97 (0.87–1.09)	1.20 (1.05–1.37)
G43–G44	Migraine and other headache	1.69 (1.10–2.60)	0.79 (0.55–1.14)	1.48 (1.03–2.12)	0.97 (0.59–1.58)
H25–H26, H28	Cataract	1.07 (0.77-1.49)	1.05 (0.76-1.45)	1.29 (0.93-1.77)	0.93 (0.65-1.33)
H40, H42	Glaucoma	1.26 (0.83-1.89)	0.78 (0.52-1.15)	1.20 (0.81-1.78)	0.80 (0.51-1.27)
I10–I15	Hypertensive diseases	1.03 (0.94-1.14)	0.92 (0.84-1.01)	1.07 (0.98-1.17)	0.99 (0.88-1.11)
I20–I25	Ischemic heart disease	1.15 (0.99–1.34)	0.81 (0.70-0.94)	1.12 (0.97-1.30)	1.10 (0.93-1.30)
I21	Acute myocardial infarction	1.11 (0.74–1.68)	0.94 (0.63–1.39)	1.53 (1.03–2.26)	1.17 (0.74–1.83)
I60–I69	Cerebrovascular diseases	1.11 (0.86-1.42)	1.03 (0.81-1.42)	1.65 (1.30-2.11)	1.61 (1.25-2.08)
K70–K77	Diseases of liver	1.13 (0.82-1.54)	1.13 (0.84–1.51)	1.42 (1.07-1.90)	1.12 (0.79-1.58)
N20	Calculus of kidney and ureter	1.08 (0.74–1.57)	0.88 (0.62–1.26)	1.99 (1.39–2.85)	0.73 (0.45–1.19)
X60-X84	Intentional self-harm	1.27 (0.68–2.36)	0.77 (0.43-1.37)	1.43 (0.82-2.52)	2.73 (1.48-5.05)
F10, G31.2, I42.6,	Selected alcohol-induced	0.92 (0.76-1.11)	0.98 (0.82-1.17)	1.37 (1.15–1.63)	1.76 (1.44-2.15)
K70, K86.0, X45,	diagnoses and external	· í			
X65, Y15	causes of morbidity				

* Models include age at diagnosis, year of arrival, duration of stay, ethnicity, and education

† 1987–1991 as the reference category

‡ <92 days as the reference category

§ Estonian as the reference category

gory ¶ Higher/ secondary as the reference category

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	ltem #	Recommendation	Reported on page #		
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1		
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2		
Introduction					
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported 4-5			
Objectives	3	State specific objectives, including any prespecified hypotheses	5		
Methods					
Study design	4	Present key elements of study design early in the paper	5		
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6		
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5		
		(b) For matched studies, give matching criteria and number of exposed and unexposed			
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 6-7			
Data sources/ measurement	8*	^{3*} For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe 6-7 comparability of assessment methods if there is more than one group			
		7-8			
Study size	10	Explain how the study size was arrived at	5-6		
Quantitative variables			7-8		
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8		
		(b) Describe any methods used to examine subgroups and interactions	7-8		
		(c) Explain how missing data were addressed	7-8		
		(d) If applicable, explain how loss to follow-up was addressed	no losses (Table 1)		
		(e) Describe any sensitivity analyses			
Results					

BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	8, Table 1
		(b) Give reasons for non-participation at each stage	5-6
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8, Table 1
		(b) Indicate number of participants with missing data for each variable of interest	8, Table 1
		(c) Summarise follow-up time (eg, average and total amount)	8, Table 1
Outcome data	15*	Report numbers of outcome events or summary measures over time	8, Table 2
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	9-10, Table 2-3
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	8
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9-10, Table 3
Discussion			
Key results	18	Summarise key results with reference to study objectives	10
Limitations			10-11
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	10-14
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other information			14-15
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	15
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Non-cancer morbidity among Estonian Chernobyl cleanup workers: a register-based cohort study

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-004516.R1
Article Type:	Research
Date Submitted by the Author:	27-Mar-2014
Complete List of Authors:	Rahu, Kaja; National Institute for Health Development, Department of Epidemiology and Biostatistics Bromet, Evelyn; Stony Brook University School of Medicine, Department of Psychiatry and Behavioral Science Hakulinen, Timo; Finnish Cancer Registry, Auvinen, Anssi; University of Tampere, School of Health Sciences; Radiation and Nuclear Safety Authority, Uusküla, Anneli; University of Tartu, Department of Public Health Rahu, Mati; National Institute for Health Development, Department of Epidemiology and Biostatistics
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Occupational and environmental medicine
Keywords:	alcohol-induced disorders, Chernobyl nuclear accident, Estonia, MENTAL HEALTH, morbidity, radiation effects
2	SCHOLARONE [™] Manuscripts

BMJ Open

Non-cancer morbidity among Estonian Chernobyl cleanup workers: a register-based cohort study

Kaja Rahu,¹* Evelyn J Bromet,² Timo Hakulinen,³ Anssi Auvinen,^{4,5} Anneli Uusküla,⁶ Mati Rahu¹

¹ Department of Epidemiology and Biostatistics, National Institute for Health Development, Tallinn, Estonia

² Department of Psychiatry and Behavioral Science, Stony Brook University School of

Medicine, Stony Brook, NY, USA

³ Finnish Cancer Registry, Helsinki, Finland

⁴ School of Health Sciences, University of Tampere, Tampere, Finland

⁵ Radiation and Nuclear Safety Authority, Helsinki, Finland

⁶ Department of Public Health, University of Tartu, Tartu, Estonia

* Address for correspondence: K. Rahu, Department of Epidemiology and Biostatistics,

National Institute for Health Development, Hiiu 42, 11619 Tallinn, Estonia.

E-mail: kaja.rahu@tai.ee

Tel: +372 659 3943

Fax: +372 659 3901

Keywords: alcohol-induced disorders, Chernobyl nuclear accident, Estonia, mental health,

morbidity, radiation effects

Running head: Morbidity among Estonian Chernobyl cleanup workers

Word count: 3526

ABSTRACT

Objective: To examine non-cancer morbidity in the Estonian Chernobyl cleanup workers cohort compared to the population sample with special attention to radiation-related diseases and mental health disorders.

Design: Register-based cohort study.

Setting: Estonia.

Participants: An exposed cohort of 3680 men (cleanup workers) and an unexposed cohort of 7631 men (population sample) were followed 2004–2012 through the Population Registry and Health Insurance Fund database.

Methods: Morbidity in the exposed cohort compared to the unexposed controls was estimated in terms of rate ratio (RR) with 95% confidence intervals (CI) using Poisson regression models.

Results: Elevated morbidity in the exposed cohort was found for diseases of the nervous system, digestive system, musculoskeletal system, ischemic heart disease, and for external causes. The most salient excess risk was observed for thyroid diseases (RR=1.69; 95% CI 1.38–2.07), intentional self-harm (RR=1.47; 95% CI 1.04–2.09), and selected alcohol-related diagnoses (RR=1.25; 95% CI 1.12–1.39). No increase in morbidity for stress reactions, depression, headaches or sleep disorders was detected.

Conclusions: No obvious excess morbidity consistent with biological effects of radiation was seen in the exposed cohort, with the possible exception of benign thyroid diseases. Increased alcohol-induced morbidity may reflect alcohol abuse, and could underlie some of the higher morbidity rates. Mental disorders in the exposed cohort were probably underreported. The future challenge will be to study mental and physical co-morbidities in the Chernobyl cleanup workers cohort.

ARTICLE SUMMARY

Article focus

- There is limited information about the impact of the Chernobyl accident on the noncancer morbidity among the cleanup workers. Earlier studies of Estonian cleanup workers revealed an excess of suicide.
- This study provides insight into non-cancer morbidity in the cohort of Estonian cleanup workers with emphasis on radiation-related diseases and mental health disorders.

Key messages

- No obvious excess morbidity consistent with biological effects of radiation was found in the cleanup workers cohort, with the possible exception of benign thyroid diseases.
- Increased alcohol-induced morbidity in the cleanup workers cohort may reflect alcohol abuse, and could underlie some of the higher morbidity rates. Mental disorders in the exposed cohort were probably underreported.

Strengths and limitations of this study

- Morbidity information provided in this study was obtained from population-based registries via electronic record linkages using personal identification number as the key variable.
- Limitations of the study are as follows: relatively short follow-up; the probable presence of tentative and preliminary diagnoses in the health insurance database; the documented radiation doses were not entirely reliable; the small size of the cohort; probable overestimation of findings due to multiple comparisons.

INTRODUCTION

In the aftermath of the accident at the Chernobyl nuclear power station in April, 1986, about 600,000 men from throughout the former Soviet Union were commissioned to the area to clean up the environment.[1] Among them were nearly 5000 (mostly) military reservists from Estonia who worked in the contaminated area for three months on average; their mean received cumulative whole-body radiation dose was 0.1 Gy.[2]

Epidemiological evidence of non-cancer disease risk in the cohorts exposed to ionizing radiation is mainly based on mortality since administratively registered death records are available and easy to use for linkages. Most of these studies have focused on circulatory diseases, the major cause of death in developed countries. Excess mortality from all circulatory diseases, stroke and heart disease was observed in atomic-bomb survivors; however the association below dose of 0.5 Gy was not significant.[3] Follow-up of nuclear industry workers from 15 countries resulted with no significant findings for a dose-dependent rise in mortality from circulatory diseases.[4] Elevated risk of death for the broad categories of the respiratory and digestive systems has been found among atomic-bomb survivors,[5] but not in other environmentally exposed populations [6] or in nuclear industry workers.[4]

A few studies have reported morbidity outcomes. The most informative non-cancer disease incidence study in atomic-bomb survivors found significant radiation effects for thyroid diseases, liver disease, cataract, and calculus of the kidney and ureter.[7] The morbidity study of Mayak nuclear weapons facility workers demonstrated an increasing dose-related trend for cerebrovascular diseases [8] and ischemic heart disease,[9] but did not provide information on risk at doses below 0.2 Gy. A meta-analysis by Little et al. [10] combining morbidity and mortality studies of occupationally and environmentally exposed populations with mean dose below 0.5 Gy, demonstrated significantly increased dose-

BMJ Open

dependent risk for ischemic heart disease, cerebrovascular diseases and other circulatory diseases.

Analyses of non-cancer morbidity in a cohort of Russian Chernobyl cleanup workers have shown dose-dependent excess (per 1 Gy) for endocrine and metabolic diseases, mental disorders, diseases of the nervous system, diseases of the digestive system, cerebrovascular diseases, hypertension, and ischemic heart disease.[11, 12] However, risk estimates at low doses still remain uncertain.[13]

Although the psychological aftermath of the Chernobyl accident has been acknowledged as the major long-term public health problem in the exposed populations,[1, 14] the mental health of cleanup workers has only been assessed in small-scale studies in Ukraine.[15–16] There is an urgent need to examine mental health along with somatic diseases when considering the health of cleanup workers.[16]

An updated analysis of mortality and cancer incidence in the Estonian Chernobyl cohort revealed higher incidence of alcohol-related cancers and excess of suicide.[2] Suicide risk has been persistently elevated since the beginning of follow-up.[17, 18] The current research provides the first overview of morbidity other than cancer in the Estonian cohort of Chernobyl cleanup workers with special attention to radiation-related diseases and mental health disorders.

METHODS

Sample and follow-up

The Estonian cohort of Chernobyl cleanup workers (exposed cohort) includes 4831 men recruited in 1986–1991 to the Chernobyl area by the Soviet authorities for decontamination, building and other related activities. The "Chernobyl area" here denotes the 30-km zone (an area of 30-km radius from the nuclear power station) and territories outside, where the

workers were engaged with different activities during their mission period. Detailed information on the assembly and description of the cohort is given elsewhere.[19] To examine morbidity in this cohort, we used data from the Estonian Health Insurance Fund (EHIF) database available since January 2004. Thus, for the morbidity analyses we identified all cohort members aged 35–69 years and living in Estonia on January 1, 2004. Altogether, of 4831 men in the initial cohort, 1129 were excluded because of loss in follow-up (21), death (602) and emigration (506). In addition, we did not include men aged under 35 (9) and over 69 years (13) to have more homogeneous age group. This left just 3680 cleanup workers in the study. An unexposed population-based comparison cohort was selected corresponding to the age distribution of the exposed cohort. A random sample stratified by 5-year age groups with the exposed to unexposed ratio of 1:2 and 5% extra men in each age group was extracted from the Estonian Population Registry (EPR). After excluding 87 men who had worked in the Chernobyl area, 7631 men remained in the unexposed cohort.

The cohort of cleanup workers was linked to the EPR to update vital status (emigration or death with corresponding date), ethnicity and education. Each person in both cohorts was followed up from January 1, 2004 until death, emigration or December 31, 2012 (whichever date came first). From the EHIF database, we obtained dates and ICD-10 codes for each contact with a health provider. All linkages were performed using the unique personal identification number (assigned to all permanent residents of Estonia) as the key variable. EHIF manages the mandatory universal health insurance system that is based on solidarity and covers 95% of the Estonian population.[20] All employees and self-employed persons contribute 13% of their wages, some groups of the population are financed by the State (e.g. registered unemployed, Chernobyl veterans), and some groups are insured without contribution (e.g. children, students, pensioners). People without coverage from the above mentioned sources can pay the tax voluntarily.

BMJ Open

Health care contacts were identified from the EHIF database for 2004–2012 using the first occurrence of the three-digit ICD-10 code. If the contact involved multiple diagnoses, the first occurrence of each of them was separately counted. All diseases (except cancer, ICD-10 C00–C97), external causes of morbidity, and examinations or counseling were considered. Four-digit codes were taken separately only for some alcohol-induced diseases. A combined category of alcohol-induced diagnoses included mental disorders due to alcohol (F10), degeneration of the nervous system due to alcohol (G31.2), alcoholic cardiomyopathy (I42.6), alcoholic liver disease (K70), alcohol-induced pancreatitis (K86.0), accidental poisoning by alcohol (X45), intentional self-poisoning by alcohol (X65), and poisoning by alcohol, undetermined intent (Y15). The accuracy of the diagnosis was the responsibility of the physician issuing the invoice to EHIF for ambulatory or hospital care.

Morbidity measures and statistical analysis

We estimated morbidity in the cleanup workers cohort by means of rate ratio (RR) with 95% confidence intervals (CI) using the Poisson regression models with the logarithm of the person-years at risk (summed by five-year age groups) as the offset.[21] At first, we performed analysis comparing the exposed cohort with the unexposed cohort (external analysis) to obtain an overview of morbidity rate ratios. Diagnoses were grouped into broad categories with selected specific diagnoses. Analyses were adjusted for age at diagnosis by five-year age groups.

Additionally, analysis was done between different subgroups within the exposed cohort (internal analysis) to assess possible effects of year of arrival in the Chernobyl area (1986; 1987–1991), duration of stay (<92; ≥92 days), documented cumulative whole-body radiation dose (<5.0; 5.0–9.9; ≥10.0 cGy), education (higher or secondary; basic or less), and ethnicity (Estonian; non-Estonian (mainly Russians)) on morbidity risk. As described elsewhere, [1,

22, 23] the cleanup workers were dominantly exposed to γ -radiation released mainly by ¹³¹I, ¹³⁴Cs and ¹³⁷Cs. Received radiation doses were measured by individual or group dosimeters, or estimated by work area measurements. The readings were documented in the workers' military passports/ records. Considering, that documented doses were unreliable,[19] and not recorded for 15.2% of the cohort members, we used the year of arrival and duration of stay as proxy variables for radiation exposure.

Ethnicity and educational level were included in the analysis as surrogates for health behavior. The prevalence of alcohol consumption at least once a week (28.5%) and current smoking (69.0%) among the cleanup workers was studied in a postal questionnaire survey conducted in 1992–1993,[19] but not included in current analyses due to small cohort size and lack of longitudinal data on these factors of health behavior.

Analyses within the exposed cohort focused on disease risks previously reported in atomic-bomb survivors and Chernobyl cleanup workers.[7, 11, 12] The first set of models included the year of arrival in the Chernobyl area, duration of stay, age at diagnosis, education and ethnicity. One hundred and seventy four subjects with missing information for any characteristic were excluded from the analysis. In the second set of models we included documented radiation dose; due to unrecorded values, an additional 452 subjects were excluded.

We used Visual FoxPro 6.0 (Microsoft Corporation, Redmond, WA, USA) for database management, and Stata 12 (StataCorp LP, College Station, TX, USA) for statistical modeling.

RESULTS

Description of the exposed and unexposed cohorts

BMJ Open

We followed 3680 exposed and 7631 unexposed men from January 1, 2004 until December 31, 2012 (Table 1). The exposed and unexposed cohorts contributed 30,674 and 65,112 person-years, respectively. Mean age at the start of follow-up was 48 years in both cohorts. During the follow-up, 12.9% of the exposed cohort and 10.5% of the unexposed cohort died. The proportions of non-Estonians (mainly Russians) and less educated persons were higher in the exposed cohort, although educational level was unknown for the 16.4% of the subjects in the unexposed cohort. Two-thirds of the cleanup workers entered the Chernobyl area in 1986; the mean and median durations of the mission were 102 and 92 days, respectively (range: 1–833 days). The cohort was exposed to low-level whole-body radiation with the mean and median documented radiation doses of 9.9 and 8.9 cGy, respectively (range: 0.0–54.5 cGy).

Nearly all men had at least one record in the EHIF database (93.6% of the exposed and 95.3% of the unexposed cohort). On average, members of both cohorts had 12 different diagnoses (three-digit ICD-10 codes). Men in the exposed cohort had their first health services contact on average half a year earlier than their unexposed counterparts (52.1 vs. 52.6 years of age).

(Insert Table 1 here)

Morbidity in the exposed cohort in relation to the unexposed cohort (external analysis) In the external analysis (Table 2), we observed a very small increase of borderline significance in all-disease risk among Chernobyl cleanup workers (RR=1.01; 95% CI 1.00– 1.03). From the non-cancer late effects that might be related to the Chernobyl accident (UNSCEAR 2011), we found significantly elevated morbidity for diseases of thyroid gland (RR=1.69; 95% CI 1.38–2.07) and ischemic heart disease (RR=1.09; 95% CI 1.00–1.18). There was evidence of lower occurrence of cataract in the exposed cohort. Stress reactions, depression, severe headaches and sleep disorders were not diagnosed more frequently in the exposed cohort than in the reference cohort.

Increased morbidity was apparent for the broad categories of diseases of the nervous system, digestive system, musculoskeletal system, and alcohol-induced diagnoses. Morbidity from external causes in the exposed cohort exceeded that in the unexposed cohort (RR=1.07; 95% CI 1.03–1.11). Significantly higher morbidity was registered for falls, intentional self-harm and exposure to excessive cold. Cleanup workers did not undergo medical observations for suspected diseases (ICD-10 Z03) more frequently than unexposed men (RR=1.06; 95% CI 0.94–1.19). Additional adjustments for ethnicity and education (rate ratios not presented) did not materially alter these results.

(Insert Table 2 here)

Differences between subgroups in the exposed cohort (internal analysis)

Internal analysis revealed more depressive disorders and stress reactions (RR=1.27; 95% CI 1.00–1.62), and severe headaches (RR=1.69; 95% CI 1.10–2.60) among cleanup workers who entered the area shortly after the accident than in those arriving later (Table 3). Higher thyroid diseases morbidity was not related to year or month (April-May versus June-December, 1986) of arrival in the contaminated area. Longer mission did not increase the morbidity of any disease. Acute myocardial infarction, cerebrovascular diseases, diseases of liver, calculus of kidney and ureter, headaches, and alcohol-induced morbidity occurred more frequently among non-Estonians, while mental disorders were more frequent among Estonians. Less educated cleanup workers had higher risk for diseases of the nervous system, cerebrovascular diseases, intentional self-harm, and alcohol-induced morbidity, and lower risk for in situ and benign neoplasms.

Including education and ethnicity in the model did not alter markedly the crude point estimates of RR for year of arrival or duration of stay (rate ratios not presented). Higher documented radiation dose (5.0–9.9 or \geq 10.0 vs. <5.0 cGy) was not associated with higher morbidity of thyroid diseases (RR=0.92; 95% CI 0.60–1.40; 0.92; 0.60–1.40, respectively),

BMJ Open

cataract (RR=1.26; 95% CI 0.80–1.98; 1.13; 0.70–1.83, respectively), or any of the other selected diseases.

(Insert Table 3 here)

DISCUSSION

The first non-cancer morbidity analysis of the Estonian cohort of Chernobyl cleanup workers revealed elevated morbidity for diseases of the nervous system, digestive system, musculoskeletal system, ischemic heart disease, and for external causes. The most salient excess risk was observed for thyroid diseases, and as expected, for intentional self-harm and selected alcohol-induced diagnoses.

Limitations

First, this study was limited to morbidity cases in 2004–2012. We had no information about morbidity prior to this time period. Thus, it was not possible to specify incident cases or assess early effects of exposure.

Second, among given diseases there could be tentative and preliminary diagnoses unconfirmed afterwards. We are aware of the possibility of diagnostic errors, upcoding and unbundling of codes associated with the use of an reimbursement-administrative database, originally created not for research purposes, but proved to be an important source for medical studies in Estonia.[24–26] A small number of cases might have been diagnosed by commercial health care providers and not reported to the EHIF. However, because of universal health insurance, these limitations would be expected to affect the exposed and unexposed cohorts in a similar fashion. This kind of non-differential misclassification of disease or of disease status probably either does not bias the rate ratio or biases it towards the null. The same may be said in a hypothetical situation when the validity of diagnoses in the EHIF will be almost perfect. In the last case as the most important, the number and

heterogeneity of diagnostic entries would be reduced, and the accuracy of measurements improved.

Third, the documented radiation doses are not entirely accurate, and there could be incorrect readings in both directions as discussed elsewhere.[2, 19] Although no correlation was observed between individual doses from military passports (lists) and the biodosimetry estimates for the sub-cohort of cleanup workers, it is estimated that the cohort was exposed to low-dose radiation around 0.1 Gy on average.[22, 27] A similar dose level was reported for Latvian and Lithuanian Chernobyl cleanup workers.[28] Thus, we used year of arrival and duration of stay as proxy variables for radiation exposure. Given these limitations, our conclusions are duly tempered.

Fourth, the small size of the cohort has reduced the power of analysis. In addition, because of multiple comparisons, it is possible that some statistically significant findings could be due to chance.

Possible radiation effects?

Thyroid diseases have been under close surveillance after the Chernobyl accident since radioiodine (mainly ¹³¹I with a half-life of eight days) released during the explosion is concentrated in the thyroid gland. Ron and Brenner [29] summarized the evidence of benign thyroid diseases after radiation exposure. They concluded that associations have been weak and elevated risk occurred mainly in subjects with high doses, exposed at young ages, and in women. Keeping in mind that the cohort of cleanup workers includes only adult men who were exposed to low doses, we cannot attribute the thyroid findings to radiation. This interpretation is supported by the lack of excess among the early entrants or subjects with the highest documented radiation doses. At the same time, we cannot exclude the possibility that a higher rate ratio among the cleanup workers is caused by close medical attention sought by

BMJ Open

them. During thyroid screening among the Estonian cleanup workers in 1995, no clear correlation was found between the prevalence of thyroid nodules and the year of arrival or recorded radiation dose.[30] Moreover, these whole-body external doses have little relevance to thyroid diseases because they are not thyroid doses.

High radiation doses increase the risk of circulatory diseases, but less is known about the effect of low or moderate doses (<0.5 Gy). Difficulty in estimating dose-response at low dose levels is due to paucity of large cohorts with high-quality data on doses and confounders.[10, 31] As the Estonian cohort of cleanup workers is small and with low average radiation dose, we cannot attribute the small increase in ischemic heart disease morbidity seen in the cohort to biological effects of radiation exposure. This conclusion is also supported by the mortality analyses, where no excess deaths from circulatory diseases were found.[2]

An increased risk of cataract, observed in atomic-bomb survivors [7] and Ukrainian cleanup workers,[31] did not emerge in the Estonian cohort. An observed statistically significant deficit of cataract cases may be an occasional finding without any epidemiological relevance. Although cataract has been conventionally regarded as a late deterministic effect of radiation with a threshold dose of 0.5 Gy, recent studies have suggested a need to lower this dose limit and reconsider the threshold model.[31- 33] Nevertheless, it is unlikely that radiation-related cataracts will be detectable among the Estonian cleanup workers in the future, given the low dose level.

Mental and neurological disorders

Natural or man-made disasters can inflict psychological consequences to the affected populations. Radiation events evoke images of the bombings of Hiroshima and Nagasaki, and mental health effects such as post-traumatic stress, depression, anxiety, and somatization can be long-lasting.[34] After the Chernobyl accident, the mental health of the local population

and cleanup workers was considered to be the main public health concern.[1, 14] Cleanup workers were exposed not only to radiation, but also to the lack of protective gear and to the poor living conditions, sometimes doing meaningless jobs, and drinking large amounts of alcohol (mainly home-distilled).[19, 35] Misleading or no information about the possible long-term health effects generated rumors and misapprehensions, and radiation fears were exaggerated.[36, 37] The situation bred profound mistrust of all authorities. One of the most difficult lessons from Chernobyl has been to gain the public's trust and to deliver scientific information about the radiation risks, as there exists an insuperable gap between the experts' and public's perceptions about radiation.[38–40]

To date, the persistently elevated suicide risk in the Estonian cohort has been the definitive indication of psychological impairment as a result of working as a Chernobyl cleanup worker.[2] However, the current morbidity analyses showed a mixed pattern of mental and neurological disorders. Based on the results from a study of Ukrainian cleanup workers,[15] we expected higher rates of depression, anxiety, post-traumatic stress disorder, and headaches. Yet, there was no overall increase of mental disorders as a group (RR=1.00), or of physician-diagnosed depression or anxiety. During the follow-up period, the cleanup workers used health care services significantly less frequently for stress reactions than the unexposed cohort. No excess of severe headaches or sleep disorders was found among cleanup workers. However, depression and stress reactions, and severe headaches were more frequent in the early entrants. Elevated morbidity due to intentional self-harm is also an indicator of psychological distress. This finding is consistent with the increased suicide rate in the cohort,[2] which is strongly related to alcohol dependence among middle-aged men in Estonia.[41]

Smoking and heavy alcohol consumption are more prevalent in less educated men in Estonia.[42, 43] Although population-based health (behavior) prevalence studies do not

BMJ Open

report differences in smoking and drinking habits between Estonians and non-Estonians,[42, 43] mortality is higher in non-Estonians,[44] particularly alcohol-related mortality.[45]

Excess morbidity emerged for alcohol-induced diseases – mental disorders due to alcohol and degeneration of nervous system due to alcohol. Morbidity from alcohol-induced diagnoses as a group was 25% higher among cleanup workers than in the unexposed cohort. Considering common alcohol abuse among men in Estonia (especially with lower educational level),[43] it is not surprising that cleanup workers used alcohol to cope with stressful situation, and still do. Higher morbidity due to excessive cold is most likely attributable to homelessness and suggests that periods of homelessness were more common in cleanup workers than in men in the comparison cohort. Results of our study demonstrate that the men with Estonian ethnicity and/ or higher educational level coped better with Chernobyl consequences including alcohol abuse.

Although Ukrainian cleanup workers had more mental disorders than controls, no excess of alcoholism was observed.[15] This illustrates how analysis of similar cohorts with different design and risk measures can produce entirely opposite results. Very likely, mental disorders other than alcoholism were under-diagnosed in the Estonian cohort, and the prevalence of alcohol problems was underestimated in the Ukrainian cohort. It is common that people do not seek professional help for mental health problems.[34] Untreated mental disorders can manifest as unexplained physical complaints such as headache or back pain, or they are risk factors for somatic diseases (e.g. thyroid diseases of diseases of the digestive system).[46, 47] Thus, it is important to pay attention to both mental and somatic diseases of Chernobyl cleanup workers simultaneously.

CONCLUSIONS

No obvious excess morbidity consistent with biological effects of radiation was seen in the exposed cohort, with the possible exception of benign thyroid diseases. Increased alcoholinduced morbidity reflects alcohol abuse, and could underlie some of the higher morbidity rates. Mental disorders in the exposed cohort were probably underreported. The future challenge will be to study mental and physical co-morbidities in the Chernobyl cleanup workers cohort.

Acknowledgements The authors thank Triin Habicht and Elin Raaper from the Estonian Health Insurance Fund for data linkages.

Contributors KR and MR designed the study. KR performed the statistical analyses and drafted the manuscript. EB, TH, AA, AU and MR contributed to the interpretation of the results and revised critically the manuscript. MR supervised the whole process. All authors have seen and approved the final version of the manuscript.

Funding This stage of the study was supported financially by the Estonian Research Council (IUT5-1), and by the Estonian Ministry of Education and Research (target funding SF0180060s09).

Competing interests None.

Ethics approval The study was approved by the Tallinn Medical Ethics Committee (no. 1939, February 11, 2010), and by the Estonian Data Protection Inspectorate (no. 2.2-3/10/120r, April 9, 2010).

REFERENCES

- 1. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. UNSCEAR 2008 Report to the General Assembly with Scientific Annexes, Volume II, Scientific Annex D: Health effects due to radiation from the Chernobyl accident. New York: United Nations, 2011.
- 2. Rahu K, Auvinen A, Hakulinen T, *et al.* Chernobyl cleanup workers from Estonia: follow-up for cancer incidence and mortality. *J Radiol Prot* 2013;33:395–411.
- Shimizu Y, Kodama K, Nishi N, *et al.* Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. *BMJ* 2010;340:b5349.
- Vrijheid M, Cardis E, Ashmore P, *et al.* Mortality from diseases other than cancer following low doses of ionizing radiation: results from the 15-Country Study of nuclear industry workers. *Int J Epidemiol* 2007;36:1126–35.
- Ozasa K, Shimizu Y, Suyama A, *et al.* Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. *Radiat Res* 2012;177:229–43.
- Boice JD Jr, Mumma MT, Blot WJ. Cancer incidence and mortality in populations living near uranium milling and mining operations in Grants, New Mexico, 1950– 2004. *Radiat Res* 2010;174:624–36.
- Yamada M, Wong FL, Fujiwara S, *et al.* Noncancer disease incidence in atomic bomb survivors, 1958–1998. *Radiat Res* 2004;161:622–32.
- Azizova TV, Muirhead CR, Moseeva MB, *et al.* Cerebrovascular diseases in nuclear workers first employed at the Mayak PA in 1948–1972. *Radiat Environ Biophys* 2011;50:539–52.

BMJ Open

of 53		BMJ Open						
	9.	Azizova TV, Muirhead CR, Moseeva MB, et al. Ischemic heart disease in nuclear						
		workers first employed at the Mayak PA in 1948–1972. <i>Health Phys</i> 2012;103:3–14.						
	10.	Little MP, Azizova TV, Bazyka D, et al. Systematic review and meta-analysis of						
		circulatory disease from exposure to low-level ionizing radiation and estimates of						
		potential population mortality risks. Environ Health Perspect 2012;120:1503-11.						
	11.	Ivanov VK, Maksioutov MA, Chekin SYu, et al. Radiation-epidemiological analysis						
		of incidence of non-cancer diseases among the Chernobyl liquidators. Health Phys						
		2000;78:495–501.						
	12.	Ivanov VK, Maksioutov MA, Chekin SY, et al. The risk of radiation-induced						
		cerebrovascular disease in Chernobyl emergency workers. Health Phys 2006;90:199-						
		207.						
	13.	Preston RJ, Boice JD Jr, Brill AB, et al. Uncertanties in estimating health risks						
		associated with exposure to ionising radiation. J Radiol Prot 2013;33:573-88.						
	14.	Balonov MI. The Chernobyl Forum: major findings and recommendations. J Environ						
		Radioact 2007;96:6–12.						
	15.	Loganovsky K, Havenaar JM, Tintle NL, et al. The mental health of clean-up workers						
		18 years after the Chernobyl accident. Psychol Med 2008;38:481-8.						
	16.	Bromet EJ, Havenaar JM, Guey LT. A 25 year retrospective review of the						
		psychological consequences of the Chernobyl accident. Clini Oncol (R Coll Radiol)						
		2011;23:297–305.						
	17.	Rahu M, Tekkel M, Veidebaum T, et al. The Estonian study of Chernobyl cleanup						
		workers: II. Incidence of cancer and mortality. Radiat Res 1997;147:653-7.						
	18.	Rahu K, Rahu M, Tekkel M, et al. Suicide risk among Chernobyl cleanup workers in						
		Estonia still increased: an updated cohort study. Ann Epidemiol 2006;16:917-9.						
		19						

19.	Tekkel M, Rahu M, Veidebaum T, et al. The Estonian study of Chernobyl cleanup
	workers: I. Design and questionnaire data. Radiat Res 1997;147:641-52.
20.	Koppel A, Kahur K, Habicht T, et al. Estonia: Health system review. Health Syst
	<i>Transit</i> 2008;10:1–230.
21.	Clayton D, Hills M. Statistical Models in Epidemiology. New York: Oxford
	University Press, 1993.
22.	Bigbee WL, Jensen RH, Veidebaum T, et al. Biodosimetry of Chernobyl cleanup
	workers from Estonia and Latvia using the glycophorin A in vivo somatic cell
	mutation assay. Radiat Res 1997;147:215-24.
23.	Chumak VV. Physical dosimetry of Chernobyl cleanup workers. Health Phys
	2007;93:452–61.
4.	Blöndal M, Ainla T, Marandi T, et al. Changes in treatment and mortality of acute
	myocardial infarction in Estonian tertiary and secondary care hospitals in 2001 and
	2007. BMC Res Notes 2012;5:71.
.5.	Müller R, Kallikorm R, Põlluste K, et al. Compliance with treatment of rheumatoid
	arthritis. Rheumatol Int 2012;32:3131–5.
26.	Veerus P, Fischer K, Hakama M, et al. Results from a blind and a non-blind
	randomised trial run in parallel: experience from the Estonian Postmenopausal
	Hormone Therapy (EPHT) Trial. BMC Med Res Methodol 2012;12:44.
27.	Littlefield LG, McFee AF, Salomaa SI, et al. Do recorded doses overestimate true
	doses received by Chernobyl cleanup workers? Results of cytogenetic analyses of
	Estonian workers by fluorescence in situ hybridization. Radiat Res 1998;150:237-49.
8.	Rahu K, Hakulinen T, Smailyte G, et al. Site-specific cancer risk in the Baltic cohort
	of Chernobyl cleanup workers, 1986–2007. Eur J Cancer 2013;49:2926–33.

BMJ Open

29.	Ron E, Brenner A. Non-malignant thyroid diseases after a wide range of radiation
	exposures. Radiat Res 2010;174:877-88.
30.	Inskip PD, Hartshorne MF, Tekkel M, et al. Thyroid nodularity and cancer among
	Chernobyl cleanup workers from Estonia. Radiat Res 1997;147:225-35.
31.	Little MP. A review of non-cancer effects, especially circulatory and ocular diseases.
	Radiat Environ Biophys 2013;52:435–49.
32.	Worgul BV, Kundiyev YI, Sergiyenko NM, et al. Cataracts among Chernobyl clean-
	up workers: implications regarding permissible eye exposures. Radiat Res
	2007;167:233–43.
33.	Hammer GP, Scheidemann-Wesp U, Samkange-Zeeb F, et al. Occupational exposure
	to low doses of ionizing radiation and cataract development: a systematic literature
	review and perspectives on future studies. Radiat Environ Biophys 2013;52:303-19.
34.	Bromet EJ. Lessons learned from radiation disasters. World Psychiatry 2011;10:83-4.
35.	Tarlap T. Chernobyl 1986: Memoirs of an Estonian Cleanup Worker. Tallinn: IECM,
	1995.
36.	Rahu M. Health effects of the Chernobyl accident: fears, rumours and the truth. Eur J
	<i>Cancer</i> 2003;39:295–9.
37.	Balonov MI. On protecting the inexperienced reader from Chernobyl myths. J Radiol
	<i>Prot</i> 2012;32:181–9.
38.	Loewenberg S. Mikhail Balonov: understanding the legacy of Chernobyl. Lancet
	2006:367:1311.
39.	Thomas GA. Putting health risks from radiation exposure into context: lessons from
	past accidents. Ann Acad Med Singapore 2011;40:158-9.

- 40. Perko T. Radiation risk perception: a discrepancy between the experts and the general population. J Environ Radioact Available online: 15 May 2013. doi: 10.1016/j.jenvrad.2013.04.005.
- 41. Kõlves K, Värnik A, Tooding LM, et al. The role of alcohol in suicide: a case-control psychological autopsy study. Psychol Med 2006;36:923-30.
- 42. Pärna K, Rahu K. Socio-economic differences in smoking. Eesti Arst 2008;88:57-62 (in Estonian).
- 43. Pärna K, Rahu K, Helakorpi S, et al. Alcohol consumption in Estonia and Finland: Finbalt survey 1994–2006. BMC Public Health 2010;10:261.
- 44. Leinsalu M, Vågerö D, Kunst AE. Increasing ethnic differences in mortality in Estonia after the collapse of the Soviet Union. J Epidemiol Community Health 2004;58:583-9.
- 45. Rahu K, Pärna K, Palo E, et al. Contrasts in alcohol-related mortality in Estonia: education and ethnicity. Alcohol Alcohol 2009;44:517-22.
- 46. Ginzburg K, Solomon Z. Trajectories of stress reactions and somatization symptoms among war veterans: a 20-year longitudinal study. Psychol Med 2011;41:353-62.
- 47. Sanna L, Stuart AL, Pasco JA, et al. Physical comorbidities in men with mood and anxiety disorders: a population-based study. BMC Med 2013;11:110.

Table 1 Characteristics of the Estonian cohort of Chernobyl cleanup workers (exposed cohort) and the unexposed comparison cohort

Characteristic	Exposed coho				
	No.	(%)	No.	(%)	
Total	3680	(100)	7631	(100)	
Vital status on December 31, 2012					
Living in Estonia	3132	(85.1)	6795	(89.0)	
Dead	474	(12.9)	798	(10.5)	
Emigrated	74	(2.0)	38	(0.5)	
Age at start of follow-up (full years)				. ,	
35–44	1265	(34.4)	2645	(34.7)	
45–54	1850	(50.3)	3738	(49.0)	
55–64	536	(14.6)	1186	(15.5)	
≥65	29	(0.8)	62	(0.8)	
Person-years in an age group (2004–2012)		(0.0)		()	
35–44	4718.4	(15.4)	9416.1	(14.5)	
45–54	15,513.5	(50.6)	32,825.3	(50.4)	
55–64	9303.9	(30.3)	20,126.9	(30.9)	
≥65	1138.6	(3.7)	2743.5	(4.2)	
Total	30,674.4	(100)	65,111.8	(100)	
Ethnicity	50,074.4	(100)	05,111.6	(100)	
Estonian	2036	(55.2)	4690	(61.5)	
Non-Estonian	1643	(55.3)	2848	· · · ·	
		(44.6)		(37.3)	
Unknown	1	(0.0)	93	(1.2)	
Education	222	(0, 0)	1170	(15.0)	
Higher	322	(8.8)	1159	(15.2)	
Secondary	2446	(66.5)	4017	(52.6)	
Basic or less	824	(22.4)	1200	(15.7)	
Unknown	88	(2.4)	1255	(16.4)	
Time of arrival in the Chernobyl area					
1986, April–May	1154	(31.4)			
1986, June–December	1128	(30.7)			
1986, month unknown	13	(0.4)			
1987	820	(22.3)			
1988	417	(11.3)			
1989–1991	67	(1.8)			
Unknown	81	(2.2)			
Duration of stay in the Chernobyl area (days)					
<30	220	(6.0)			
30-89	1487	(40.4)			
90–149	1163	(31.6)			
150-209	648	(17.6)			
>210	60	(1.6)			
Unknown	102	(2.8)			
Documented dose (cGy)	102	(=.0)			
<5.0	810	(22.0)			
5.0-9.9	1022	(22.0)			
10.0–14.9	555	(15.1)			
15.0–19.9	519	(13.1) (14.1)			
20.0–24.9	195	(14.1) (5.3)			
≥25.0	21	· · ·			
—		(0.6)			
Unknown	558	(15.2)			

ICD-10 Diagnosis/ external cause of morbidity RR (95% CI) No. of cases Exposed Unexposed cohort cohort 1.02 (1.01-1.03‡ A00-R99, V01-Z99 All diagnoses and external causes 41,370 86,441 A00-R99. All diseases, except cancer 31,757 66,799 1.01 (1.00-1.03) except C00-C97 0.94 (0.88-1.00) A00-B99 Infectious diseases 1338 3022 A15-A16 Respiratory tuberculosis 41 73 1.19 (0.81-1.74) 517 D00-D48 In situ and benign neoplasms 1060 1.04 (0.94-1.16) D50-D89 Diseases of the blood and blood-forming organs 97 195 1.07(0.84 - 1.36)E00-E90 Endocrine, nutritional and metabolic diseases 806 1754 0.98 (0.90-1.07) 1.69 (1.38-2.07)‡ E00-E07 Diseases of thyroid gland 167 211 F00-F99 Mental disorders 1380 2918 1.00 (0.94-1.07) F10 Mental disorders due to alcohol 328 570 1.21 (1.06-1.39): 290 F32-F33 Depressive disorders 633 0.97(0.84 - 1.11)F41 119 275 Anxiety disorders 0.91 (0.74-1.13) F43 Stress reactions 55 162 0.72 (0.53-0.97): G00-G99 Diseases of the nervous system 1352 2550 1.13 (1.06-1.21)‡ Degeneration of nervous system due to 1.51 (1.04-2.18)‡ G31.2 48 68 alcohol G40 Epilepsy 148 223 1.40 (1.14-1.73): 125 256 G43-G44 Migraine and other headache 1.03 (0.83-1.28) G50-G59 Nerve, nerve root and plexus disorders 447 829 1.15 (1.02-1.29)‡ F51, G47 Sleep disorders 267 529 1.08 (0.93-1.25) H00-H59 Diseases of the eye 2004 4592 0.93 (0.89-0.98)‡ H25-H26, H28 Cataract 155 449 0.77 (0.64-0.92)‡ H40, H42 Glaucoma 109 247 0.96 (0.77-1.20) Diseases of the ear 1228 2707 0.97 (0.91-1.04) H60-H95 Diseases of the circulatory system 100-199 4432 9477 1.00(0.97 - 1.04)I10-I15 1936 4210 0.98 (0.93-1.04) Hypertensive diseases 1.09 (1.00-1.18) I20-I25 Ischemic heart disease 773 1537 104 I21 Acute myocardial infarction 214 1.05(0.83 - 1.33)I60-I69 Cerebrovascular diseases 291 606 1.05 (0.91-1.20) 4699 J00-J99 Diseases of the respiratory system 10,079 0.99 (0.95-1.02) J30-J39 592 1431 0.87 (0.79-0.96)‡ Diseases of upper respiratory tract J40-J47 Lower respiratory diseases 580 1130 1.10(1.00-1.22)K00-K93 Diseases of the digestive system 3179 6068 1.11 (1.07-1.16): K20-K31 Diseases of oesophagus, stomach and 1415 2648 1.14 (1.06-1.21)‡ duodenum 1.15 (1.02-1.28)‡ K25-K27 Peptic ulcer 464 857 194 K70-K77 357 1.16 (0.97-1.38) Diseases of liver K70 Alcoholic liver disease 68 117 1.23 (0.91-1.66) K85-K86 Diseases of pancreas 128 213 1.27 (1.02-1.58)‡ K86.0 Alcohol-induced pancreatitis 25 41 1.27 (0.77-2.09) L00-L99 Diseases of the skin 1793 3730 1.02(0.97 - 1.08)M00-M99 Diseases of the musculoskeletal system 6296 12,623 1.06 (1.03-1.09)‡ 1.06 (0.98-1.14) 925 1881 M15-M19 Arthrosis M54 Dorsalgia 1475 2817 1.11 (1.04-1.18): N00-N99 Diseases of the genitourinary system 1518 3648 0.89 (0.84-0.95)‡ N20 Calculus of kidney and ureter 140 321 0.93(0.76-1.14)N40 1032 0.88 (0.79-0.99): Hyperplasia of prostate 418 R00-R99 1091 1.01 (0.94-1.09) Findings, not elsewhere classified 2297 V01-Y98 External causes of morbidity 5084 10,055 1.07 (1.03-1.11): V01-V99 171 423 0.85(0.71 - 1.02)Transport accidents W00-W19 Falls 2010 3817 1.11 (1.06-1.18): W20-W49 Exposure to mechanical forces 1864 3799 1.03 (0.98-1.09) X31 Excessive cold 26 32 1.74 (1.04-2.92); X40-X49 Accidental poisoning 34 69 1.05(0.69 - 1.58)53 X60-X84 Intentional self-harm 76 1.47 (1.04-2.09): Z00-Z99 Contact with health services 4135 8862 0.99 (0.96-1.03) Z03 Medical observation for suspected disease 389 788 1.06(0.94 - 1.19)F10, G31.2, I42.6, K70. Selected alcohol-induced diagnoses and 528 896 1.25 (1.12-1.39)

Table 2 Number of morbidity cases* and age-adjusted morbidity rate ratios[†] (RR) with 95% confidence intervals (CI) in the Estonian cohort of Chernobyl cleanup workers (exposed cohort) in relation to the unexposed comparison cohort, 2004–2012

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

1	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
- 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 21 22 3 24 25 26 27 28 9 30 1	
23	
24	
25	
26	
27	
28	
20	
20	
30	
31	
32 33 34 35 36 37 38	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

K86.0, X45, X65, Y15 external causes of morbidity

- * The first occurrence of the three-digit ICD-10 code in the study period was considered.
- † Adjusted for age at diagnosis.

‡ p<0.05

Table 3 Adjusted morbidity rate ratios* (RR) with 95% confidence intervals (CI) by exposure for selected diagnoses and external causes of morbidity in the Estonian cohort of Chernobyl cleanup workers (3506 persons), 2004–2012

ICD-10	Diagnosis/	Year of arrival	Duration of stay	Ethnicity	Education
	external cause of morbidity	1986†	≥92 days†	Non-Estonian†	Basic or less [†]
D00–D48	In situ and benign	1.15 (0.95–1.39)	0.77 (0.64–0.92)‡	1.09 (0.91-1.30)	0.76 (0.61–0.96)‡
	neoplasms				
E00-E07	Diseases of thyroid gland	0.94 (0.68–1.31)	1.00 (0.73-1.38)	0.85 (0.62-1.17)	0.82 (0.55-1.22)
F00-F99	Mental disorders	1.08 (0.96–1.21)	0.85 (0.76-0.95)‡	0.82 (0.74–0.92)‡	1.11 (0.97–1.27)
F32–F33, F43	Depressive disorders and stress reactions	1.27 (1.00–1.62)	0.72 (0.58–0.90)‡	0.53 (0.41–0.67)‡	0.88 (0.66–1.17)
G00–G99	Diseases of the nervous	1.01 (0.90–1.13)	0.93 (0.83-1.04)	0.97 (0.87-1.09)	1.20 (1.05–1.37)‡
	system				
G43–G44	Migraine and other	1.69 (1.10–2.60)‡	0.79 (0.55–1.14)	1.48 (1.03–2.12)‡	0.97 (0.59–1.58)
	headache				
H25–H26, H28	Cataract	1.07 (0.77–1.49)	1.05 (0.76-1.45)	1.29 (0.93-1.77)	0.93 (0.65-1.33)
H40, H42	Glaucoma	1.26 (0.83–1.89)	0.78 (0.52-1.15)	1.20 (0.81-1.78)	0.80 (0.51-1.27)
I10–I15	Hypertensive diseases	1.03 (0.94–1.14)	0.92 (0.84-1.01)	1.07 (0.98-1.17)	0.99 (0.88–1.11)
I20–I25	Ischemic heart disease	1.15 (0.99–1.34)	0.81 (0.70-0.94)‡	1.12 (0.97-1.30)	1.10 (0.93-1.30)
I21	Acute myocardial	1.11 (0.74–1.68)	0.94 (0.63-1.39)	1.53 (1.03-2.26)‡	1.17 (0.74–1.83)
	infarction				
I60–I69	Cerebrovascular diseases	1.11 (0.86–1.42)	1.03 (0.81-1.42)	1.65 (1.30-2.11)‡	1.61 (1.25-2.08)‡
K70–K77	Diseases of liver	1.13 (0.82–1.54)	1.13 (0.84–1.51)	1.42 (1.07-1.90)‡	1.12 (0.79-1.58)
N20	Calculus of kidney and	1.08 (0.74–1.57)	0.88 (0.62-1.26)	1.99 (1.39-2.85)‡	0.73 (0.45-1.19)
	ureter				
X60–X84	Intentional self-harm	1.27 (0.68–2.36)	0.77 (0.43-1.37)	1.43 (0.82-2.52)	2.73 (1.48-5.05)‡
F10, G31.2, I42.6,	Selected alcohol-induced	0.92 (0.76–1.11)	0.98 (0.82-1.17)	1.37 (1.15–1.63)‡	1.76 (1.44–2.15)‡
K70, K86.0, X45,	diagnoses and external				
X65, Y15	causes of morbidity				

* Models include age at diagnosis, year of arrival, duration of stay, ethnicity, and education.

* The reference categories for these variables are as follows: year of arrival 1987–1991; duration of stay <92 days; ethnicity

Estonian; education higher/ secondary.

‡ p<0.05.

BMJ Open

Non-cancer morbidity among Estonian Chernobyl cleanup workers: a register-based cohort study

Kaja Rahu,¹* Evelyn J Bromet,² Timo Hakulinen,³ Anssi Auvinen,^{4,5} Anneli Uusküla,⁶ Mati Rahu¹

¹ Department of Epidemiology and Biostatistics, National Institute for Health Development, Tallinn, Estonia

² Department of Psychiatry and Behavioral Science, Stony Brook University School of

Medicine, Stony Brook, NY, USA

³ Finnish Cancer Registry, Helsinki, Finland

⁴ School of Health Sciences, University of Tampere, Tampere, Finland

⁵ Radiation and Nuclear Safety Authority, Helsinki, Finland

⁶ Department of Public Health, University of Tartu, Tartu, Estonia

* Address for correspondence: K. Rahu, Department of Epidemiology and Biostatistics,

National Institute for Health Development, Hiiu 42, 11619 Tallinn, Estonia.

E-mail: kaja.rahu@tai.ee

Tel: +372 659 3943

Fax: +372 659 3901

Keywords: alcohol-induced disorders, Chernobyl nuclear accident, Estonia, mental health,

morbidity, radiation effects

Running head: Morbidity among Estonian Chernobyl cleanup workers

Word count: 3526

ABSTRACT

Objective: To examine non-cancer morbidity in the Estonian Chernobyl cleanup workers cohort compared to the population sample with special attention to radiation-related diseases and mental health disorders.

Design: Register-based cohort study.

Setting: Estonia.

Participants: An exposed cohort of 3680 men (cleanup workers) and an unexposed cohort of 7631 men (population sample) were followed 2004–2012 through the Population Registry and Health Insurance Fund database.

Methods: Morbidity in the exposed cohort compared to the unexposed controls was estimated in terms of rate ratio (RR) with 95% confidence intervals (CI) using Poisson regression models.

Results: Elevated morbidity in the exposed cohort was found for diseases of the nervous system, digestive system, musculoskeletal system, ischemic heart disease, and for external causes. The most salient excess risk was observed for thyroid diseases (RR=1.69; 95% CI 1.38–2.07), intentional self-harm (RR=1.47; 95% CI 1.04–2.09), and selected alcohol-related diagnoses (RR=1.25; 95% CI 1.12–1.39). No increase in morbidity for stress reactions, depression, headaches or sleep disorders was detected.

Conclusions: No obvious excess morbidity consistent with biological effects of radiation was seen in the exposed cohort, with the possible exception of benign thyroid diseases. Increased alcohol-induced morbidity may reflect alcohol abuse, and could underlie some of the higher morbidity rates. Mental disorders in the exposed cohort were probably underreported. The future challenge will be to study mental and physical co-morbidities in the Chernobyl cleanup workers cohort.

ARTICLE SUMMARY

Article focus

- There is limited information about the impact of the Chernobyl accident on the noncancer morbidity among the cleanup workers. Earlier studies of Estonian cleanup workers revealed an excess of suicide.
- This study provides insight into non-cancer morbidity in the cohort of Estonian cleanup workers with emphasis on radiation-related diseases and mental health disorders.

Key messages

- No obvious excess morbidity consistent with biological effects of radiation was found in the cleanup workers cohort, with the possible exception of benign thyroid diseases.
- Increased alcohol-induced morbidity in the cleanup workers cohort may reflect alcohol abuse, and could underlie some of the higher morbidity rates. Mental disorders in the exposed cohort were probably underreported.

Strengths and limitations of this study

- Morbidity information provided in this study was obtained from population-based registries via electronic record linkages using personal identification number as the key variable.
- Limitations of the study are as follows: relatively short follow-up; the probable presence of tentative and preliminary diagnoses in the health insurance database; the documented radiation doses were not entirely reliable; the small size of the cohort; probable overestimation of findings due to multiple comparisons.

INTRODUCTION

In the aftermath of the accident at the Chernobyl nuclear power station in April, 1986, about 600,000 men from throughout the former Soviet Union were commissioned to the area to clean up the environment.[1] Among them were nearly 5000 (mostly) military reservists from Estonia who worked in the contaminated area for three months on average; their mean received cumulative whole-body radiation dose was 0.1 Gy.[2]

Epidemiological evidence of non-cancer disease risk in the cohorts exposed to ionizing radiation is mainly based on mortality since administratively registered death records are available and easy to use for linkages. Most of these studies have focused on circulatory diseases, the major cause of death in developed countries. Excess mortality from all circulatory diseases, stroke and heart disease was observed in atomic-bomb survivors; however the association below dose of 0.5 Gy was not significant.[3] Follow-up of nuclear industry workers from 15 countries resulted with no significant findings for a dose-dependent rise in mortality from circulatory diseases.[4] Elevated risk of death for the broad categories of the respiratory and digestive systems has been found among atomic-bomb survivors,[5] but not in other environmentally exposed populations [6] or in nuclear industry workers.[4]

A few studies have reported morbidity outcomes. The most informative non-cancer disease incidence study in atomic-bomb survivors found significant radiation effects for thyroid diseases, liver disease, cataract, and calculus of the kidney and ureter.[7] The morbidity study of Mayak nuclear weapons facility workers demonstrated an increasing dose-related trend for cerebrovascular diseases [8] and ischemic heart disease,[9] but did not provide information on risk at doses below 0.2 Gy. A meta-analysis by Little et al. [10] combining morbidity and mortality studies of occupationally and environmentally exposed populations with mean dose below 0.5 Gy, demonstrated significantly increased dose-

BMJ Open

dependent risk for ischemic heart disease, cerebrovascular diseases and other circulatory diseases.

Analyses of non-cancer morbidity in a cohort of Russian Chernobyl cleanup workers have shown dose-dependent excess (per 1 Gy) for endocrine and metabolic diseases, mental disorders, diseases of the nervous system, diseases of the digestive system, cerebrovascular diseases, hypertension, and ischemic heart disease.[11, 12] However, risk estimates at low doses still remain uncertain.[13]

Although the psychological aftermath of the Chernobyl accident has been acknowledged as the major long-term public health problem in the exposed populations,[1, 14] the mental health of cleanup workers has only been assessed in small-scale studies in Ukraine.[15–16] There is an urgent need to examine mental health along with somatic diseases when considering the health of cleanup workers.[16]

An updated analysis of mortality and cancer incidence in the Estonian Chernobyl cohort revealed higher incidence of alcohol-related cancers and excess of suicide.[2] Suicide risk has been persistently elevated since the beginning of follow-up.[17, 18] The current research provides the first overview of morbidity other than cancer in the Estonian cohort of Chernobyl cleanup workers with special attention to radiation-related diseases and mental health disorders.

METHODS

Sample and follow-up

The Estonian cohort of Chernobyl cleanup workers (exposed cohort) includes 4831 men recruited in 1986–1991 to the Chernobyl area by the Soviet authorities for decontamination, building and other related activities. The "Chernobyl area" here denotes the 30-km zone (an area of 30-km radius from the nuclear power station) and territories outside, where the

workers were engaged with different activities during their mission period. Detailed information on the assembly and description of the cohort is given elsewhere.[19] To examine morbidity in this cohort, we used data from the Estonian Health Insurance Fund (EHIF) database available since January 2004. Thus, for the morbidity analyses we identified all cohort members aged 35–69 years and living in Estonia on January 1, 2004. Altogether, of 4831 men in the initial cohort, 1129 were excluded because of loss in follow-up (21), death (602) and emigration (506). In addition, we did not include men aged under 35 (9) and over 69 years (13) to have more homogeneous age group. This left just 3680 cleanup workers in the study. An unexposed population-based comparison cohort was selected corresponding to the age distribution of the exposed cohort. A random sample stratified by 5-year age groups with the exposed to unexposed ratio of 1:2 and 5% extra men in each age group was extracted from the Estonian Population Registry (EPR). After excluding 87 men who had worked in the Chernobyl area, 7631 men remained in the unexposed cohort.

The cohort of cleanup workers was linked to the EPR to update vital status (emigration or death with corresponding date), ethnicity and education. Each person in both cohorts was followed up from January 1, 2004 until death, emigration or December 31, 2012 (whichever date came first). From the EHIF database, we obtained dates and ICD-10 codes for each contact with a health provider. All linkages were performed using the unique personal identification number (assigned to all permanent residents of Estonia) as the key variable. EHIF manages the mandatory universal health insurance system that is based on solidarity and covers 95% of the Estonian population.[20] All employees and self-employed persons contribute 13% of their wages, some groups of the population are financed by the State (e.g. registered unemployed, Chernobyl veterans), and some groups are insured without contribution (e.g. children, students, pensioners). People without coverage from the above mentioned sources can pay the tax voluntarily.

BMJ Open

Health care contacts were identified from the EHIF database for 2004–2012 using the first occurrence of the three-digit ICD-10 code. If the contact involved multiple diagnoses, the first occurrence of each of them was separately counted. All diseases (except cancer, ICD-10 C00–C97), external causes of morbidity, and examinations or counseling were considered. Four-digit codes were taken separately only for some alcohol-induced diseases. A combined category of alcohol-induced diagnoses included mental disorders due to alcohol (F10), degeneration of the nervous system due to alcohol (G31.2), alcoholic cardiomyopathy (I42.6), alcoholic liver disease (K70), alcohol-induced pancreatitis (K86.0), accidental poisoning by alcohol (X45), intentional self-poisoning by alcohol (X65), and poisoning by alcohol, undetermined intent (Y15). The accuracy of the diagnosis was the responsibility of the physician issuing the invoice to EHIF for ambulatory or hospital care.

Morbidity measures and statistical analysis

We estimated morbidity in the cleanup workers cohort by means of rate ratio (RR) with 95% confidence intervals (CI) using the Poisson regression models with the logarithm of the person-years at risk (summed by five-year age groups) as the offset.[21] At first, we performed analysis comparing the exposed cohort with the unexposed cohort (external analysis) to obtain an overview of morbidity rate ratios. Diagnoses were grouped into broad categories with selected specific diagnoses. Analyses were adjusted for age at diagnosis by five-year age groups.

Additionally, analysis was done between different subgroups within the exposed cohort (internal analysis) to assess possible effects of year of arrival in the Chernobyl area (1986; 1987–1991), duration of stay (<92; ≥92 days), documented cumulative whole-body radiation dose (<5.0; 5.0–9.9; ≥10.0 cGy), education (higher or secondary; basic or less), and ethnicity (Estonian; non-Estonian (mainly Russians)) on morbidity risk. As described elsewhere, [1,

22, 23] the cleanup workers were dominantly exposed to γ -radiation released mainly by ¹³¹I, ¹³⁴Cs and ¹³⁷Cs. Received radiation doses were measured by individual or group dosimeters, or estimated by work area measurements. The readings were documented in the workers' military passports/ records. Considering, that documented doses were unreliable,[19] and not recorded for 15.2% of the cohort members, we used the year of arrival and duration of stay as proxy variables for radiation exposure.

Ethnicity and educational level were included in the analysis as surrogates for health behavior. The prevalence of alcohol consumption at least once a week (28.5%) and current smoking (69.0%) among the cleanup workers was studied in a postal questionnaire survey conducted in 1992–1993,[19] but not included in current analyses due to small cohort size and lack of longitudinal data on these factors of health behavior.

Analyses within the exposed cohort focused on disease risks previously reported in atomic-bomb survivors and Chernobyl cleanup workers.[7, 11, 12] The first set of models included the year of arrival in the Chernobyl area, duration of stay, age at diagnosis, education and ethnicity. One hundred and seventy four subjects with missing information for any characteristic were excluded from the analysis. In the second set of models we included documented radiation dose; due to unrecorded values, an additional 452 subjects were excluded.

We used Visual FoxPro 6.0 (Microsoft Corporation, Redmond, WA, USA) for database management, and Stata 12 (StataCorp LP, College Station, TX, USA) for statistical modeling.

RESULTS

Description of the exposed and unexposed cohorts

BMJ Open

We followed 3680 exposed and 7631 unexposed men from January 1, 2004 until December 31, 2012 (Table 1). The exposed and unexposed cohorts contributed 30,674 and 65,112 person-years, respectively. Mean age at the start of follow-up was 48 years in both cohorts. During the follow-up, 12.9% of the exposed cohort and 10.5% of the unexposed cohort died. The proportions of non-Estonians (mainly Russians) and less educated persons were higher in the exposed cohort, although educational level was unknown for the 16.4% of the subjects in the unexposed cohort. Two-thirds of the cleanup workers entered the Chernobyl area in 1986; the mean and median durations of the mission were 102 and 92 days, respectively (range: 1–833 days). The cohort was exposed to low-level whole-body radiation with the mean and median documented radiation doses of 9.9 and 8.9 cGy, respectively (range: 0.0–54.5 cGy).

Nearly all men had at least one record in the EHIF database (93.6% of the exposed and 95.3% of the unexposed cohort). On average, members of both cohorts had 12 different diagnoses (three-digit ICD-10 codes). Men in the exposed cohort had their first health services contact on average half a year earlier than their unexposed counterparts (52.1 vs. 52.6 years of age).

(Insert Table 1 here)

Morbidity in the exposed cohort in relation to the unexposed cohort (external analysis) In the external analysis (Table 2), we observed a very small increase of borderline significance in all-disease risk among Chernobyl cleanup workers (RR=1.01; 95% CI 1.00– 1.03). From the non-cancer late effects that might be related to the Chernobyl accident (UNSCEAR 2011), we found significantly elevated morbidity for diseases of thyroid gland (RR=1.69; 95% CI 1.38–2.07) and ischemic heart disease (RR=1.09; 95% CI 1.00–1.18). There was evidence of lower occurrence of cataract in the exposed cohort. Stress reactions, depression, severe headaches and sleep disorders were not diagnosed more frequently in the exposed cohort than in the reference cohort.

Increased morbidity was apparent for the broad categories of diseases of the nervous system, digestive system, musculoskeletal system, and alcohol-induced diagnoses. Morbidity from external causes in the exposed cohort exceeded that in the unexposed cohort (RR=1.07; 95% CI 1.03–1.11). Significantly higher morbidity was registered for falls, intentional self-harm and exposure to excessive cold. Cleanup workers did not undergo medical observations for suspected diseases (ICD-10 Z03) more frequently than unexposed men (RR=1.06; 95% CI 0.94–1.19). Additional adjustments for ethnicity and education (rate ratios not presented) did not materially alter these results.

(Insert Table 2 here)

Differences between subgroups in the exposed cohort (internal analysis)

Internal analysis revealed more depressive disorders and stress reactions (RR=1.27; 95% CI 1.00–1.62), and severe headaches (RR=1.69; 95% CI 1.10–2.60) among cleanup workers who entered the area shortly after the accident than in those arriving later (Table 3). Higher thyroid diseases morbidity was not related to year or month (April-May versus June-December, 1986) of arrival in the contaminated area. Longer mission did not increase the morbidity of any disease. Acute myocardial infarction, cerebrovascular diseases, diseases of liver, calculus of kidney and ureter, headaches, and alcohol-induced morbidity occurred more frequently among non-Estonians, while mental disorders were more frequent among Estonians. Less educated cleanup workers had higher risk for diseases of the nervous system, cerebrovascular diseases, intentional self-harm, and alcohol-induced morbidity, and lower risk for in situ and benign neoplasms.

Including education and ethnicity in the model did not alter markedly the crude point estimates of RR for year of arrival or duration of stay (rate ratios not presented). Higher documented radiation dose (5.0–9.9 or \geq 10.0 vs. <5.0 cGy) was not associated with higher morbidity of thyroid diseases (RR=0.92; 95% CI 0.60–1.40; 0.92; 0.60–1.40, respectively),

BMJ Open

cataract (RR=1.26; 95% CI 0.80–1.98; 1.13; 0.70–1.83, respectively), or any of the other selected diseases.

(Insert Table 3 here)

DISCUSSION

The first non-cancer morbidity analysis of the Estonian cohort of Chernobyl cleanup workers revealed elevated morbidity for diseases of the nervous system, digestive system, musculoskeletal system, ischemic heart disease, and for external causes. The most salient excess risk was observed for thyroid diseases, and as expected, for intentional self-harm and selected alcohol-induced diagnoses.

Limitations

First, this study was limited to morbidity cases in 2004–2012. We had no information about morbidity prior to this time period. Thus, it was not possible to specify incident cases or assess early effects of exposure.

Second, among given diseases there could be tentative and preliminary diagnoses unconfirmed afterwards. We are aware of the possibility of diagnostic errors, upcoding and unbundling of codes associated with the use of an reimbursement-administrative database, originally created not for research purposes, but proved to be an important source for medical studies in Estonia.[24–26] A small number of cases might have been diagnosed by commercial health care providers and not reported to the EHIF. However, because of universal health insurance, these limitations would be expected to affect the exposed and unexposed cohorts in a similar fashion. This kind of non-differential misclassification of disease or of disease status probably either does not bias the rate ratio or biases it towards the null. The same may be said in a hypothetical situation when the validity of diagnoses in the EHIF will be almost perfect. In the last case as the most important, the number and

heterogeneity of diagnostic entries would be reduced, and the accuracy of measurements improved.

Third, the documented radiation doses are not entirely accurate, and there could be incorrect readings in both directions as discussed elsewhere.[2, 19] Although no correlation was observed between individual doses from military passports (lists) and the biodosimetry estimates for the sub-cohort of cleanup workers, it is estimated that the cohort was exposed to low-dose radiation around 0.1 Gy on average.[22, 27] A similar dose level was reported for Latvian and Lithuanian Chernobyl cleanup workers.[28] Thus, we used year of arrival and duration of stay as proxy variables for radiation exposure. Given these limitations, our conclusions are duly tempered.

Fourth, the small size of the cohort has reduced the power of analysis. In addition, because of multiple comparisons, it is possible that some statistically significant findings could be due to chance.

Possible radiation effects?

Thyroid diseases have been under close surveillance after the Chernobyl accident since radioiodine (mainly ¹³¹I with a half-life of eight days) released during the explosion is concentrated in the thyroid gland. Ron and Brenner [29] summarized the evidence of benign thyroid diseases after radiation exposure. They concluded that associations have been weak and elevated risk occurred mainly in subjects with high doses, exposed at young ages, and in women. Keeping in mind that the cohort of cleanup workers includes only adult men who were exposed to low doses, we cannot attribute the thyroid findings to radiation. This interpretation is supported by the lack of excess among the early entrants or subjects with the highest documented radiation doses. At the same time, we cannot exclude the possibility that a higher rate ratio among the cleanup workers is caused by close medical attention sought by

BMJ Open

them. During thyroid screening among the Estonian cleanup workers in 1995, no clear correlation was found between the prevalence of thyroid nodules and the year of arrival or recorded radiation dose.[30] Moreover, these whole-body external doses have little relevance to thyroid diseases because they are not thyroid doses.

High radiation doses increase the risk of circulatory diseases, but less is known about the effect of low or moderate doses (<0.5 Gy). Difficulty in estimating dose-response at low dose levels is due to paucity of large cohorts with high-quality data on doses and confounders.[10, 31] As the Estonian cohort of cleanup workers is small and with low average radiation dose, we cannot attribute the small increase in ischemic heart disease morbidity seen in the cohort to biological effects of radiation exposure. This conclusion is also supported by the mortality analyses, where no excess deaths from circulatory diseases were found.[2]

An increased risk of cataract, observed in atomic-bomb survivors [7] and Ukrainian cleanup workers,[31] did not emerge in the Estonian cohort. An observed statistically significant deficit of cataract cases may be an occasional finding without any epidemiological relevance. Although cataract has been conventionally regarded as a late deterministic effect of radiation with a threshold dose of 0.5 Gy, recent studies have suggested a need to lower this dose limit and reconsider the threshold model.[31, 33] Nevertheless, it is unlikely that radiation-related cataracts will be detectable among the Estonian cleanup workers in the future, given the low dose level.

Mental and neurological disorders

Natural or man-made disasters can inflict psychological consequences to the affected populations. Radiation events evoke images of the bombings of Hiroshima and Nagasaki, and mental health effects such as post-traumatic stress, depression, anxiety, and somatization can be long-lasting.[34] After the Chernobyl accident, the mental health of the local population

and cleanup workers was considered to be the main public health concern.[1, 14] Cleanup workers were exposed not only to radiation, but also to the lack of protective gear and to the poor living conditions, sometimes doing meaningless jobs, and drinking large amounts of alcohol (mainly home-distilled).[19, 35] Misleading or no information about the possible long-term health effects generated rumors and misapprehensions, and radiation fears were exaggerated.[36, 37] The situation bred profound mistrust of all authorities. One of the most difficult lessons from Chernobyl has been to gain the public's trust and to deliver scientific information about the radiation risks, as there exists an insuperable gap between the experts' and public's perceptions about radiation.[38–40]

To date, the persistently elevated suicide risk in the Estonian cohort has been the definitive indication of psychological impairment as a result of working as a Chernobyl cleanup worker.[2] However, the current morbidity analyses showed a mixed pattern of mental and neurological disorders. Based on the results from a study of Ukrainian cleanup workers,[15] we expected higher rates of depression, anxiety, post-traumatic stress disorder, and headaches. Yet, there was no overall increase of mental disorders as a group (RR=1.00), or of physician-diagnosed depression or anxiety. During the follow-up period, the cleanup workers used health care services significantly less frequently for stress reactions than the unexposed cohort. No excess of severe headaches or sleep disorders was found among cleanup workers. However, depression and stress reactions, and severe headaches were more frequent in the early entrants. Elevated morbidity due to intentional self-harm is also an indicator of psychological distress. This finding is consistent with the increased suicide rate in the cohort,[2] which is strongly related to alcohol dependence among middle-aged men in Estonia.[41]

Smoking and heavy alcohol consumption are more prevalent in less educated men in Estonia.[42, 43] Although population-based health (behavior) prevalence studies do not

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

report differences in smoking and drinking habits between Estonians and non-Estonians,[42, 43] mortality is higher in non-Estonians,[44] particularly alcohol-related mortality.[45]

Excess morbidity emerged for alcohol-induced diseases – mental disorders due to alcohol and degeneration of nervous system due to alcohol. Morbidity from alcohol-induced diagnoses as a group was 25% higher among cleanup workers than in the unexposed cohort. Considering common alcohol abuse among men in Estonia (especially with lower educational level),[43] it is not surprising that cleanup workers used alcohol to cope with stressful situation, and still do. Higher morbidity due to excessive cold is most likely attributable to homelessness and suggests that periods of homelessness were more common in cleanup workers than in men in the comparison cohort. Results of our study demonstrate that the men with Estonian ethnicity and/ or higher educational level coped better with Chernobyl consequences including alcohol abuse.

Although Ukrainian cleanup workers had more mental disorders than controls, no excess of alcoholism was observed.[15] This illustrates how analysis of similar cohorts with different design and risk measures can produce entirely opposite results. Very likely, mental disorders other than alcoholism were under-diagnosed in the Estonian cohort, and the prevalence of alcohol problems was underestimated in the Ukrainian cohort. It is common that people do not seek professional help for mental health problems.[34] Untreated mental disorders can manifest as unexplained physical complaints such as headache or back pain, or they are risk factors for somatic diseases (e.g. thyroid diseases of diseases of the digestive system).[46, 47] Thus, it is important to pay attention to both mental and somatic diseases of Chernobyl cleanup workers simultaneously.

CONCLUSIONS

No obvious excess morbidity consistent with biological effects of radiation was seen in the exposed cohort, with the possible exception of benign thyroid diseases. Increased alcoholinduced morbidity reflects alcohol abuse, and could underlie some of the higher morbidity rates. Mental disorders in the exposed cohort were probably underreported. The future challenge will be to study mental and physical co-morbidities in the Chernobyl cleanup workers cohort.

Acknowledgements The authors thank Triin Habicht and Elin Raaper from the Estonian Health Insurance Fund for data linkages.

Contributors KR and MR designed the study. KR performed the statistical analyses and drafted the manuscript. EB, TH, AA, AU and MR contributed to the interpretation of the results and revised critically the manuscript. MR supervised the whole process. All authors have seen and approved the final version of the manuscript.

Funding This stage of the study was supported financially by the Estonian Research Council (IUT5-1), and by the Estonian Ministry of Education and Research (target funding SF0180060s09).

Competing interests None.

Ethics approval The study was approved by the Tallinn Medical Ethics Committee (no. 1939, February 11, 2010), and by the Estonian Data Protection Inspectorate (no. 2.2-3/10/120r, April 9, 2010).

BMJ Open

Data sharing statement No additional data are available.

REFERENCES

- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. UNSCEAR 2008 Report to the General Assembly with Scientific Annexes, Volume II, Scientific Annex D: Health effects due to radiation from the Chernobyl accident. New York: United Nations, 2011.
- 2. Rahu K, Auvinen A, Hakulinen T, *et al.* Chernobyl cleanup workers from Estonia: follow-up for cancer incidence and mortality. *J Radiol Prot* 2013;33:395–411.
- Shimizu Y, Kodama K, Nishi N, *et al.* Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. *BMJ* 2010;340:b5349.
- Vrijheid M, Cardis E, Ashmore P, *et al.* Mortality from diseases other than cancer following low doses of ionizing radiation: results from the 15-Country Study of nuclear industry workers. *Int J Epidemiol* 2007;36:1126–35.
- Ozasa K, Shimizu Y, Suyama A, *et al.* Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. *Radiat Res* 2012;177:229–43.
- Boice JD Jr, Mumma MT, Blot WJ. Cancer incidence and mortality in populations living near uranium milling and mining operations in Grants, New Mexico, 1950– 2004. *Radiat Res* 2010;174:624–36.
- Yamada M, Wong FL, Fujiwara S, *et al.* Noncancer disease incidence in atomic bomb survivors, 1958–1998. *Radiat Res* 2004;161:622–32.

	BMJ Open
8.	Azizova TV, Muirhead CR, Moseeva MB, et al. Cerebrovascular diseases in nuclear
	workers first employed at the Mayak PA in 1948–1972. Radiat Environ Biophys
	2011;50:539–52.
9.	Azizova TV, Muirhead CR, Moseeva MB, et al. Ischemic heart disease in nuclear
	workers first employed at the Mayak PA in 1948–1972. Health Phys 2012;103:3–14.
10.	Little MP, Azizova TV, Bazyka D, et al. Systematic review and meta-analysis of
	circulatory disease from exposure to low-level ionizing radiation and estimates of
	potential population mortality risks. <i>Environ Health Perspect</i> 2012;120:1503–11.
11.	Ivanov VK, Maksioutov MA, Chekin SYu, et al. Radiation-epidemiological analysis
	of incidence of non-cancer diseases among the Chernobyl liquidators. Health Phys
	2000;78:495–501.
12.	Ivanov VK, Maksioutov MA, Chekin SY, et al. The risk of radiation-induced
	cerebrovascular disease in Chernobyl emergency workers. Health Phys 2006;90:199-
	207.
13.	Preston RJ, Boice JD Jr, Brill AB, et al. Uncertanties in estimating health risks
	associated with exposure to ionising radiation. J Radiol Prot 2013;33:573-88.
14.	Balonov MI. The Chernobyl Forum: major findings and recommendations. J Environ
	Radioact 2007;96:6–12.
15.	Loganovsky K, Havenaar JM, Tintle NL, et al. The mental health of clean-up workers
	18 years after the Chernobyl accident. Psychol Med 2008;38:481-8.
16.	Bromet EJ, Havenaar JM, Guey LT. A 25 year retrospective review of the
	psychological consequences of the Chernobyl accident. Clini Oncol (R Coll Radiol)
	2011;23:297–305.
17.	Rahu M, Tekkel M, Veidebaum T, et al. The Estonian study of Chernobyl cleanup
	workers: II. Incidence of cancer and mortality. Radiat Res 1997;147:653-7.
	18

ge 45 of 53		BMJ Open			
	18.	Rahu K, Rahu M, Tekkel M, et al. Suicide risk among Chernobyl cleanup workers in			
		Estonia still increased: an updated cohort study. Ann Epidemiol 2006;16:917-9.			
	19.	Tekkel M, Rahu M, Veidebaum T, et al. The Estonian study of Chernobyl cleanup			
		workers: I. Design and questionnaire data. Radiat Res 1997;147:641-52.			
	20.	Koppel A, Kahur K, Habicht T, et al. Estonia: Health system review. Health Syst			
		<i>Transit</i> 2008;10:1–230.			
	21.	Clayton D, Hills M. Statistical Models in Epidemiology. New York: Oxford			
		University Press, 1993.			
	22.	Bigbee WL, Jensen RH, Veidebaum T, et al. Biodosimetry of Chernobyl cleanup			
		workers from Estonia and Latvia using the glycophorin A in vivo somatic cell			
		mutation assay. <i>Radiat Res</i> 1997;147:215–24.			
	23.	Chumak VV. Physical dosimetry of Chernobyl cleanup workers. <i>Health Phys</i>			
		2007;93:452–61.			
	24.	Blöndal M, Ainla T, Marandi T, et al. Changes in treatment and mortality of acute			
		myocardial infarction in Estonian tertiary and secondary care hospitals in 2001 and			
		2007. BMC Res Notes 2012;5:71.			
	25.	Müller R, Kallikorm R, Põlluste K, et al. Compliance with treatment of rheumatoid			
		arthritis. <i>Rheumatol Int</i> 2012;32:3131–5.			
	26.	Veerus P, Fischer K, Hakama M, et al. Results from a blind and a non-blind			
		randomised trial run in parallel: experience from the Estonian Postmenopausal			
		Hormone Therapy (EPHT) Trial. BMC Med Res Methodol 2012;12:44.			
	27.	Littlefield LG, McFee AF, Salomaa SI, et al. Do recorded doses overestimate true			
		doses received by Chernobyl cleanup workers? Results of cytogenetic analyses of			
		Estonian workers by fluorescence in situ hybridization. Radiat Res 1998;150:237–49.			
		19			

28.	Rahu K, Hakulinen T, Smailyte G, et al. Site-specific cancer risk in the Baltic cohort
	of Chernobyl cleanup workers, 1986–2007. Eur J Cancer 2013;49:2926–33.
29.	Ron E, Brenner A. Non-malignant thyroid diseases after a wide range of radiation
	exposures. Radiat Res 2010;174:877-88.
30.	Inskip PD, Hartshorne MF, Tekkel M, et al. Thyroid nodularity and cancer among
	Chernobyl cleanup workers from Estonia. Radiat Res 1997;147:225-35.
31.	Little MP. A review of non-cancer effects, especially circulatory and ocular diseases.
	Radiat Environ Biophys 2013;52:435–49.
32.	Worgul BV, Kundiyev YI, Sergiyenko NM, et al. Cataracts among Chernobyl clean-
	up workers: implications regarding permissible eye exposures. Radiat Res
	2007;167:233–43.
33.	Hammer GP, Scheidemann-Wesp U, Samkange-Zeeb F, et al. Occupational exposure
	to low doses of ionizing radiation and cataract development: a systematic literature
	review and perspectives on future studies. Radiat Environ Biophys 2013;52:303-19.
34.	Bromet EJ. Lessons learned from radiation disasters. World Psychiatry 2011;10:83-4.
35.	Tarlap T. Chernobyl 1986: Memoirs of an Estonian Cleanup Worker. Tallinn: IECM,
	1995.
36.	Rahu M. Health effects of the Chernobyl accident: fears, rumours and the truth. Eur J
	<i>Cancer</i> 2003;39:295–9.
37.	Balonov MI. On protecting the inexperienced reader from Chernobyl myths. J Radiol
	<i>Prot</i> 2012;32:181–9.
38.	Loewenberg S. Mikhail Balonov: understanding the legacy of Chernobyl. Lancet
	2006:367:1311.
39.	Thomas GA. Putting health risks from radiation exposure into context: lessons from
	past accidents. Ann Acad Med Singapore 2011;40:158-9.

BMJ Open

י ר		
2 3	40.	Perko T. Radiation risk perception: a discrepancy between the experts and the general
4 5		population. J Environ Radioact Available online: 15 May 2013. doi:
6 7		
8		10.1016/j.jenvrad.2013.04.005.
9 10	41.	Kõlves K, Värnik A, Tooding LM, et al. The role of alcohol in suicide: a case-control
11 12		psychological autopsy study. <i>Psychol Med</i> 2006;36:923–30.
13	10	
14 15	42.	Pärna K, Rahu K. Socio-economic differences in smoking. <i>Eesti Arst</i> 2008;88:57–62
16 17		(in Estonian).
18	43.	Pärna K, Rahu K, Helakorpi S, et al. Alcohol consumption in Estonia and Finland:
19 20		
21 22		Finbalt survey 1994–2006. BMC Public Health 2010;10:261.
23	44.	Leinsalu M, Vågerö D, Kunst AE. Increasing ethnic differences in mortality in
24 25		Estonia after the collapse of the Soviet Union. J Epidemiol Community Health
26 27		2004;58:583–9.
28 29		2007,56.565-7.
30	45.	Rahu K, Pärna K, Palo E, et al. Contrasts in alcohol-related mortality in Estonia:
31 32		education and ethnicity. Alcohol Alcohol 2009;44:517-22.
33 34	46.	Ginzburg K, Solomon Z. Trajectories of stress reactions and somatization symptoms
35 36		among war veterans: a 20-year longitudinal study. <i>Psychol Med</i> 2011;41:353–62.
37		among war veterans. a 20-year tongitudinar study. I sychol med 2011,41.555–62.
38 39	47.	Sanna L, Stuart AL, Pasco JA, et al. Physical comorbidities in men with mood and
40 41		anxiety disorders: a population-based study. BMC Med 2013;11:110.
42		
43 44		
45		
46		
47		
48 49		
50		
51		
52		
53		
54		
55 56		

1
2
3
3 4 5 6 7
5
7
8
9
10 11
12
13
14
15 16
17
18
19
20 21
$9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 9 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 27 \\ 28 \\ 29 \\ 31 \\ 32 \\ 33 \\ 35 \\ 37 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38$
23
24
25
26 27
28
29
30
31
32 33
34
35
36
37 38
39
40
41
42 43
44
45
46
47 48
40 49
50
51
52 53
53 54
54 55
56
57
58 59
00

Table 1 Characteristics of the Estonian cohort of Chernobyl cleanup workers (exposed cohort) and the unexposed comparison cohort

Characteristic		ed cohort		
	No.	(%)	No.	(%)
Total	3680	(100)	7631	(100)
Vital status on December 31, 2012				
Living in Estonia	3132	(85.1)	6795	(89.0)
Dead	474	(12.9)	798	(10.5)
Emigrated	74	(2.0)	38	(0.5)
Age at start of follow-up (full years)				
35–44	1265	(34.4)	2645	(34.7)
45–54	1850	(50.3)	3738	(49.0)
55–64	536	(14.6)	1186	(15.5)
≥65	29	(0.8)	62	(0.8)
Person-years in an age group (2004–2012)				()
35–44	4718.4	(15.4)	9416.1	(14.5)
45–54	15,513.5	(50.6)	32,825.3	(50.4)
55-64	9303.9	(30.3)	20,126.9	(30.9)
≥65	1138.6	(3.7)	2743.5	(4.2)
Total	30,674.4	(100)	65,111.8	(100)
Ethnicity	50,074.4	(100)	05,111.0	(100)
Estonian	2036	(55.3)	4690	(61.5)
Non-Estonian	1643	(44.6)	2848	(37.3)
Unknown	1045	(44.0) (0.0)	93	(1.2)
Education	1	(0.0)	95	(1.2)
Higher	322	(8.8)	1159	(15.2)
Secondary	2446	(66.5)	4017	(52.6)
Basic or less	824	· /	1200	
Unknown	88	(22.4) (2.4)	1200	(15.7) (16.4)
Time of arrival in the Chernobyl area	00	(2.4)	1255	(10.4)
1986, April–May	1154	(31.4)		
1980, April-May 1986, June–December	1134	(31.4) (30.7)		
1986, June–December 1986, month unknown	1128	· · ·		
	820	(0.4)		
1987 1988		(22.3)		
	417	(11.3)		
1989–1991	67	(1.8)		
Unknown	81	(2.2)		
Duration of stay in the Chernobyl area (days)	220			
<30	220	(6.0)		
30-89	1487	(40.4)		
90–149	1163	(31.6)		
150-209	648	(17.6)		
≥210	60	(1.6)		
Unknown	102	(2.8)		
Documented dose (cGy)				
<5.0	810	(22.0)		
5.0-9.9	1022	(27.8)		
10.0–14.9	555	(15.1)		
15.0–19.9	519	(14.1)		
20.0-24.9	195	(5.3)		
≥25.0	21	(0.6)		
Unknown	558	(15.2)		

BMJ Open

Table 2 Number of morbidity cases* and age-adjusted morbidity rate ratios[†] (RR) with 95% confidence intervals (CI) in the Estonian cohort of Chernobyl cleanup workers (exposed cohort) in relation to the unexposed comparison cohort, 2004–2012

ICD-10	Diagnosis/ external cause of morbidity		f cases	RR (95% CI)	
		Exposed cohort	Unexposed cohort		
A00-R99, V01-Z99	All diagnoses and external causes	41,370	86,441	1.02 (1.01-1.03	
A00–R99,	All diseases, except cancer	31,757	66,799	1.01 (1.00-1.03	
except C00-C97		ŕ	,		
A00–B99	Infectious diseases	1338	3022	0.94 (0.88-1.00	
A15-A16	Respiratory tuberculosis	41	73	1.19 (0.81-1.74	
D00-D48	In situ and benign neoplasms	517	1060	1.04 (0.94-1.16	
D50–D89	Diseases of the blood and blood-forming organs	97	195	1.07 (0.84-1.36	
Е00-Е90	Endocrine, nutritional and metabolic diseases	806	1754	0.98 (0.90-1.07	
Е00-Е07	Diseases of thyroid gland	167	211	1.69 (1.38-2.07	
F00-F99	Mental disorders	1380	2918	1.00 (0.94-1.07	
F10	Mental disorders due to alcohol	328	570	1.21 (1.06-1.39	
F32–F33	Depressive disorders	290	633	0.97 (0.84-1.11	
F41	Anxiety disorders	119	275	0.91 (0.74-1.13	
F43	Stress reactions	55	162	0.72 (0.53-0.97	
G00-G99	Diseases of the nervous system	1352	2550	1.13 (1.06-1.21	
G31.2	Degeneration of nervous system due to alcohol	48	68	1.51 (1.04–2.18	
G40	Epilepsy	148	223	1.40 (1.14-1.73	
G43G44	Migraine and other headache	125	256	1.03 (0.83-1.28	
G50–G59	Nerve, nerve root and plexus disorders	447	829	1.15 (1.02-1.29	
F51, G47	Sleep disorders	267	529	1.08 (0.93-1.25	
H00-H59	Diseases of the eye	2004	4592	0.93 (0.89-0.98	
H25–H26, H28	Cataract	155	449	0.77 (0.64-0.92	
H40, H42	Glaucoma	109	247	0.96 (0.77-1.20	
H60–H95	Diseases of the ear	1228	2707	0.97 (0.91-1.04	
I00–I99	Diseases of the circulatory system	4432	9477	1.00 (0.97-1.04	
I10–I15	Hypertensive diseases	1936	4210	0.98 (0.93-1.04	
I20–I25	Ischemic heart disease	773	1537	1.09 (1.00-1.18	
I21	Acute myocardial infarction	104	214	1.05 (0.83-1.33	
I60–I69	Cerebrovascular diseases	291	606	1.05 (0.91-1.20	
J00–J99	Diseases of the respiratory system	4699	10,079	0.99 (0.95-1.02	
J30–J39	Diseases of upper respiratory tract	592	1431	0.87 (0.79-0.96	
J40–J47	Lower respiratory diseases	580	1130	1.10 (1.00-1.22	
K00-K93	Diseases of the digestive system	3179	6068	1.11 (1.07-1.16	
K20-K31	Diseases of oesophagus, stomach and duodenum	1415	2648	1.14 (1.06–1.21	
K25-K27	Peptic ulcer	464	857	1.15 (1.02-1.28	
K70-K77	Diseases of liver	194	357	1.16 (0.97-1.38	
K70	Alcoholic liver disease	68	117	1.23 (0.91–1.66	
K85-K86	Diseases of pancreas	128	213	1.27 (1.02–1.58	
K86.0	Alcohol-induced pancreatitis	25	41	1.27 (0.77–2.09	
L00-L99	Diseases of the skin	1793	3730	1.02 (0.97-1.08	
M00-M99	Diseases of the musculoskeletal system	6296	12,623	1.06 (1.03-1.09	
M15-M19	Arthrosis	925	1881	1.06 (0.98–1.14	
M54	Dorsalgia	1475	2817	1.11 (1.04–1.18	
N00-N99	Diseases of the genitourinary system	1518	3648	0.89 (0.84-0.95	
N20	Calculus of kidney and ureter	140	321	0.93 (0.76–1.14	
N40	Hyperplasia of prostate	418	1032	0.88 (0.79–0.99	
R00-R99	Findings, not elsewhere classified	1091	2297	1.01 (0.94–1.09	
V01-Y98	External causes of morbidity	5084	10,055	1.07 (1.03-1.11	
V01-V99	Transport accidents	171	423	0.85 (0.71-1.02	
W00-W19	Falls	2010	3817	1.11 (1.06–1.18	
W20-W49	Exposure to mechanical forces	1864	3799	1.03 (0.98-1.09	
X31	Excessive cold	26	32	1.74 (1.04–2.92	
X40-X49	Accidental poisoning	34	69	1.05 (0.69-1.58	
X60-X84	Intentional self-harm	53	76	1.47 (1.04-2.09	
Z00–Z99	Contact with health services	4135	8862	0.99 (0.96-1.03	
Z03	Medical observation for suspected disease	389	788	1.06 (0.94-1.19	
F10, G31.2, I42.6, K70,	Selected alcohol-induced diagnoses and	528	896	1.25 (1.12-1.39	

* The first occurrence of the three-digit ICD-10 code in the study period was considered.

[†] Adjusted for age at diagnosis.

‡ p<0.05

Table 3 Adjusted morbidity rate ratios* (RR) with 95% confidence intervals (CI) by exposure for selected diagnoses and external causes of morbidity in the Estonian cohort of Chernobyl cleanup workers (3506 persons), 2004–2012

ICD 10	Discussion	V f 1	Denetien of steer	Ethericite.	E de continue
ICD-10	Diagnosis/	Year of arrival	Duration of stay	Ethnicity	Education
	external cause of morbidity	1986†	≥92 days†	Non-Estonian†	Basic or less [†]
D00–D48	In situ and benign	1.15 (0.95–1.39)	0.77 (0.64–0.92)‡	1.09 (0.91–1.30)	0.76 (0.61–0.96)‡
	neoplasms				
E00-E07	Diseases of thyroid gland	0.94 (0.68–1.31)	1.00 (0.73-1.38)	0.85 (0.62-1.17)	0.82 (0.55-1.22)
F00-F99	Mental disorders	1.08 (0.96-1.21)	0.85 (0.76-0.95)‡	0.82 (0.74–0.92)‡	1.11 (0.97-1.27)
F32–F33, F43	Depressive disorders and	1.27 (1.00-1.62)	0.72 (0.58-0.90)‡	0.53 (0.41-0.67)‡	0.88 (0.66-1.17)
	stress reactions				
G00-G99	Diseases of the nervous	1.01 (0.90-1.13)	0.93 (0.83-1.04)	0.97 (0.87-1.09)	1.20 (1.05-1.37)‡
	system				
G43–G44	Migraine and other	1.69 (1.10-2.60)	0.79 (0.55-1.14)	1.48 (1.03-2.12)	0.97 (0.59-1.58)
	headache			· · ·	
H25-H26, H28	Cataract	1.07 (0.77-1.49)	1.05 (0.76-1.45)	1.29 (0.93-1.77)	0.93 (0.65-1.33)
H40, H42	Glaucoma	1.26 (0.83–1.89)	0.78 (0.52-1.15)	1.20 (0.81–1.78)	0.80 (0.51-1.27)
I10–I15	Hypertensive diseases	1.03 (0.94–1.14)	0.92 (0.84-1.01)	1.07 (0.98–1.17)	0.99 (0.88-1.11)
I20–I25	Ischemic heart disease	1.15 (0.99–1.34)	0.81 (0.70-0.94)	1.12 (0.97-1.30)	1.10 (0.93–1.30)
I21	Acute myocardial	1.11 (0.74–1.68)	0.94 (0.63-1.39)	1.53 (1.03-2.26)‡	1.17 (0.74–1.83)
	infarction	· · · · · ·		× 74	()
I60–I69	Cerebrovascular diseases	1.11 (0.86–1.42)	1.03 (0.81-1.42)	1.65 (1.30-2.11)‡	1.61 (1.25-2.08)‡
K70-K77	Diseases of liver	1.13 (0.82–1.54)	1.13 (0.84–1.51)	1.42 (1.07–1.90)‡	1.12 (0.79–1.58)
N20	Calculus of kidney and	1.08 (0.74–1.57)	0.88 (0.62-1.26)	1.99 (1.39–2.85)‡	0.73 (0.45-1.19)
	ureter				(((((((((((((((((((((((((((((((((((((((
X60-X84	Intentional self-harm	1.27 (0.68–2.36)	0.77 (0.43-1.37)	1.43 (0.82-2.52)	2.73 (1.48-5.05)‡
F10, G31.2, I42.6,	Selected alcohol-induced	0.92 (0.76-1.11)	0.98 (0.82-1.17)	1.37 (1.15–1.63)‡	1.76 (1.44–2.15)‡
K70, K86.0, X45,	diagnoses and external				
X65, Y15	causes of morbidity				
	eauses of morbiany				

* Models include age at diagnosis, year of arrival, duration of stay, ethnicity, and education.

† The reference categories for these variables are as follows: year of arrival 1987–1991; duration of stay <92 days; ethnicity

Estonian; education higher/ secondary.

‡ p<0.05.

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	ltem #	Recommendation	Reported on page #	
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2	
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5	
Objectives	3	State specific objectives, including any prespecified hypotheses	5	
Methods				
Study design	4	Present key elements of study design early in the paper	5	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5	
		(b) For matched studies, give matching criteria and number of exposed and unexposed		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 6-7		
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe 6-7 comparability of assessment methods if there is more than one group		
Bias	9	Describe any efforts to address potential sources of bias	7-8	
Study size	10	Explain how the study size was arrived at	5-6	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7-8	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8	
		(b) Describe any methods used to examine subgroups and interactions	7-8	
		(c) Explain how missing data were addressed	7-8	
		(d) If applicable, explain how loss to follow-up was addressed	no losses (Table 1)	
		(e) Describe any sensitivity analyses		
Results				

BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	8, Table 1
		(b) Give reasons for non-participation at each stage	5-6
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8, Table 1
		(b) Indicate number of participants with missing data for each variable of interest	8, Table 1
		(c) Summarise follow-up time (eg, average and total amount)	8, Table 1
Outcome data	15*	Report numbers of outcome events or summary measures over time	8, Table 2
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	9-10, Table 2-3
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	8
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9-10, Table 3
Discussion			
Key results	18	Summarise key results with reference to study objectives	10
Limitations			10-11
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	10-14
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other information			14-15
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	15
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Non-cancer morbidity among Estonian Chernobyl cleanup workers: a register-based cohort study

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-004516.R2
Article Type:	Research
Date Submitted by the Author:	17-Apr-2014
Complete List of Authors:	Rahu, Kaja; National Institute for Health Development, Department of Epidemiology and Biostatistics Bromet, Evelyn; Stony Brook University School of Medicine, Department of Psychiatry and Behavioral Science Hakulinen, Timo; Finnish Cancer Registry, Auvinen, Anssi; University of Tampere, School of Health Sciences; Radiation and Nuclear Safety Authority, Uusküla, Anneli; University of Tartu, Department of Public Health Rahu, Mati; National Institute for Health Development, Department of Epidemiology and Biostatistics
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Occupational and environmental medicine
Keywords:	alcohol-induced disorders, Chernobyl nuclear accident, Estonia, MENTAL HEALTH, morbidity, radiation effects

SCHOLARONE[™] Manuscripts

0,14

BMJ Open

Non-cancer morbidity among Estonian Chernobyl cleanup workers: a register-based cohort study

Kaja Rahu,¹* Evelyn J Bromet,² Timo Hakulinen,³ Anssi Auvinen,^{4,5} Anneli Uusküla,⁶ Mati Rahu¹

¹ Department of Epidemiology and Biostatistics, National Institute for Health Development, Tallinn, Estonia

² Department of Psychiatry and Behavioral Science, Stony Brook University School of

Medicine, Stony Brook, NY, USA

³ Finnish Cancer Registry, Helsinki, Finland

⁴ School of Health Sciences, University of Tampere, Tampere, Finland

⁵ Radiation and Nuclear Safety Authority, Helsinki, Finland

⁶ Department of Public Health, University of Tartu, Tartu, Estonia

* Address for correspondence: K. Rahu, Department of Epidemiology and Biostatistics,

National Institute for Health Development, Hiiu 42, 11619 Tallinn, Estonia.

E-mail: kaja.rahu@tai.ee

Tel: +372 659 3943

Fax: +372 659 3901

Keywords: alcohol-induced disorders, Chernobyl nuclear accident, Estonia, mental health,

morbidity, radiation effects

Running head: Morbidity among Estonian Chernobyl cleanup workers

Word count: 3526

ABSTRACT

Objective: To examine non-cancer morbidity in the Estonian Chernobyl cleanup workers cohort compared to the population sample with special attention to radiation-related diseases and mental health disorders.

Design: Register-based cohort study.

Setting: Estonia.

Participants: An exposed cohort of 3680 men (cleanup workers) and an unexposed cohort of 7631 men (population sample) were followed 2004–2012 through the Population Registry and Health Insurance Fund database.

Methods: Morbidity in the exposed cohort compared to the unexposed controls was estimated in terms of rate ratio (RR) with 95% confidence intervals (CI) using Poisson regression models.

Results: Elevated morbidity in the exposed cohort was found for diseases of the nervous system, digestive system, musculoskeletal system, ischemic heart disease, and for external causes. The most salient excess risk was observed for thyroid diseases (RR=1.69; 95% CI 1.38–2.07), intentional self-harm (RR=1.47; 95% CI 1.04–2.09), and selected alcohol-related diagnoses (RR=1.25; 95% CI 1.12–1.39). No increase in morbidity for stress reactions, depression, headaches or sleep disorders was detected.

Conclusions: No obvious excess morbidity consistent with biological effects of radiation was seen in the exposed cohort, with the possible exception of benign thyroid diseases. Increased alcohol-induced morbidity may reflect alcohol abuse, and could underlie some of the higher morbidity rates. Mental disorders in the exposed cohort were probably underreported. The future challenge will be to study mental and physical co-morbidities in the Chernobyl cleanup workers cohort.

ARTICLE SUMMARY

Article focus

- There is limited information about the impact of the Chernobyl accident on the noncancer morbidity among the cleanup workers. Earlier studies of Estonian cleanup workers revealed an excess of suicide.
- This study provides insight into non-cancer morbidity in the cohort of Estonian cleanup workers with emphasis on radiation-related diseases and mental health disorders.

Key messages

- No obvious excess morbidity consistent with biological effects of radiation was found in the cleanup workers cohort, with the possible exception of benign thyroid diseases.
- Increased alcohol-induced morbidity in the cleanup workers cohort may reflect alcohol abuse, and could underlie some of the higher morbidity rates. Mental disorders in the exposed cohort were probably underreported.

Strengths and limitations of this study

- Morbidity information provided in this study was obtained from population-based registries via electronic record linkages using personal identification number as the key variable.
- Limitations of the study are as follows: relatively short follow-up; the probable
 presence of tentative and preliminary diagnoses in the health insurance database;
 questionable accuracy and precision of officially documented doses; probable
 overestimation of findings due to multiple comparisons.

INTRODUCTION

In the aftermath of the accident at the Chernobyl nuclear power station in April, 1986, about 530,000 men from throughout the former Soviet Union were commissioned to the area to clean up the environment.[1] Among them were nearly 5000 (mostly) military reservists from Estonia who worked in the contaminated area for three months on average; their mean received cumulative whole-body radiation dose was 0.1 Gy.[2]

Epidemiological evidence of non-cancer disease risk in the cohorts exposed to ionizing radiation is mainly based on mortality since administratively registered death records are available and easy to use for linkages. Most of these studies have focused on circulatory diseases, the major cause of death in developed countries. Excess mortality from all circulatory diseases, stroke and heart disease was observed in atomic-bomb survivors; however the association below dose of 0.5 Gy was not significant.[3] Follow-up of nuclear industry workers from 15 countries resulted with no significant findings for a dose-dependent rise in mortality from circulatory diseases.[4] Elevated risk of death for the broad categories of the respiratory and digestive systems has been found among atomic-bomb survivors,[5] but not in other environmentally exposed populations [6] or in nuclear industry workers.[4]

A few studies have reported morbidity outcomes. The most informative non-cancer disease incidence study in atomic-bomb survivors found significant radiation effects for thyroid diseases, liver disease, cataract, and calculus of the kidney and ureter.[7] The morbidity study of Mayak nuclear weapons facility workers demonstrated an increasing dose-related trend for cerebrovascular diseases [8] and ischemic heart disease,[9] but did not provide information on risk at doses below 0.2 Gy. A meta-analysis by Little et al. [10] combining morbidity and mortality studies of occupationally and environmentally exposed populations with mean dose below 0.5 Gy, demonstrated significantly increased dose-

BMJ Open

dependent risk for ischemic heart disease, cerebrovascular diseases and other circulatory diseases.

Analyses of non-cancer morbidity in a cohort of Russian Chernobyl cleanup workers have shown dose-dependent excess (per 1 Gy) for endocrine and metabolic diseases, mental disorders, diseases of the nervous system, diseases of the digestive system, cerebrovascular diseases, hypertension, and ischemic heart disease.[11, 12] However, risk estimates at low doses still remain uncertain.[13]

Although the psychological aftermath of the Chernobyl accident has been acknowledged as the major long-term public health problem in the exposed populations,[1, 14] the mental health of cleanup workers has only been assessed in small-scale studies in Ukraine.[15–16] There is an urgent need to examine mental health along with somatic diseases when considering the health of cleanup workers.[16]

An updated analysis of mortality and cancer incidence in the Estonian Chernobyl cohort revealed higher incidence of alcohol-related cancers and excess of suicide.[2] Suicide risk has been persistently elevated since the beginning of follow-up.[17, 18] The current research provides the first overview of morbidity other than cancer in the Estonian cohort of Chernobyl cleanup workers with special attention to radiation-related diseases and mental health disorders.

METHODS

Sample and follow-up

The Estonian cohort of Chernobyl cleanup workers (exposed cohort) includes 4831 men recruited in 1986–1991 to the Chernobyl area by the Soviet authorities for decontamination, building and other related activities. The "Chernobyl area" here denotes the 30-km zone (an area of 30-km radius from the nuclear power station) and territories outside, where the

workers were engaged with different activities during their mission period. Detailed information on the assembly and description of the cohort is given elsewhere.[19] To examine morbidity in this cohort, we used data from the Estonian Health Insurance Fund (EHIF) database available since January 2004. Thus, for the morbidity analyses we identified all cohort members aged 35–69 years and living in Estonia on January 1, 2004. Altogether, of 4831 men in the initial cohort, 1129 were excluded because of loss in follow-up (21), death (602) and emigration (506). In addition, we did not include men aged under 35 (9) and over 69 years (13) to have more homogeneous age group. This left just 3680 cleanup workers in the study. An unexposed population-based comparison cohort was selected corresponding to the age distribution of the exposed cohort. A random sample stratified by 5-year age groups with the exposed to unexposed ratio of 1:2 and 5% extra men in each age group was extracted from the Estonian Population Registry (EPR). In the unexposed cohort, after excluding 87 men who had worked in the Chernobyl area (cleanup workers), there remained 7631 men.

The cohort of cleanup workers was linked to the EPR to update vital status (emigration or death with corresponding date), ethnicity and education. Each person in both cohorts was followed up from January 1, 2004 until death, emigration or December 31, 2012 (whichever date came first). From the EHIF database, we obtained dates and ICD-10 codes for each contact with a health provider. All linkages were performed using the unique personal identification number (assigned to all permanent residents of Estonia) as the key variable. EHIF manages the mandatory universal health insurance system that is based on solidarity and covers 95% of the Estonian population.[20] All employees and self-employed persons contribute 13% of their wages, some groups of the population are financed by the State (e.g. registered unemployed, Chernobyl veterans), and some groups are insured without contribution (e.g. children, students, pensioners). People without coverage from the above mentioned sources can pay the tax voluntarily.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Health care contacts were identified from the EHIF database for 2004–2012 using the first occurrence of the three-digit ICD-10 code. If the contact involved multiple diagnoses, the first occurrence of each of them was separately counted. All diseases (except cancer, ICD-10 C00–C97), external causes of morbidity, and examinations or counseling were considered. Four-digit codes were taken separately only for some alcohol-induced diseases. A combined category of alcohol-induced diagnoses included mental disorders due to alcohol (F10), degeneration of the nervous system due to alcohol (G31.2), alcoholic cardiomyopathy (I42.6), alcoholic liver disease (K70), alcohol-induced pancreatitis (K86.0), accidental poisoning by alcohol (X45), intentional self-poisoning by alcohol (X65), and poisoning by alcohol, undetermined intent (Y15). The accuracy of the diagnosis was the responsibility of the physician issuing the invoice to EHIF for ambulatory or hospital care.

Morbidity measures and statistical analysis

We estimated morbidity in the cleanup workers cohort by means of rate ratio (RR) with 95% confidence intervals (CI) using the Poisson regression models with the logarithm of the person-years at risk (summed by five-year age groups) as the offset.[21] At first, we performed analysis comparing the exposed cohort with the unexposed cohort (external analysis) to obtain an overview of morbidity rate ratios. Diagnoses were grouped into broad categories with selected specific diagnoses. Analyses were adjusted for age at diagnosis by five-year age groups.

Additionally, analysis was done between different subgroups within the exposed cohort (internal analysis) to assess possible effects of year of arrival in the Chernobyl area (1986; 1987–1991), duration of stay (<92; \geq 92 days), and documented cumulative whole-body radiation dose (<5.0; 5.0–9.9; \geq 10.0 cGy) on morbidity risk. As described elsewhere, [1, 22, 23] the cleanup workers were dominantly exposed to γ -radiation released mainly by ¹³¹I,

¹³⁴Cs and ¹³⁷Cs. Received radiation doses were measured by individual or group dosimeters, or estimated by work area measurements. The readings were documented in the workers' military passports/ records. Considering, that documented doses were unreliable,[19] and not recorded for 15.2% of the cohort members, we used the year of arrival and duration of stay as proxy variables for radiation exposure.

Potential confounders – educational level (higher or secondary; basic or less) and ethnicity (Estonian; non-Estonian (mainly Russians)) – were included in the analysis as surrogates for health behavior. The prevalence of alcohol consumption at least once a week (28.5%) and current smoking (69.0%) among the cleanup workers was studied in a postal questionnaire survey conducted in 1992–1993,[19] but not included in current analyses due to small cohort size and lack of longitudinal data on these factors of health behavior. Thus, the selection of variables (potential confounders) was determined by the availability of them and a review of our previous studies.

Analyses within the exposed cohort focused on disease risks previously reported in atomic-bomb survivors and Chernobyl cleanup workers.[7, 11, 12] The first set of models included the year of arrival in the Chernobyl area, duration of stay, age at diagnosis, education and ethnicity. One hundred and seventy four subjects with missing information for any characteristic were excluded from the analysis. In the second set of models we included documented radiation dose; due to unrecorded values, an additional 452 subjects were excluded.

We used Visual FoxPro 6.0 (Microsoft Corporation, Redmond, WA, USA) for database management, and Stata 12 (StataCorp LP, College Station, TX, USA) for statistical modeling.

RESULTS

BMJ Open

Description of the exposed and unexposed cohorts

We followed 3680 exposed and 7631 unexposed men from January 1, 2004 until December 31, 2012 (Table 1). The exposed and unexposed cohorts contributed 30,674 and 65,112 person-years, respectively. Mean age at the start of follow-up was 48 years in both cohorts. During the follow-up, 12.9% of the exposed cohort and 10.5% of the unexposed cohort died. The proportions of non-Estonians (mainly Russians) and less educated persons were higher in the exposed cohort, although educational level was unknown for the 16.4% of the subjects in the unexposed cohort. Two-thirds of the cleanup workers entered the Chernobyl area in 1986; the mean and median durations of the mission were 102 and 92 days, respectively (range: 1–833 days). The cohort was exposed to low-level whole-body radiation with the mean and median documented radiation doses of 9.9 and 8.9 cGy, respectively (range: 0.0–54.5 cGy).

Nearly all men had at least one record in the EHIF database (93.6% of the exposed and 95.3% of the unexposed cohort). On average, members of both cohorts had 12 different diagnoses (three-digit ICD-10 codes). Men in the exposed cohort had their first health services contact on average half a year earlier than their unexposed counterparts (52.1 vs. 52.6 years of age).

(Insert Table 1 here)

Morbidity in the exposed cohort in relation to the unexposed cohort (external analysis) In the external analysis (Table 2), we observed a very small increase of borderline significance in all-disease risk among Chernobyl cleanup workers (RR=1.01; 95% CI 1.00– 1.03). From the non-cancer late effects that might be related to the Chernobyl accident (UNSCEAR 2011), we found significantly elevated morbidity for diseases of thyroid gland (RR=1.69; 95% CI 1.38–2.07) and ischemic heart disease (RR=1.09; 95% CI 1.00–1.18). There was evidence of lower occurrence of cataract in the exposed cohort. Stress reactions,

depression, severe headaches and sleep disorders were not diagnosed more frequently in the exposed cohort than in the reference cohort.

Increased morbidity was apparent for the broad categories of diseases of the nervous system, digestive system, musculoskeletal system, and alcohol-induced diagnoses. Morbidity from external causes in the exposed cohort exceeded that in the unexposed cohort (RR=1.07; 95% CI 1.03–1.11). Significantly higher morbidity was registered for falls, intentional self-harm and exposure to excessive cold. Cleanup workers did not undergo medical observations for suspected diseases (ICD-10 Z03) more frequently than unexposed men (RR=1.06; 95% CI 0.94–1.19). Additional adjustments for ethnicity and education (rate ratios not presented) did not materially alter these results.

(Insert Table 2 here)

Differences between subgroups in the exposed cohort (internal analysis)

Internal analysis revealed more depressive disorders and stress reactions (RR=1.27; 95% CI 1.00–1.62), and severe headaches (RR=1.69; 95% CI 1.10–2.60) among cleanup workers who entered the area shortly after the accident than in those arriving later (Table 3). Higher thyroid diseases morbidity was not related to year or month (April-May versus June-December, 1986) of arrival in the contaminated area. Longer mission did not increase the morbidity of any disease. Acute myocardial infarction, cerebrovascular diseases, diseases of liver, calculus of kidney and ureter, headaches, and alcohol-induced morbidity occurred more frequently among non-Estonians, while mental disorders were more frequent among Estonians. Less educated cleanup workers had higher risk for diseases of the nervous system, cerebrovascular diseases, intentional self-harm, and alcohol-induced morbidity, and lower risk for in situ and benign neoplasms.

Including education and ethnicity in the model did not alter markedly the crude point estimates of RR for year of arrival or duration of stay (rate ratios not presented). Higher

BMJ Open

documented radiation dose (5.0–9.9 or \geq 10.0 vs. <5.0 cGy) was not associated with higher morbidity of thyroid diseases (RR=0.92; 95% CI 0.60–1.40; 0.92; 0.60–1.40, respectively), cataract (RR=1.26; 95% CI 0.80–1.98; 1.13; 0.70–1.83, respectively), or any of the other selected diseases.

(Insert Table 3 here)

DISCUSSION

The first non-cancer morbidity analysis of the Estonian cohort of Chernobyl cleanup workers revealed elevated morbidity for diseases of the nervous system, digestive system, musculoskeletal system, ischemic heart disease, and for external causes. The most salient excess risk was observed for thyroid diseases, and as expected, for intentional self-harm and selected alcohol-induced diagnoses.

Limitations

First, this study was limited to morbidity cases in 2004–2012. We had no information about morbidity prior to this time period. Thus, it was not possible to specify incident cases or assess early effects of exposure.

Second, among given diseases there could be tentative and preliminary diagnoses unconfirmed afterwards. We are aware of the possibility of diagnostic errors, upcoding and unbundling of codes associated with the use of a reimbursement-administrative database, originally created not for research purposes, but proved to be an important source for medical studies in Estonia.[24–26] A small number of cases might have been diagnosed by commercial health care providers and not reported to the EHIF. However, because of universal health insurance, these limitations would be expected to affect the exposed and unexposed cohorts in a similar fashion. This kind of non-differential misclassification of disease or of disease status probably either does not bias the rate ratio or biases it towards the

null. The same may be said in a hypothetical situation when the validity of diagnoses in the EHIF will be almost perfect. In the last case as the most important, the number and heterogeneity of diagnostic entries would be reduced, and the accuracy of measurements improved.

Third, the documented radiation doses are not entirely accurate, and there could be incorrect readings in both directions as discussed elsewhere.[2, 19] Although no correlation was observed between individual doses from military passports (lists) and the biodosimetry estimates for the sub-cohort of cleanup workers, it is estimated that the cohort was exposed to low-dose radiation around 0.1 Gy on average.[22, 27] A similar dose level was reported for Latvian and Lithuanian Chernobyl cleanup workers.[28] Thus, we used year of arrival and duration of stay as proxy variables for radiation exposure.

Fourth, the small size of the cohort has reduced the power of analysis. In addition, because of multiple comparisons, it is possible that some statistically significant findings could be due to chance. Given these limitations, our conclusions are duly tempered.

Possible radiation effects?

Thyroid diseases have been under close surveillance after the Chernobyl accident since radioiodine (mainly ¹³¹I with a half-life of eight days) released during the explosion is concentrated in the thyroid gland. Ron and Brenner [29] summarized the evidence of benign thyroid diseases after radiation exposure. They concluded that associations have been weak and elevated risk occurred mainly in subjects with high doses, exposed at young ages, and in women. Keeping in mind that the cohort of cleanup workers includes only adult men who were exposed to low doses, we cannot attribute the thyroid findings to radiation. This interpretation is supported by the lack of excess among the early entrants or subjects with the highest documented radiation doses. At the same time, we cannot exclude the possibility that

BMJ Open

a higher rate ratio among the cleanup workers is caused by close medical attention sought by them. During thyroid screening among the Estonian cleanup workers in 1995, no clear correlation was found between the prevalence of thyroid nodules and the year of arrival or recorded radiation dose.[30]

High radiation doses increase the risk of circulatory diseases, but less is known about the effect of low or moderate doses (<0.5 Gy). Difficulty in estimating dose-response at low dose levels is due to paucity of large cohorts with high-quality data on doses and confounders.[10, 31] As the Estonian cohort of cleanup workers is small and with low average radiation dose, we cannot attribute the small increase in ischemic heart disease morbidity seen in the cohort to biological effects of radiation exposure. This conclusion is also supported by the mortality analyses, where no excess deaths from circulatory diseases were found.[2]

An increased risk of cataract, observed in atomic-bomb survivors [7] and Ukrainian cleanup workers,[32] did not emerge in the Estonian cohort. An observed statistically significant deficit of cataract cases may be an occasional finding without any epidemiological relevance. Although cataract has been conventionally regarded as a late deterministic effect of radiation with a threshold dose of 0.5 Gy, recent studies have suggested a need to lower this dose limit and reconsider the threshold model.[31, 33] Nevertheless, it is unlikely that radiation-related cataracts will be detectable among the Estonian cleanup workers in the future, given the low dose level.

Mental and neurological disorders

Natural or man-made disasters can inflict psychological consequences to the affected populations. Radiation events evoke images of the bombings of Hiroshima and Nagasaki, and mental health effects such as post-traumatic stress, depression, anxiety, and somatization can be long-lasting.[34] After the Chernobyl accident, the mental health of the local population

and cleanup workers was considered to be the main public health concern.[1, 14] Cleanup workers were exposed not only to radiation, but also to the lack of protective gear and to the poor living conditions, sometimes doing meaningless jobs, and drinking large amounts of alcohol (mainly home-distilled).[19, 35] Misleading or no information about the possible long-term health effects generated rumors and misapprehensions, and radiation fears were exaggerated.[36, 37] The situation bred profound mistrust of all authorities. One of the most difficult lessons from Chernobyl has been to gain the public's trust and to deliver scientific information about the radiation risks, as there exists an insuperable gap between the experts' and public's perceptions about radiation.[38–40]

To date, the persistently elevated suicide risk in the Estonian cohort has been the definitive indication of psychological impairment as a result of working as a Chernobyl cleanup worker.[2] However, the current morbidity analyses showed a mixed pattern of mental and neurological disorders. Based on the results from a study of Ukrainian cleanup workers,[15] we expected higher rates of depression, anxiety, post-traumatic stress disorder, and headaches. Yet, there was no overall increase of mental disorders as a group (RR=1.00), or of physician-diagnosed depression or anxiety. During the follow-up period, the cleanup workers used health care services significantly less frequently for stress reactions than the unexposed cohort. No excess of severe headaches or sleep disorders was found among cleanup workers. However, depression and stress reactions, and severe headaches were more frequent in the early entrants. Elevated morbidity due to intentional self-harm is also an indicator of psychological distress. This finding is consistent with the increased suicide rate in the cohort,[2] which is strongly related to alcohol dependence among middle-aged men in Estonia.[41]

Smoking and heavy alcohol consumption are more prevalent in less educated men in Estonia.[42, 43] Although population-based health (behavior) prevalence studies do not

BMJ Open

report differences in smoking and drinking habits between Estonians and non-Estonians,[42, 43] mortality is higher in non-Estonians,[44] particularly alcohol-related mortality.[45]

Excess morbidity emerged for alcohol-induced diseases – mental disorders due to alcohol and degeneration of nervous system due to alcohol. Morbidity from alcohol-induced diagnoses as a group was 25% higher among cleanup workers than in the unexposed cohort. Considering common alcohol abuse among men in Estonia (especially with lower educational level),[43] it is not surprising that cleanup workers used alcohol to cope with stressful situation, and still do. Higher morbidity due to excessive cold is most likely attributable to homelessness and suggests that periods of homelessness were more common in cleanup workers than in men in the comparison cohort. Results of our study demonstrate that the men with Estonian ethnicity and/ or higher educational level coped better with Chernobyl consequences including alcohol abuse.

Although Ukrainian cleanup workers had more mental disorders than controls, no excess of alcoholism was observed.[15] This illustrates how analysis of similar cohorts with different design and risk measures can produce entirely opposite results. Very likely, mental disorders other than alcoholism were under-diagnosed in the Estonian cohort, and the prevalence of alcohol problems was underestimated in the Ukrainian cohort. It is common that people do not seek professional help for mental health problems.[34] Untreated mental disorders can manifest as unexplained physical complaints such as headache or back pain, or they are risk factors for somatic diseases (e.g. thyroid diseases of diseases of the digestive system).[46, 47] Thus, it is important to pay attention to both mental and somatic diseases of Chernobyl cleanup workers simultaneously.

CONCLUSIONS

No obvious excess morbidity consistent with biological effects of radiation was seen in the exposed cohort, with the possible exception of benign thyroid diseases. Increased alcoholinduced morbidity reflects alcohol abuse, and could underlie some of the higher morbidity rates. Mental disorders in the exposed cohort were probably underreported. The future challenge will be to study mental and physical co-morbidities in the Chernobyl cleanup workers cohort.

Acknowledgements The authors thank Triin Habicht and Elin Raaper from the Estonian Health Insurance Fund for data linkages.

Contributors KR and MR designed the study. KR performed the statistical analyses and drafted the manuscript. EB, TH, AA, AU and MR contributed to the interpretation of the results and revised critically the manuscript. MR supervised the whole process. All authors have seen and approved the final version of the manuscript.

Funding This stage of the study was supported financially by the Estonian Research Council (IUT5-1), and by the Estonian Ministry of Education and Research (target funding SF0180060s09).

Competing interests None.

Ethics approval The study was approved by the Tallinn Medical Ethics Committee (no. 1939, February 11, 2010), and by the Estonian Data Protection Inspectorate (no. 2.2-3/10/120r, April 9, 2010).

BMJ Open

Data sharing statement No additional data are available.

REFERENCES

- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. UNSCEAR 2008 Report to the General Assembly with Scientific Annexes, Volume II, Scientific Annex D: Health effects due to radiation from the Chernobyl accident. New York: United Nations, 2011.
- 2. Rahu K, Auvinen A, Hakulinen T, *et al.* Chernobyl cleanup workers from Estonia: follow-up for cancer incidence and mortality. *J Radiol Prot* 2013;33:395–411.
- Shimizu Y, Kodama K, Nishi N, *et al.* Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. *BMJ* 2010;340:b5349.
- Vrijheid M, Cardis E, Ashmore P, *et al.* Mortality from diseases other than cancer following low doses of ionizing radiation: results from the 15-Country Study of nuclear industry workers. *Int J Epidemiol* 2007;36:1126–35.
- Ozasa K, Shimizu Y, Suyama A, *et al.* Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. *Radiat Res* 2012;177:229–43.
- Boice JD Jr, Mumma MT, Blot WJ. Cancer incidence and mortality in populations living near uranium milling and mining operations in Grants, New Mexico, 1950– 2004. *Radiat Res* 2010;174:624–36.
- Yamada M, Wong FL, Fujiwara S, *et al.* Noncancer disease incidence in atomic bomb survivors, 1958–1998. *Radiat Res* 2004;161:622–32.

8.	Azizova TV, Muirhead CR, Moseeva MB, et al. Cerebrovascular diseases in nuclear
	workers first employed at the Mayak PA in 1948–1972. Radiat Environ Biophys
	2011;50:539–52.
9.	Azizova TV, Muirhead CR, Moseeva MB, et al. Ischemic heart disease in nuclear
	workers first employed at the Mayak PA in 1948–1972. Health Phys 2012;103:3–14.
10.	Little MP, Azizova TV, Bazyka D, et al. Systematic review and meta-analysis of
	circulatory disease from exposure to low-level ionizing radiation and estimates of
	potential population mortality risks. <i>Environ Health Perspect</i> 2012;120:1503–11.
11.	Ivanov VK, Maksioutov MA, Chekin SYu, et al. Radiation-epidemiological analysis
	of incidence of non-cancer diseases among the Chernobyl liquidators. Health Phys
	2000;78:495–501.
12.	Ivanov VK, Maksioutov MA, Chekin SY, et al. The risk of radiation-induced
	cerebrovascular disease in Chernobyl emergency workers. Health Phys 2006;90:199-
	207.
13.	Preston RJ, Boice JD Jr, Brill AB, et al. Uncertanties in estimating health risks
	associated with exposure to ionising radiation. J Radiol Prot 2013;33:573-88.
14.	Balonov MI. The Chernobyl Forum: major findings and recommendations. J Environ
	Radioact 2007;96:6–12.
15.	Loganovsky K, Havenaar JM, Tintle NL, et al. The mental health of clean-up workers
	18 years after the Chernobyl accident. Psychol Med 2008;38:481-8.
16.	Bromet EJ, Havenaar JM, Guey LT. A 25 year retrospective review of the
	psychological consequences of the Chernobyl accident. Clini Oncol (R Coll Radiol)
	2011;23:297–305.
17.	Rahu M, Tekkel M, Veidebaum T, et al. The Estonian study of Chernobyl cleanup
	workers: II. Incidence of cancer and mortality. Radiat Res 1997;147:653-7.

e 19 of 52		BMJ Open
	18.	Rahu K, Rahu M, Tekkel M, et al. Suicide risk among Chernobyl cleanup workers in
		Estonia still increased: an updated cohort study. Ann Epidemiol 2006;16:917-9.
	19.	Tekkel M, Rahu M, Veidebaum T, et al. The Estonian study of Chernobyl cleanup
		workers: I. Design and questionnaire data. Radiat Res 1997;147:641-52.
	20.	Koppel A, Kahur K, Habicht T, et al. Estonia: Health system review. Health Syst
		<i>Transit</i> 2008;10:1–230.
	21.	Clayton D, Hills M. Statistical Models in Epidemiology. New York: Oxford
		University Press, 1993.
	22.	Bigbee WL, Jensen RH, Veidebaum T, et al. Biodosimetry of Chernobyl cleanup
		workers from Estonia and Latvia using the glycophorin A in vivo somatic cell
		mutation assay. Radiat Res 1997;147:215-24.
	23.	Chumak VV. Physical dosimetry of Chernobyl cleanup workers. Health Phys
		2007;93:452–61.
	24.	Blöndal M, Ainla T, Marandi T, et al. Changes in treatment and mortality of acute
		myocardial infarction in Estonian tertiary and secondary care hospitals in 2001 and
		2007. BMC Res Notes 2012;5:71.
	25.	Müller R, Kallikorm R, Põlluste K, et al. Compliance with treatment of rheumatoid
		arthritis. Rheumatol Int 2012;32:3131–5.
	26.	Veerus P, Fischer K, Hakama M, et al. Results from a blind and a non-blind
		randomised trial run in parallel: experience from the Estonian Postmenopausal
		Hormone Therapy (EPHT) Trial. BMC Med Res Methodol 2012;12:44.
	27.	Littlefield LG, McFee AF, Salomaa SI, et al. Do recorded doses overestimate true
		doses received by Chernobyl cleanup workers? Results of cytogenetic analyses of
		Estonian workers by fluorescence in situ hybridization. Radiat Res 1998;150:237-49.
		19

28.	Rahu K, Hakulinen T, Smailyte G, et al. Site-specific cancer risk in the Baltic cohort
	of Chernobyl cleanup workers, 1986–2007. Eur J Cancer 2013;49:2926–33.
29.	Ron E, Brenner A. Non-malignant thyroid diseases after a wide range of radiation
	exposures. Radiat Res 2010;174:877-88.
30.	Inskip PD, Hartshorne MF, Tekkel M, et al. Thyroid nodularity and cancer among
	Chernobyl cleanup workers from Estonia. Radiat Res 1997;147:225-35.
31.	Little MP. A review of non-cancer effects, especially circulatory and ocular diseases.
	Radiat Environ Biophys 2013;52:435–49.
32.	Worgul BV, Kundiyev YI, Sergiyenko NM, et al. Cataracts among Chernobyl clean-
	up workers: implications regarding permissible eye exposures. Radiat Res
	2007;167:233–43.
33.	Hammer GP, Scheidemann-Wesp U, Samkange-Zeeb F, et al. Occupational exposure
	to low doses of ionizing radiation and cataract development: a systematic literature
	review and perspectives on future studies. Radiat Environ Biophys 2013;52:303-19.
34.	Bromet EJ. Lessons learned from radiation disasters. World Psychiatry 2011;10:83-4.
35.	Tarlap T. Chernobyl 1986: Memoirs of an Estonian Cleanup Worker. Tallinn: IECM,
	1995.
36.	Rahu M. Health effects of the Chernobyl accident: fears, rumours and the truth. Eur J
	Cancer 2003;39:295–9.
37.	Balonov MI. On protecting the inexperienced reader from Chernobyl myths. J Radiol
	<i>Prot</i> 2012;32:181–9.
38.	Loewenberg S. Mikhail Balonov: understanding the legacy of Chernobyl. Lancet
	2006:367:1311.
39.	Thomas GA. Putting health risks from radiation exposure into context: lessons from
	past accidents. Ann Acad Med Singapore 2011;40:158–9.

BMJ Open

י ר		
2 3	40.	Perko T. Radiation risk perception: a discrepancy between the experts and the general
4 5		
6		population. J Environ Radioact Available online: 15 May 2013. doi:
7		10.1016/j.jenvrad.2013.04.005.
8 9		
10	41.	Kõlves K, Värnik A, Tooding LM, et al. The role of alcohol in suicide: a case-control
11		psychological autopsy study. <i>Psychol Med</i> 2006;36:923–30.
12 13		psychological autopsy study. I sychol med 2000, 50. 525–50.
14	42.	Pärna K, Rahu K. Socio-economic differences in smoking. Eesti Arst 2008;88:57-62
15 16		
17		(in Estonian).
18	43.	Pärna K, Rahu K, Helakorpi S, et al. Alcohol consumption in Estonia and Finland:
19 20	чЭ.	i ana K, Kana K, Helakolpi S, et al. Alconol consumption in Estonia and i infand.
21		Finbalt survey 1994–2006. BMC Public Health 2010;10:261.
22		
23 24	44.	Leinsalu M, Vågerö D, Kunst AE. Increasing ethnic differences in mortality in
25		Estonia after the collapse of the Soviet Union. J Epidemiol Community Health
26		Lotoma arter die conapse of the softer onion of Epiteennor Community fream
27 28		2004;58:583–9.
29	15	Dahy K. Däma K. Dala E. at <i>al.</i> Contrasts in alashal related mortality in Estamia
30	45.	Rahu K, Pärna K, Palo E, et al. Contrasts in alcohol-related mortality in Estonia:
31 32		education and ethnicity. Alcohol Alcohol 2009;44:517-22.
33		
34 35	46.	Ginzburg K, Solomon Z. Trajectories of stress reactions and somatization symptoms
36		among war veterans: a 20-year longitudinal study. Psychol Med 2011;41:353-62.
37		among war veterans. a 20-year fongituarnar study. I sychol wea 2011,41.555-02.
38 39	47.	Sanna L, Stuart AL, Pasco JA, et al. Physical comorbidities in men with mood and
40		
41 42		anxiety disorders: a population-based study. BMC Med 2013;11:110.
43		
44		
45 46		
47		
48		
49 50		
51		
52		
53 54		
55		

1	
2	
3	
4	
5	
5	
6	
7	
8	
à	
10	
10	
11	
12	
13	
10	
14	
15	
16	
17	
10	
10	
19	
20	
$^{-}$ 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 12 22 32 4 25 6 7 8 9 10 11 21 31 4 15 16 17 18 19 20 12 22 32 4 25 6 27 28 29 30 11 32 33 34 35 6 37 38 9 10 10 10 10 10 10 10 10 10 10 10 10 10	
22	
~~	
23	
24	
25	
26	
20	
21	
28	
29	
30	
21	
31	
32	
33	
34	
35	
00	
36	
37	
38	
30	
39 40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
53	
54	
55	
56	
57	
5/	
58	
59	
00	

1

Table 1 Characteristics of the Estonian cohort of Chernobyl cleanup workers (exposed cohort) and the unexposed comparison cohort

Characteristic	Exposed cohort		Unexposed cohort		
	No.	(%)	No.	(%)	
Total	3680	(100)	7631	(100)	
Vital status on December 31, 2012					
Living in Estonia	3132	(85.1)	6795	(89.0)	
Dead	474	(12.9)	798	(10.5)	
Emigrated	74	(2.0)	38	(0.5)	
Age at start of follow-up (full years)	, -	(=)		(****)	
35–44	1265	(34.4)	2645	(34.7)	
45–54	1850	(50.3)	3738	(49.0)	
55–64	536	(14.6)	1186	(15.5)	
≥65	29	(0.8)	62	(0.8)	
Person-years in an age group (2004–2012)	_,	(0.0)		(0.0)	
35–44	4718.4	(15.4)	9416.1	(14.5)	
45-54	15,513.5	(13.4) (50.6)	32,825.3	(14.5) (50.4)	
55-64	9303.9	(30.3)	20,126.9	(30.9)	
≥65	1138.6	(3.7)	2743.5	(4.2)	
Total	30,674.4	(100)	65,111.8	(4.2) (100)	
Ethnicity	50,074.4	(100)	05,111.6	(100)	
Estonian	2036	(55.3)	4690	(61.5)	
Non-Estonian	1643	· · ·	2848	· /	
Unknown	1043	(44.6)		(37.3)	
	1	(0.0)	93	(1.2)	
Education	222	(0, 0)	1150	(15.2)	
Higher	322	(8.8)	1159	(15.2)	
Secondary	2446	(66.5)	4017	(52.6)	
Basic or less	824	(22.4)	1200	(15.7)	
Unknown	88	(2.4)	1255	(16.4)	
Time of arrival in the Chernobyl area	1174	(21.4)			
1986, April–May	1154	(31.4)			
1986, June–December	1128	(30.7)			
1986, month unknown	13	(0.4)			
1987	820	(22.3)			
1988	417	(11.3)			
1989–1991	67	(1.8)			
Unknown	81	(2.2)			
Duration of stay in the Chernobyl area (days)					
<30	220	(6.0)			
30–89	1487	(40.4)			
90–149	1163	(31.6)			
150-209	648	(17.6)			
≥210	60	(1.6)			
Unknown	102	(2.8)			
Documented dose (cGy)					
<5.0	810	(22.0)			
5.0-9.9	1022	(27.8)			
10.0–14.9	555	(15.1)			
15.0–19.9	519	(14.1)			
20.0–24.9	195	(5.3)			
≥25.0	21	(0.6)			
Unknown	558	(15.2)			
UIKIOWII	558	(13.4)			

BMJ Open

Table 2 Number of morbidity cases* and age-adjusted morbidity rate ratios† (RR) with 95% confidence intervals (CI) in the Estonian cohort of Chernobyl cleanup workers (exposed cohort) in relation to the unexposed comparison cohort, 2004–2012

ICD-10	Diagnosis/ external cause of morbidity		No. of cases		
		Exposed cohort	Unexposed cohort		
A00-R99, V01-Z99	All diagnoses and external causes	41,370	86,441	1.02 (1.01-1.03	
A00-R99,	All diseases, except cancer	31,757	66,799	1.01 (1.00-1.03	
except C00-C97		- ,)		
A00–B99	Infectious diseases	1338	3022	0.94 (0.88-1.00	
A15-A16	Respiratory tuberculosis	41	73	1.19 (0.81-1.74	
D00-D48	In situ and benign neoplasms	517	1060	1.04 (0.94–1.16	
D50–D89	Diseases of the blood and blood-forming organs	97	195	1.07 (0.84–1.36	
E00–E90	Endocrine, nutritional and metabolic diseases	806	1754	0.98 (0.90–1.07	
E00–E07	Diseases of thyroid gland	167	211	1.69 (1.38–2.07	
F00–F99	Mental disorders	1380	2918	1.00 (0.94–1.07	
F10	Mental disorders due to alcohol	328	570	1.21 (1.06–1.39	
F32–F33	Depressive disorders	290	633	0.97 (0.84–1.11	
F41	Anxiety disorders	119	275	0.91 (0.74–1.13	
F43	Stress reactions	55	162	0.72 (0.53-0.97	
G00–G99	Diseases of the nervous system	1352	2550	1.13 (1.06–1.21	
G31.2	Degeneration of nervous system due to alcohol	48	68	1.51 (1.04–2.18	
G40	Epilepsy	148	223	1.40 (1.14–1.73	
G43-G44	Migraine and other headache	125	256	1.03 (0.83-1.28	
G50–G59	Nerve, nerve root and plexus disorders	447	829	1.15 (1.02-1.29	
F51, G47	Sleep disorders	267	529	1.08 (0.93-1.25	
H00-H59	Diseases of the eye	2004	4592	0.93 (0.89-0.98	
H25–H26, H28	Cataract	155	449	0.77 (0.64-0.92	
H40, H42	Glaucoma	109	247	0.96 (0.77-1.20	
H60–H95	Diseases of the ear	1228	2707	0.97 (0.91-1.04	
100–199	Diseases of the circulatory system	4432	9477	1.00 (0.97-1.04	
I10–I15	Hypertensive diseases	1936	4210	0.98 (0.93–1.04	
120–125	Ischemic heart disease	773	1537	1.09 (1.00–1.18	
120 125 121	Acute myocardial infarction	104	214	1.05 (0.83–1.33	
12 I 160–169	Cerebrovascular diseases	291	606	1.05 (0.91–1.20	
J00–J99	Diseases of the respiratory system	4699	10,079		
		592		0.99 (0.95–1.02	
J30–J39	Diseases of upper respiratory tract		1431	0.87 (0.79-0.96	
J40–J47	Lower respiratory diseases	580	1130	1.10 (1.00–1.22	
K00-K93	Diseases of the digestive system	3179	6068	1.11 (1.07–1.16	
K20–K31	Diseases of oesophagus, stomach and duodenum	1415	2648	1.14 (1.06–1.21	
K25–K27	Peptic ulcer	464	857	1.15 (1.02–1.28	
K70-K77	Diseases of liver	194	357	1.16 (0.97-1.38	
K70	Alcoholic liver disease	68	117	1.23 (0.91-1.66	
K85–K86	Diseases of pancreas	128	213	1.27 (1.02-1.58	
K86.0	Alcohol-induced pancreatitis	25	41	1.27 (0.77-2.09	
L00-L99	Diseases of the skin	1793	3730	1.02 (0.97-1.08	
M00-M99	Diseases of the musculoskeletal system	6296	12,623	1.06 (1.03-1.09	
M15-M19	Arthrosis	925	1881	1.06 (0.98-1.14	
M54	Dorsalgia	1475	2817	1.11 (1.04–1.18	
N00-N99	Diseases of the genitourinary system	1518	3648	0.89 (0.84-0.95	
N20	Calculus of kidney and ureter	140	321	0.93 (0.76–1.14	
N40	Hyperplasia of prostate	418	1032	0.88 (0.79–0.99	
R00–R99	Findings, not elsewhere classified	1091	2297	1.01 (0.94–1.09	
V01–Y98	External causes of morbidity	5084	10,055	1.07 (1.03–1.11	
V01–198 V01–V99	Transport accidents	171	423	0.85 (0.71–1.02	
	Falls				
W00–W19		2010	3817	1.11 (1.06–1.18	
W20-W49	Exposure to mechanical forces	1864	3799	1.03 (0.98–1.09	
X31	Excessive cold	26	32	1.74 (1.04–2.92	
X40-X49	Accidental poisoning	34	69	1.05 (0.69–1.58	
X60-X84	Intentional self-harm	53	76	1.47 (1.04–2.09	
Z00–Z99	Contact with health services	4135	8862	0.99 (0.96-1.03	
Z03	Medical observation for suspected disease	389	788	1.06 (0.94-1.19	
F10, G31.2, I42.6, K70,	Selected alcohol-induced diagnoses and	528	896	1.25 (1.12-1.39	

- * The first occurrence of the three-digit ICD-10 code in the study period was considered.
- † Adjusted for age at diagnosis.

‡ p<0.05

Table 3 Adjusted morbidity rate ratios* (RR) with 95% confidence intervals (CI) by exposure for selected diagnoses and external causes of morbidity in the Estonian cohort of Chernobyl cleanup workers (3506 persons), 2004–2012

100 10	5	** 0 * 1	5	T 1 1 1	
ICD-10	Diagnosis/	Year of arrival	Duration of stay	Ethnicity	Education
	external cause of morbidity	1986†	≥92 days†	Non-Estonian†	Basic or less [†]
D00–D48	In situ and benign	1.15 (0.95–1.39)	0.77 (0.64–0.92)‡	1.09 (0.91-1.30)	0.76 (0.61-0.96)‡
	neoplasms				
E00-E07	Diseases of thyroid gland	0.94 (0.68–1.31)	1.00 (0.73-1.38)	0.85 (0.62-1.17)	0.82 (0.55-1.22)
F00-F99	Mental disorders	1.08 (0.96-1.21)	0.85 (0.76-0.95)‡	0.82 (0.74–0.92)‡	1.11 (0.97-1.27)
F32–F33, F43	Depressive disorders and stress reactions	1.27 (1.00–1.62)	0.72 (0.58–0.90)‡	0.53 (0.41–0.67)‡	0.88 (0.66–1.17)
G00–G99	Diseases of the nervous	1.01 (0.90–1.13)	0.93 (0.83-1.04)	0.97 (0.87-1.09)	1.20 (1.05–1.37)‡
	system				
G43–G44	Migraine and other	1.69 (1.10-2.60)‡	0.79 (0.55-1.14)	1.48 (1.03–2.12)‡	0.97 (0.59-1.58)
	headache				
H25–H26, H28	Cataract	1.07 (0.77-1.49)	1.05 (0.76-1.45)	1.29 (0.93-1.77)	0.93 (0.65-1.33)
H40, H42	Glaucoma	1.26 (0.83-1.89)	0.78 (0.52-1.15)	1.20 (0.81-1.78)	0.80 (0.51-1.27)
I10–I15	Hypertensive diseases	1.03 (0.94–1.14)	0.92 (0.84-1.01)	1.07 (0.98-1.17)	0.99 (0.88-1.11)
I20–I25	Ischemic heart disease	1.15 (0.99–1.34)	0.81 (0.70-0.94)‡	1.12 (0.97-1.30)	1.10 (0.93-1.30)
I21	Acute myocardial	1.11 (0.74–1.68)	0.94 (0.63-1.39)	1.53 (1.03-2.26)‡	1.17 (0.74–1.83)
	infarction				
I60–I69	Cerebrovascular diseases	1.11 (0.86–1.42)	1.03 (0.81-1.42)	1.65 (1.30-2.11)‡	1.61 (1.25-2.08)‡
K70–K77	Diseases of liver	1.13 (0.82-1.54)	1.13 (0.84-1.51)	1.42 (1.07-1.90)‡	1.12 (0.79-1.58)
N20	Calculus of kidney and	1.08 (0.74-1.57)	0.88 (0.62-1.26)	1.99 (1.39-2.85)‡	0.73 (0.45-1.19)
	ureter				
X60–X84	Intentional self-harm	1.27 (0.68–2.36)	0.77 (0.43-1.37)	1.43 (0.82-2.52)	2.73 (1.48-5.05)‡
F10, G31.2, I42.6,	Selected alcohol-induced	0.92 (0.76–1.11)	0.98 (0.82-1.17)	1.37 (1.15–1.63)‡	1.76 (1.44-2.15)‡
K70, K86.0, X45,	diagnoses and external				
X65, Y15	causes of morbidity				

* Models include age at diagnosis, year of arrival, duration of stay, ethnicity, and education.

† The reference categories for these variables are as follows: year of arrival 1987–1991; duration of stay <92 days; ethnicity

Estonian; education higher/ secondary.

‡ p<0.05.

Non-cancer morbidity among Estonian Chernobyl cleanup workers: a register-based cohort study

Kaja Rahu,¹* Evelyn J Bromet,² Timo Hakulinen,³ Anssi Auvinen,^{4,5} Anneli Uusküla,⁶ Mati Rahu¹

¹ Department of Epidemiology and Biostatistics, National Institute for Health Development, Tallinn, Estonia

² Department of Psychiatry and Behavioral Science, Stony Brook University School of

Medicine, Stony Brook, NY, USA

³ Finnish Cancer Registry, Helsinki, Finland

⁴ School of Health Sciences, University of Tampere, Tampere, Finland

⁵ Radiation and Nuclear Safety Authority, Helsinki, Finland

⁶ Department of Public Health, University of Tartu, Tartu, Estonia

* Address for correspondence: K. Rahu, Department of Epidemiology and Biostatistics,

National Institute for Health Development, Hiiu 42, 11619 Tallinn, Estonia.

E-mail: kaja.rahu@tai.ee

Tel: +372 659 3943

Fax: +372 659 3901

Keywords: alcohol-induced disorders, Chernobyl nuclear accident, Estonia, mental health,

morbidity, radiation effects

Running head: Morbidity among Estonian Chernobyl cleanup workers

Word count: 3526

ABSTRACT

Objective: To examine non-cancer morbidity in the Estonian Chernobyl cleanup workers cohort compared to the population sample with special attention to radiation-related diseases and mental health disorders.

Design: Register-based cohort study.

Setting: Estonia.

Participants: An exposed cohort of 3680 men (cleanup workers) and an unexposed cohort of 7631 men (population sample) were followed 2004–2012 through the Population Registry and Health Insurance Fund database.

Methods: Morbidity in the exposed cohort compared to the unexposed controls was estimated in terms of rate ratio (RR) with 95% confidence intervals (CI) using Poisson regression models.

Results: Elevated morbidity in the exposed cohort was found for diseases of the nervous system, digestive system, musculoskeletal system, ischemic heart disease, and for external causes. The most salient excess risk was observed for thyroid diseases (RR=1.69; 95% CI 1.38–2.07), intentional self-harm (RR=1.47; 95% CI 1.04–2.09), and selected alcohol-related diagnoses (RR=1.25; 95% CI 1.12–1.39). No increase in morbidity for stress reactions, depression, headaches or sleep disorders was detected.

Conclusions: No obvious excess morbidity consistent with biological effects of radiation was seen in the exposed cohort, with the possible exception of benign thyroid diseases. Increased alcohol-induced morbidity may reflect alcohol abuse, and could underlie some of the higher morbidity rates. Mental disorders in the exposed cohort were probably underreported. The future challenge will be to study mental and physical co-morbidities in the Chernobyl cleanup workers cohort.

ARTICLE SUMMARY

Article focus

- There is limited information about the impact of the Chernobyl accident on the noncancer morbidity among the cleanup workers. Earlier studies of Estonian cleanup workers revealed an excess of suicide.
- This study provides insight into non-cancer morbidity in the cohort of Estonian cleanup workers with emphasis on radiation-related diseases and mental health disorders.

Key messages

- No obvious excess morbidity consistent with biological effects of radiation was found in the cleanup workers cohort, with the possible exception of benign thyroid diseases.
- Increased alcohol-induced morbidity in the cleanup workers cohort may reflect alcohol abuse, and could underlie some of the higher morbidity rates. Mental disorders in the exposed cohort were probably underreported.

Strengths and limitations of this study

- Morbidity information provided in this study was obtained from population-based registries via electronic record linkages using personal identification number as the key variable.
- Limitations of the study are as follows: relatively short follow-up; the probable presence of tentative and preliminary diagnoses in the health insurance database;
 questionable accuracy and precision of officially documented doses; probable overestimation of findings due to multiple comparisons.

BMJ Open

INTRODUCTION

In the aftermath of the accident at the Chernobyl nuclear power station in April, 1986, about 530,000 men from throughout the former Soviet Union were commissioned to the area to clean up the environment.[1] Among them were nearly 5000 (mostly) military reservists from Estonia who worked in the contaminated area for three months on average; their mean received cumulative whole-body radiation dose was 0.1 Gy.[2]

Epidemiological evidence of non-cancer disease risk in the cohorts exposed to ionizing radiation is mainly based on mortality since administratively registered death records are available and easy to use for linkages. Most of these studies have focused on circulatory diseases, the major cause of death in developed countries. Excess mortality from all circulatory diseases, stroke and heart disease was observed in atomic-bomb survivors; however the association below dose of 0.5 Gy was not significant.[3] Follow-up of nuclear industry workers from 15 countries resulted with no significant findings for a dose-dependent rise in mortality from circulatory diseases.[4] Elevated risk of death for the broad categories of the respiratory and digestive systems has been found among atomic-bomb survivors,[5] but not in other environmentally exposed populations [6] or in nuclear industry workers.[4]

A few studies have reported morbidity outcomes. The most informative non-cancer disease incidence study in atomic-bomb survivors found significant radiation effects for thyroid diseases, liver disease, cataract, and calculus of the kidney and ureter.[7] The morbidity study of Mayak nuclear weapons facility workers demonstrated an increasing dose-related trend for cerebrovascular diseases [8] and ischemic heart disease,[9] but did not provide information on risk at doses below 0.2 Gy. A meta-analysis by Little et al. [10] combining morbidity and mortality studies of occupationally and environmentally exposed populations with mean dose below 0.5 Gy, demonstrated significantly increased dose-

dependent risk for ischemic heart disease, cerebrovascular diseases and other circulatory diseases.

Analyses of non-cancer morbidity in a cohort of Russian Chernobyl cleanup workers have shown dose-dependent excess (per 1 Gy) for endocrine and metabolic diseases, mental disorders, diseases of the nervous system, diseases of the digestive system, cerebrovascular diseases, hypertension, and ischemic heart disease.[11, 12] However, risk estimates at low doses still remain uncertain.[13]

Although the psychological aftermath of the Chernobyl accident has been acknowledged as the major long-term public health problem in the exposed populations,[1, 14] the mental health of cleanup workers has only been assessed in small-scale studies in Ukraine.[15–16] There is an urgent need to examine mental health along with somatic diseases when considering the health of cleanup workers.[16]

An updated analysis of mortality and cancer incidence in the Estonian Chernobyl cohort revealed higher incidence of alcohol-related cancers and excess of suicide.[2] Suicide risk has been persistently elevated since the beginning of follow-up.[17, 18] The current research provides the first overview of morbidity other than cancer in the Estonian cohort of Chernobyl cleanup workers with special attention to radiation-related diseases and mental health disorders.

METHODS

Sample and follow-up

The Estonian cohort of Chernobyl cleanup workers (exposed cohort) includes 4831 men recruited in 1986–1991 to the Chernobyl area by the Soviet authorities for decontamination, building and other related activities. The "Chernobyl area" here denotes the 30-km zone (an area of 30-km radius from the nuclear power station) and territories outside, where the

Page 31 of 52

BMJ Open

workers were engaged with different activities during their mission period. Detailed information on the assembly and description of the cohort is given elsewhere.[19] To examine morbidity in this cohort, we used data from the Estonian Health Insurance Fund (EHIF) database available since January 2004. Thus, for the morbidity analyses we identified all cohort members aged 35–69 years and living in Estonia on January 1, 2004. Altogether, of 4831 men in the initial cohort, 1129 were excluded because of loss in follow-up (21), death (602) and emigration (506). In addition, we did not include men aged under 35 (9) and over 69 years (13) to have more homogeneous age group. This left just 3680 cleanup workers in the study. An unexposed population-based comparison cohort was selected corresponding to the age distribution of the exposed cohort. A random sample stratified by 5-year age groups with the exposed to unexposed ratio of 1:2 and 5% extra men in each age group was extracted from the Estonian Population Registry (EPR). In the unexposed cohort, after excluding 87 men who had worked in the Chernobyl area (cleanup workers), there remained 7631 men.

The cohort of cleanup workers was linked to the EPR to update vital status (emigration or death with corresponding date), ethnicity and education. Each person in both cohorts was followed up from January 1, 2004 until death, emigration or December 31, 2012 (whichever date came first). From the EHIF database, we obtained dates and ICD-10 codes for each contact with a health provider. All linkages were performed using the unique personal identification number (assigned to all permanent residents of Estonia) as the key variable. EHIF manages the mandatory universal health insurance system that is based on solidarity and covers 95% of the Estonian population.[20] All employees and self-employed persons contribute 13% of their wages, some groups of the population are financed by the State (e.g. registered unemployed, Chernobyl veterans), and some groups are insured without contribution (e.g. children, students, pensioners). People without coverage from the above mentioned sources can pay the tax voluntarily.

Health care contacts were identified from the EHIF database for 2004–2012 using the first occurrence of the three-digit ICD-10 code. If the contact involved multiple diagnoses, the first occurrence of each of them was separately counted. All diseases (except cancer, ICD-10 C00–C97), external causes of morbidity, and examinations or counseling were considered. Four-digit codes were taken separately only for some alcohol-induced diseases. A combined category of alcohol-induced diagnoses included mental disorders due to alcohol (F10), degeneration of the nervous system due to alcohol (G31.2), alcoholic cardiomyopathy (I42.6), alcoholic liver disease (K70), alcohol-induced pancreatitis (K86.0), accidental poisoning by alcohol (X45), intentional self-poisoning by alcohol (X65), and poisoning by alcohol, undetermined intent (Y15). The accuracy of the diagnosis was the responsibility of the physician issuing the invoice to EHIF for ambulatory or hospital care.

Morbidity measures and statistical analysis

We estimated morbidity in the cleanup workers cohort by means of rate ratio (RR) with 95% confidence intervals (CI) using the Poisson regression models with the logarithm of the person-years at risk (summed by five-year age groups) as the offset.[21] At first, we performed analysis comparing the exposed cohort with the unexposed cohort (external analysis) to obtain an overview of morbidity rate ratios. Diagnoses were grouped into broad categories with selected specific diagnoses. Analyses were adjusted for age at diagnosis by five-year age groups.

Additionally, analysis was done between different subgroups within the exposed cohort (internal analysis) to assess possible effects of year of arrival in the Chernobyl area (1986; 1987–1991), duration of stay (<92; ≥92 days), and documented cumulative whole-body radiation dose (<5.0; 5.0–9.9; ≥10.0 cGy), education (higher or secondary; basic or less), and ethnicity (Estonian; non-Estonian (mainly Russians)) on morbidity risk. As described

BMJ Open

elsewhere, [1, 22, 23] the cleanup workers were dominantly exposed to γ -radiation released mainly by ¹³¹I, ¹³⁴Cs and ¹³⁷Cs. Received radiation doses were measured by individual or group dosimeters, or estimated by work area measurements. The readings were documented in the workers' military passports/ records. Considering, that documented doses were unreliable,[19] and not recorded for 15.2% of the cohort members, we used the year of arrival and duration of stay as proxy variables for radiation exposure.

Potential confounders – educational level (higher or secondary; basic or less) and ethnicity (Estonian; non-Estonian (mainly Russians)) – were included in the analysis as surrogates for health behavior. The prevalence of alcohol consumption at least once a week (28.5%) and current smoking (69.0%) among the cleanup workers was studied in a postal questionnaire survey conducted in 1992–1993,[19] but not included in current analyses due to small cohort size and lack of longitudinal data on these factors of health behavior. Thus, the selection of variables (potential confounders) was determined by the availability of them and a review of our previous studies.

Analyses within the exposed cohort focused on disease risks previously reported in atomic-bomb survivors and Chernobyl cleanup workers.[7, 11, 12] The first set of models included the year of arrival in the Chernobyl area, duration of stay, age at diagnosis, education and ethnicity. One hundred and seventy four subjects with missing information for any characteristic were excluded from the analysis. In the second set of models we included documented radiation dose; due to unrecorded values, an additional 452 subjects were excluded.

We used Visual FoxPro 6.0 (Microsoft Corporation, Redmond, WA, USA) for database management, and Stata 12 (StataCorp LP, College Station, TX, USA) for statistical modeling.

RESULTS

Description of the exposed and unexposed cohorts

We followed 3680 exposed and 7631 unexposed men from January 1, 2004 until December 31, 2012 (Table 1). The exposed and unexposed cohorts contributed 30,674 and 65,112 person-years, respectively. Mean age at the start of follow-up was 48 years in both cohorts. During the follow-up, 12.9% of the exposed cohort and 10.5% of the unexposed cohort died. The proportions of non-Estonians (mainly Russians) and less educated persons were higher in the exposed cohort, although educational level was unknown for the 16.4% of the subjects in the unexposed cohort. Two-thirds of the cleanup workers entered the Chernobyl area in 1986; the mean and median durations of the mission were 102 and 92 days, respectively (range: 1–833 days). The cohort was exposed to low-level whole-body radiation with the mean and median documented radiation doses of 9.9 and 8.9 cGy, respectively (range: 0.0–54.5 cGy).

Nearly all men had at least one record in the EHIF database (93.6% of the exposed and 95.3% of the unexposed cohort). On average, members of both cohorts had 12 different diagnoses (three-digit ICD-10 codes). Men in the exposed cohort had their first health services contact on average half a year earlier than their unexposed counterparts (52.1 vs. 52.6 years of age).

(Insert Table 1 here)

Morbidity in the exposed cohort in relation to the unexposed cohort (external analysis) In the external analysis (Table 2), we observed a very small increase of borderline significance in all-disease risk among Chernobyl cleanup workers (RR=1.01; 95% CI 1.00– 1.03). From the non-cancer late effects that might be related to the Chernobyl accident (UNSCEAR 2011), we found significantly elevated morbidity for diseases of thyroid gland (RR=1.69; 95% CI 1.38–2.07) and ischemic heart disease (RR=1.09; 95% CI 1.00–1.18). There was evidence of lower occurrence of cataract in the exposed cohort. Stress reactions,

BMJ Open

depression, severe headaches and sleep disorders were not diagnosed more frequently in the exposed cohort than in the reference cohort.

Increased morbidity was apparent for the broad categories of diseases of the nervous system, digestive system, musculoskeletal system, and alcohol-induced diagnoses. Morbidity from external causes in the exposed cohort exceeded that in the unexposed cohort (RR=1.07; 95% CI 1.03–1.11). Significantly higher morbidity was registered for falls, intentional self-harm and exposure to excessive cold. Cleanup workers did not undergo medical observations for suspected diseases (ICD-10 Z03) more frequently than unexposed men (RR=1.06; 95% CI 0.94–1.19). Additional adjustments for ethnicity and education (rate ratios not presented) did not materially alter these results.

(Insert Table 2 here)

Differences between subgroups in the exposed cohort (internal analysis)

Internal analysis revealed more depressive disorders and stress reactions (RR=1.27; 95% CI 1.00–1.62), and severe headaches (RR=1.69; 95% CI 1.10–2.60) among cleanup workers who entered the area shortly after the accident than in those arriving later (Table 3). Higher thyroid diseases morbidity was not related to year or month (April-May versus June-December, 1986) of arrival in the contaminated area. Longer mission did not increase the morbidity of any disease. Acute myocardial infarction, cerebrovascular diseases, diseases of liver, calculus of kidney and ureter, headaches, and alcohol-induced morbidity occurred more frequently among non-Estonians, while mental disorders were more frequent among Estonians. Less educated cleanup workers had higher risk for diseases of the nervous system, cerebrovascular diseases, intentional self-harm, and alcohol-induced morbidity, and lower risk for in situ and benign neoplasms.

Including education and ethnicity in the model did not alter markedly the crude point estimates of RR for year of arrival or duration of stay (rate ratios not presented). Higher

documented radiation dose (5.0–9.9 or \geq 10.0 vs. <5.0 cGy) was not associated with higher morbidity of thyroid diseases (RR=0.92; 95% CI 0.60–1.40; 0.92; 0.60–1.40, respectively), cataract (RR=1.26; 95% CI 0.80–1.98; 1.13; 0.70–1.83, respectively), or any of the other selected diseases.

(Insert Table 3 here)

DISCUSSION

The first non-cancer morbidity analysis of the Estonian cohort of Chernobyl cleanup workers revealed elevated morbidity for diseases of the nervous system, digestive system, musculoskeletal system, ischemic heart disease, and for external causes. The most salient excess risk was observed for thyroid diseases, and as expected, for intentional self-harm and selected alcohol-induced diagnoses.

Limitations

First, this study was limited to morbidity cases in 2004–2012. We had no information about morbidity prior to this time period. Thus, it was not possible to specify incident cases or assess early effects of exposure.

Second, among given diseases there could be tentative and preliminary diagnoses unconfirmed afterwards. We are aware of the possibility of diagnostic errors, upcoding and unbundling of codes associated with the use of a reimbursement-administrative database, originally created not for research purposes, but proved to be an important source for medical studies in Estonia.[24–26] A small number of cases might have been diagnosed by commercial health care providers and not reported to the EHIF. However, because of universal health insurance, these limitations would be expected to affect the exposed and unexposed cohorts in a similar fashion. This kind of non-differential misclassification of disease or of disease status probably either does not bias the rate ratio or biases it towards the

BMJ Open

null. The same may be said in a hypothetical situation when the validity of diagnoses in the EHIF will be almost perfect. In the last case as the most important, the number and heterogeneity of diagnostic entries would be reduced, and the accuracy of measurements improved.

Third, the documented radiation doses are not entirely accurate, and there could be incorrect readings in both directions as discussed elsewhere.[2, 19] Although no correlation was observed between individual doses from military passports (lists) and the biodosimetry estimates for the sub-cohort of cleanup workers, it is estimated that the cohort was exposed to low-dose radiation around 0.1 Gy on average.[22, 27] A similar dose level was reported for Latvian and Lithuanian Chernobyl cleanup workers.[28] Thus, we used year of arrival and duration of stay as proxy variables for radiation exposure. Given these limitations, our conclusions are duly tempered.

Fourth, the small size of the cohort has reduced the power of analysis. In addition, because of multiple comparisons, it is possible that some statistically significant findings could be due to chance. Given these limitations, our conclusions are duly tempered.

Possible radiation effects?

Thyroid diseases have been under close surveillance after the Chernobyl accident since radioiodine (mainly ¹³¹I with a half-life of eight days) released during the explosion is concentrated in the thyroid gland. Ron and Brenner [29] summarized the evidence of benign thyroid diseases after radiation exposure. They concluded that associations have been weak and elevated risk occurred mainly in subjects with high doses, exposed at young ages, and in women. Keeping in mind that the cohort of cleanup workers includes only adult men who were exposed to low doses, we cannot attribute the thyroid findings to radiation. This interpretation is supported by the lack of excess among the early entrants or subjects with the

highest documented radiation doses. At the same time, we cannot exclude the possibility that a higher rate ratio among the cleanup workers is caused by close medical attention sought by them. During thyroid screening among the Estonian cleanup workers in 1995, no clear correlation was found between the prevalence of thyroid nodules and the year of arrival or recorded radiation dose.[30] Moreover, these whole body external doses have little relevance to thyroid diseases because they are not thyroid doses.

High radiation doses increase the risk of circulatory diseases, but less is known about the effect of low or moderate doses (<0.5 Gy). Difficulty in estimating dose-response at low dose levels is due to paucity of large cohorts with high-quality data on doses and confounders.[10, 31] As the Estonian cohort of cleanup workers is small and with low average radiation dose, we cannot attribute the small increase in ischemic heart disease morbidity seen in the cohort to biological effects of radiation exposure. This conclusion is also supported by the mortality analyses, where no excess deaths from circulatory diseases were found.[2]

An increased risk of cataract, observed in atomic-bomb survivors [7] and Ukrainian cleanup workers,[32] did not emerge in the Estonian cohort. An observed statistically significant deficit of cataract cases may be an occasional finding without any epidemiological relevance. Although cataract has been conventionally regarded as a late deterministic effect of radiation with a threshold dose of 0.5 Gy, recent studies have suggested a need to lower this dose limit and reconsider the threshold model.[31, 33] Nevertheless, it is unlikely that radiation-related cataracts will be detectable among the Estonian cleanup workers in the future, given the low dose level.

Mental and neurological disorders

Natural or man-made disasters can inflict psychological consequences to the affected populations. Radiation events evoke images of the bombings of Hiroshima and Nagasaki, and

BMJ Open

mental health effects such as post-traumatic stress, depression, anxiety, and somatization can be long-lasting.[34] After the Chernobyl accident, the mental health of the local population and cleanup workers was considered to be the main public health concern.[1, 14] Cleanup workers were exposed not only to radiation, but also to the lack of protective gear and to the poor living conditions, sometimes doing meaningless jobs, and drinking large amounts of alcohol (mainly home-distilled).[19, 35] Misleading or no information about the possible long-term health effects generated rumors and misapprehensions, and radiation fears were exaggerated.[36, 37] The situation bred profound mistrust of all authorities. One of the most difficult lessons from Chernobyl has been to gain the public's trust and to deliver scientific information about the radiation risks, as there exists an insuperable gap between the experts' and public's perceptions about radiation.[38–40]

To date, the persistently elevated suicide risk in the Estonian cohort has been the definitive indication of psychological impairment as a result of working as a Chernobyl cleanup worker.[2] However, the current morbidity analyses showed a mixed pattern of mental and neurological disorders. Based on the results from a study of Ukrainian cleanup workers,[15] we expected higher rates of depression, anxiety, post-traumatic stress disorder, and headaches. Yet, there was no overall increase of mental disorders as a group (RR=1.00), or of physician-diagnosed depression or anxiety. During the follow-up period, the cleanup workers used health care services significantly less frequently for stress reactions than the unexposed cohort. No excess of severe headaches or sleep disorders was found among cleanup workers. However, depression and stress reactions, and severe headaches were more frequent in the early entrants. Elevated morbidity due to intentional self-harm is also an indicator of psychological distress. This finding is consistent with the increased suicide rate in the cohort,[2] which is strongly related to alcohol dependence among middle-aged men in Estonia.[41]

Smoking and heavy alcohol consumption are more prevalent in less educated men in Estonia.[42, 43] Although population-based health (behavior) prevalence studies do not report differences in smoking and drinking habits between Estonians and non-Estonians,[42, 43] mortality is higher in non-Estonians,[44] particularly alcohol-related mortality.[45]

Excess morbidity emerged for alcohol-induced diseases – mental disorders due to alcohol and degeneration of nervous system due to alcohol. Morbidity from alcohol-induced diagnoses as a group was 25% higher among cleanup workers than in the unexposed cohort. Considering common alcohol abuse among men in Estonia (especially with lower educational level),[43] it is not surprising that cleanup workers used alcohol to cope with stressful situation, and still do. Higher morbidity due to excessive cold is most likely attributable to homelessness and suggests that periods of homelessness were more common in cleanup workers than in men in the comparison cohort. Results of our study demonstrate that the men with Estonian ethnicity and/ or higher educational level coped better with Chernobyl consequences including alcohol abuse.

Although Ukrainian cleanup workers had more mental disorders than controls, no excess of alcoholism was observed.[15] This illustrates how analysis of similar cohorts with different design and risk measures can produce entirely opposite results. Very likely, mental disorders other than alcoholism were under-diagnosed in the Estonian cohort, and the prevalence of alcohol problems was underestimated in the Ukrainian cohort. It is common that people do not seek professional help for mental health problems.[34] Untreated mental disorders can manifest as unexplained physical complaints such as headache or back pain, or they are risk factors for somatic diseases (e.g. thyroid diseases of diseases of the digestive system).[46, 47] Thus, it is important to pay attention to both mental and somatic diseases of Chernobyl cleanup workers simultaneously.

BMJ Open

CONCLUSIONS

No obvious excess morbidity consistent with biological effects of radiation was seen in the exposed cohort, with the possible exception of benign thyroid diseases. Increased alcoholinduced morbidity reflects alcohol abuse, and could underlie some of the higher morbidity rates. Mental disorders in the exposed cohort were probably underreported. The future challenge will be to study mental and physical co-morbidities in the Chernobyl cleanup workers cohort.

Acknowledgements The authors thank Triin Habicht and Elin Raaper from the Estonian Health Insurance Fund for data linkages.

Contributors KR and MR designed the study. KR performed the statistical analyses and drafted the manuscript. EB, TH, AA, AU and MR contributed to the interpretation of the results and revised critically the manuscript. MR supervised the whole process. All authors have seen and approved the final version of the manuscript.

Funding This stage of the study was supported financially by the Estonian Research Council (IUT5-1), and by the Estonian Ministry of Education and Research (target funding SF0180060s09).

Competing interests None.

Ethics approval The study was approved by the Tallinn Medical Ethics Committee (no. 1939, February 11, 2010), and by the Estonian Data Protection Inspectorate (no. 2.2-3/10/120r, April 9, 2010).

Data sharing statement No additional data are available.

REFERENCES

- 1. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. UNSCEAR 2008 Report to the General Assembly with Scientific Annexes, Volume II, Scientific Annex D: Health effects due to radiation from the Chernobyl accident. New York: United Nations, 2011.
- 2. Rahu K, Auvinen A, Hakulinen T, *et al.* Chernobyl cleanup workers from Estonia: follow-up for cancer incidence and mortality. *J Radiol Prot* 2013;33:395–411.
- Shimizu Y, Kodama K, Nishi N, *et al.* Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. *BMJ* 2010;340:b5349.
- 4. Vrijheid M, Cardis E, Ashmore P, *et al.* Mortality from diseases other than cancer following low doses of ionizing radiation: results from the 15-Country Study of nuclear industry workers. *Int J Epidemiol* 2007;36:1126–35.
- Ozasa K, Shimizu Y, Suyama A, *et al.* Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. *Radiat Res* 2012;177:229–43.
- Boice JD Jr, Mumma MT, Blot WJ. Cancer incidence and mortality in populations living near uranium milling and mining operations in Grants, New Mexico, 1950– 2004. *Radiat Res* 2010;174:624–36.
- Yamada M, Wong FL, Fujiwara S, *et al.* Noncancer disease incidence in atomic bomb survivors, 1958–1998. *Radiat Res* 2004;161:622–32.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

8.	Azizova TV, Muirhead CR, Moseeva MB, et al. Cerebrovascular diseases in nuclear
	workers first employed at the Mayak PA in 1948–1972. Radiat Environ Biophys
	2011;50:539–52.
9.	Azizova TV, Muirhead CR, Moseeva MB, et al. Ischemic heart disease in nuclear
	workers first employed at the Mayak PA in 1948–1972. Health Phys 2012;103:3–14.
10.	Little MP, Azizova TV, Bazyka D, et al. Systematic review and meta-analysis of
	circulatory disease from exposure to low-level ionizing radiation and estimates of
	potential population mortality risks. Environ Health Perspect 2012;120:1503–11.
11.	Ivanov VK, Maksioutov MA, Chekin SYu, et al. Radiation-epidemiological analysis
	of incidence of non-cancer diseases among the Chernobyl liquidators. Health Phys
	2000;78:495–501.
12.	Ivanov VK, Maksioutov MA, Chekin SY, et al. The risk of radiation-induced
	cerebrovascular disease in Chernobyl emergency workers. Health Phys 2006;90:199-
	207.
13.	Preston RJ, Boice JD Jr, Brill AB, et al. Uncertanties in estimating health risks
	associated with exposure to ionising radiation. J Radiol Prot 2013;33:573-88.
14.	Balonov MI. The Chernobyl Forum: major findings and recommendations. J Environ
	Radioact 2007;96:6–12.
15.	Loganovsky K, Havenaar JM, Tintle NL, et al. The mental health of clean-up workers
	18 years after the Chernobyl accident. Psychol Med 2008;38:481-8.
16.	Bromet EJ, Havenaar JM, Guey LT. A 25 year retrospective review of the
	psychological consequences of the Chernobyl accident. Clini Oncol (R Coll Radiol)
	2011;23:297–305.
17.	Rahu M, Tekkel M, Veidebaum T, et al. The Estonian study of Chernobyl cleanup
	workers: II. Incidence of cancer and mortality. Radiat Res 1997;147:653-7.
	18
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	BMJ Open
18.	Rahu K, Rahu M, Tekkel M, et al. Suicide risk among Chernobyl cleanup workers in
	Estonia still increased: an updated cohort study. Ann Epidemiol 2006;16:917-9.
19.	Tekkel M, Rahu M, Veidebaum T, et al. The Estonian study of Chernobyl cleanup
	workers: I. Design and questionnaire data. Radiat Res 1997;147:641–52.
20.	Koppel A, Kahur K, Habicht T, et al. Estonia: Health system review. Health Syst
	Transit 2008;10:1–230.
21.	Clayton D, Hills M. Statistical Models in Epidemiology. New York: Oxford
	University Press, 1993.
22.	Bigbee WL, Jensen RH, Veidebaum T, et al. Biodosimetry of Chernobyl cleanup
	workers from Estonia and Latvia using the glycophorin A in vivo somatic cell
	mutation assay. Radiat Res 1997;147:215-24.
23.	Chumak VV. Physical dosimetry of Chernobyl cleanup workers. Health Phys
	2007;93:452–61.
24.	Blöndal M, Ainla T, Marandi T, et al. Changes in treatment and mortality of acute
	myocardial infarction in Estonian tertiary and secondary care hospitals in 2001 and
	2007. BMC Res Notes 2012;5:71.
25.	Müller R, Kallikorm R, Põlluste K, et al. Compliance with treatment of rheumatoid
	arthritis. Rheumatol Int 2012;32:3131–5.
26.	Veerus P, Fischer K, Hakama M, et al. Results from a blind and a non-blind
	randomised trial run in parallel: experience from the Estonian Postmenopausal
	Hormone Therapy (EPHT) Trial. BMC Med Res Methodol 2012;12:44.
27.	Littlefield LG, McFee AF, Salomaa SI, et al. Do recorded doses overestimate true
	doses received by Chernobyl cleanup workers? Results of cytogenetic analyses of

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

28.	Rahu K, Hakulinen T, Smailyte G, et al. Site-specific cancer risk in the Baltic cohort
	of Chernobyl cleanup workers, 1986–2007. Eur J Cancer 2013;49:2926–33.
29.	Ron E, Brenner A. Non-malignant thyroid diseases after a wide range of radiation
	exposures. Radiat Res 2010;174:877-88.
30.	Inskip PD, Hartshorne MF, Tekkel M, et al. Thyroid nodularity and cancer among
	Chernobyl cleanup workers from Estonia. Radiat Res 1997;147:225-35.
31.	Little MP. A review of non-cancer effects, especially circulatory and ocular diseases.
	Radiat Environ Biophys 2013;52:435–49.
32.	Worgul BV, Kundiyev YI, Sergiyenko NM, et al. Cataracts among Chernobyl clean-
	up workers: implications regarding permissible eye exposures. Radiat Res
	2007;167:233-43.
33.	Hammer GP, Scheidemann-Wesp U, Samkange-Zeeb F, et al. Occupational exposure
	to low doses of ionizing radiation and cataract development: a systematic literature
	review and perspectives on future studies. Radiat Environ Biophys 2013;52:303-19.
34.	Bromet EJ. Lessons learned from radiation disasters. World Psychiatry 2011;10:83-4.
35.	Tarlap T. Chernobyl 1986: Memoirs of an Estonian Cleanup Worker. Tallinn: IECM,
	1995.
36.	Rahu M. Health effects of the Chernobyl accident: fears, rumours and the truth. Eur J
	<i>Cancer</i> 2003;39:295–9.
37.	Balonov MI. On protecting the inexperienced reader from Chernobyl myths. J Radiol
	Prot 2012;32:181–9.
38.	Loewenberg S. Mikhail Balonov: understanding the legacy of Chernobyl. Lancet
	2006:367:1311.
39.	Thomas GA. Putting health risks from radiation exposure into context: lessons from
	past accidents. Ann Acad Med Singapore 2011;40:158-9.
	20

- 40. Perko T. Radiation risk perception: a discrepancy between the experts and the general population. *J Environ Radioact* Available online: 15 May 2013. doi: 10.1016/j.jenvrad.2013.04.005.
- 41. Kõlves K, Värnik A, Tooding LM, *et al.* The role of alcohol in suicide: a case-control psychological autopsy study. *Psychol Med* 2006;36:923–30.
- 42. Pärna K, Rahu K. Socio-economic differences in smoking. *Eesti Arst* 2008;88:57–62 (in Estonian).
- 43. Pärna K, Rahu K, Helakorpi S, *et al.* Alcohol consumption in Estonia and Finland:
 Finbalt survey 1994–2006. *BMC Public Health* 2010;10:261.
- 44. Leinsalu M, Vågerö D, Kunst AE. Increasing ethnic differences in mortality in Estonia after the collapse of the Soviet Union. *J Epidemiol Community Health* 2004;58:583–9.
- 45. Rahu K, Pärna K, Palo E, *et al.* Contrasts in alcohol-related mortality in Estonia: education and ethnicity. *Alcohol Alcohol* 2009;44:517–22.
- 46. Ginzburg K, Solomon Z. Trajectories of stress reactions and somatization symptoms among war veterans: a 20-year longitudinal study. *Psychol Med* 2011;41:353–62.
- 47. Sanna L, Stuart AL, Pasco JA, *et al.* Physical comorbidities in men with mood and anxiety disorders: a population-based study. *BMC Med* 2013;11:110.

Table 1 Characteristics of the Estonian cohort of Chernobyl cleanup workers (exposed cohort) and the unexposed comparison cohort

	Exposed cohort				
	No.	(%)	No.	(%)	
Total	3680	(100)	7631	(100)	
Vital status on December 31, 2012					
Living in Estonia	3132	(85.1)	6795	(89.0)	
Dead	474	(12.9)	798	(10.5)	
Emigrated	74	(2.0)	38	(0.5)	
Age at start of follow-up (full years)					
35–44	1265	(34.4)	2645	(34.7)	
45–54	1850	(50.3)	3738	(49.0)	
55–64	536	(14.6)	1186	(15.5)	
≥65	29	(0.8)	62	(0.8)	
Person-years in an age group (2004–2012)		. ,		. ,	
35–44	4718.4	(15.4)	9416.1	(14.5)	
45–54	15,513.5	(50.6)	32,825.3	(50.4)	
55–64	9303.9	(30.3)	20,126.9	(30.9)	
≥65	1138.6	(3.7)	2743.5	(4.2)	
Total	30,674.4	(100)	65,111.8	(100)	
Ethnicity	50,074.4	(100)	05,111.0	(100)	
Estonian	2036	(55.3)	4690	(61.5)	
Non-Estonian	1643	(44.6)	2848	(37.3)	
Unknown	1045	. ,	2848 93	· · · ·	
Education	1	(0.0)	95	(1.2)	
	322	(0,0)	1150	(15.2)	
Higher		(8.8)	1159	(15.2)	
Secondary	2446	(66.5)	4017	(52.6)	
Basic or less	824	(22.4)	1200	(15.7)	
Unknown	88	(2.4)	1255	(16.4)	
Time of arrival in the Chernobyl area	1154	(21,4)			
1986, April–May	1154	(31.4)			
1986, June–December	1128	(30.7)			
1986, month unknown	13	(0.4)			
1987	820	(22.3)			
1988	417	(11.3)			
1989–1991	67	(1.8)			
Unknown	81	(2.2)			
Duration of stay in the Chernobyl area (days)					
<30	220	(6.0)			
30–89	1487	(40.4)			
90–149	1163	(31.6)			
150-209	648	(17.6)			
≥210	60	(1.6)			
Unknown	102	(2.8)			
Documented dose (cGy)					
<5.0	810	(22.0)			
5.0-9.9	1022	(27.8)			
10.0–14.9	555	(15.1)			
15.0–19.9	519	(14.1)			
20.0–24.9	195	(5.3)			
	270	· · ·			
≥25.0	21	(0.6)			

Table 2 Number of morbidity cases* and age-adjusted morbidity rate ratios† (RR) with 95% confidence intervals (CI) in the Estonian cohort of Chernobyl cleanup workers (exposed cohort) in relation to the unexposed comparison cohort, 2004–2012

ICD-10	Diagnosis/ external cause of morbidity	No. o	RR (95% CI)	
		Exposed cohort	Unexposed cohort	
A00-R99, V01-Z99	All diagnoses and external causes	41,370	86,441	1.02 (1.01-1.03
A00–R99,	All diseases, except cancer	31,757	66,799	1.01 (1.00-1.03
except C00–C97				
A00–B99	Infectious diseases	1338	3022	0.94 (0.88-1.00
A15–A16	Respiratory tuberculosis	41	73	1.19 (0.81–1.74
D00–D48	In situ and benign neoplasms	517	1060	1.04 (0.94–1.16
D50–D89	Diseases of the blood and blood-forming organs	97	195	1.07 (0.84–1.36
E00–E90	Endocrine, nutritional and metabolic diseases	806	1754	0.98 (0.90–1.07
E00–E90 E00–E07	Diseases of thyroid gland	167	211	1.69 (1.38–2.07
F00–F99	Mental disorders	1380	2918	1.00 (0.94–1.07
	Mental disorders due to alcohol		2918 570	
F10		328		1.21 (1.06–1.39
F32–F33	Depressive disorders	290	633	0.97 (0.84–1.11
F41	Anxiety disorders	119	275	0.91 (0.74–1.13
F43	Stress reactions	55	162	0.72 (0.53-0.97
G00–G99	Diseases of the nervous system	1352	2550	1.13 (1.06–1.21
G31.2	Degeneration of nervous system due to alcohol	48	68	1.51 (1.04–2.18
G40	Epilepsy	148	223	1.40 (1.14-1.73
G43–G44	Migraine and other headache	125	256	1.03 (0.83-1.28
G50–G59	Nerve, nerve root and plexus disorders	447	829	1.15 (1.02-1.29
F51, G47	Sleep disorders	267	529	1.08 (0.93-1.25
H00-H59	Diseases of the eye	2004	4592	0.93 (0.89-0.98
H25–H26, H28	Cataract	155	449	0.77 (0.64–0.92
H40, H42	Glaucoma	109	247	0.96 (0.77–1.20
H40, H42 H60–H95	Diseases of the ear	1228	2707	0.97 (0.91–1.04
I00–I99	Diseases of the circulatory system	4432	9477	1.00 (0.97–1.04
II0–II99 II0–II5		1936	4210	0.98 (0.93–1.04
	Hypertensive diseases Ischemic heart disease	773	1537	
I20–I25				1.09 (1.00–1.18
I21	Acute myocardial infarction	104	214	1.05 (0.83–1.33
I60–I69	Cerebrovascular diseases	291	606	1.05 (0.91–1.20
J00–J99	Diseases of the respiratory system	4699	10,079	0.99 (0.95–1.02
J30–J39	Diseases of upper respiratory tract	592	1431	0.87 (0.79–0.96
J40–J47	Lower respiratory diseases	580	1130	1.10 (1.00–1.22
K00–K93	Diseases of the digestive system	3179	6068	1.11 (1.07–1.16
K20–K31	Diseases of oesophagus, stomach and duodenum	1415	2648	1.14 (1.06–1.21
K25–K27	Peptic ulcer	464	857	1.15 (1.02-1.28
K70–K77	Diseases of liver	194	357	1.16 (0.97-1.38
K70	Alcoholic liver disease	68	117	1.23 (0.91-1.66
K85–K86	Diseases of pancreas	128	213	1.27 (1.02–1.58
K86.0	Alcohol-induced pancreatitis	25	41	1.27 (0.77–2.09
L00-L99	Diseases of the skin	1793	3730	1.02 (0.97–1.08
M00–M99	Diseases of the musculoskeletal system	6296	12,623	1.06 (1.03–1.09
M15–M19	Arthrosis	925	12,025	1.06 (0.98–1.14
M54	Dorsalgia	923 1475	2817	1.11 (1.04–1.18
N00-N99	Diseases of the genitourinary system	1518	3648	0.89 (0.84-0.95
N20	Calculus of kidney and ureter	140	321	0.93 (0.76–1.14
N40	Hyperplasia of prostate	418	1032	0.88 (0.79–0.99
R00–R99	Findings, not elsewhere classified	1091	2297	1.01 (0.94–1.09
V01-Y98	External causes of morbidity	5084	10,055	1.07 (1.03–1.11
V01–V99	Transport accidents	171	423	0.85 (0.71-1.02
W00–W19	Falls	2010	3817	1.11 (1.06–1.18
W20–W49	Exposure to mechanical forces	1864	3799	1.03 (0.98-1.09
X31	Excessive cold	26	32	1.74 (1.04-2.92
X40–X49	Accidental poisoning	34	69	1.05 (0.69-1.58
X60–X84	Intentional self-harm	53	76	1.47 (1.04-2.09
Z00–Z99	Contact with health services	4135	8862	0.99 (0.96–1.03
Z03	Medical observation for suspected disease	389	788	1.06 (0.94–1.19
F10, G31.2, I42.6, K70,	Selected alcohol-induced diagnoses and	528	896	1.25 (1.12–1.39

- * The first occurrence of the three-digit ICD-10 code in the study period was considered.
- † Adjusted for age at diagnosis.
- ‡ p<0.05

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 3 Adjusted morbidity rate ratios* (RR) with 95% confidence intervals (CI) by exposure for selected diagnoses and external causes of morbidity in the Estonian cohort of Chernobyl cleanup workers (3506 persons), 2004–2012

ICD-10	Diagnosis/	Year of arrival	Duration of stay	Ethnicity	Education
	external cause of morbidity	1986†	≥92 days†	Non-Estonian†	Basic or less [†]
D00-D48	In situ and benign	1.15 (0.95–1.39)	0.77 (0.64-0.92)‡	1.09 (0.91-1.30)	0.76 (0.61-0.96)‡
	neoplasms				
E00-E07	Diseases of thyroid gland	0.94 (0.68-1.31)	1.00 (0.73-1.38)	0.85 (0.62-1.17)	0.82 (0.55-1.22)
F00-F99	Mental disorders	1.08 (0.96-1.21)	0.85 (0.76-0.95)‡	0.82 (0.74–0.92)‡	1.11 (0.97-1.27)
F32–F33, F43	Depressive disorders and stress reactions	1.27 (1.00–1.62)	0.72 (0.58–0.90)‡	0.53 (0.41–0.67)‡	0.88 (0.66–1.17)
G00–G99	Diseases of the nervous system	1.01 (0.90–1.13)	0.93 (0.83–1.04)	0.97 (0.87–1.09)	1.20 (1.05–1.37)‡
G43–G44	Migraine and other headache	1.69 (1.10–2.60)‡	0.79 (0.55–1.14)	1.48 (1.03–2.12)‡	0.97 (0.59–1.58)
H25–H26, H28	Cataract	1.07 (0.77-1.49)	1.05 (0.76-1.45)	1.29 (0.93-1.77)	0.93 (0.65-1.33)
H40, H42	Glaucoma	1.26 (0.83-1.89)	0.78 (0.52-1.15)	1.20 (0.81-1.78)	0.80 (0.51-1.27)
I10–I15	Hypertensive diseases	1.03 (0.94–1.14)	0.92 (0.84-1.01)	1.07 (0.98-1.17)	0.99 (0.88–1.11)
I20–I25	Ischemic heart disease	1.15 (0.99-1.34)	0.81 (0.70-0.94)‡	1.12 (0.97-1.30)	1.10 (0.93-1.30)
I21	Acute myocardial	1.11 (0.74–1.68)	0.94 (0.63-1.39)	1.53 (1.03-2.26)‡	1.17 (0.74–1.83)
	infarction				
I60–I69	Cerebrovascular diseases	1.11 (0.86–1.42)	1.03 (0.81-1.42)	1.65 (1.30-2.11)‡	1.61 (1.25-2.08)‡
K70–K77	Diseases of liver	1.13 (0.82-1.54)	1.13 (0.84-1.51)	1.42 (1.07-1.90)‡	1.12 (0.79-1.58)
N20	Calculus of kidney and	1.08 (0.74-1.57)	0.88 (0.62-1.26)	1.99 (1.39-2.85)‡	0.73 (0.45-1.19)
	ureter				
X60–X84	Intentional self-harm	1.27 (0.68–2.36)	0.77 (0.43-1.37)	1.43 (0.82-2.52)	2.73 (1.48-5.05)‡
F10, G31.2, I42.6,	Selected alcohol-induced	0.92 (0.76–1.11)	0.98 (0.82-1.17)	1.37 (1.15–1.63)‡	1.76 (1.44–2.15)‡
K70, K86.0, X45,	diagnoses and external				
X65, Y15	causes of morbidity	×			

* Models include age at diagnosis, year of arrival, duration of stay, ethnicity, and education.

† The reference categories for these variables are as follows: year of arrival 1987–1991; duration of stay <92 days; ethnicity

Estonian; education higher/ secondary.

‡ p<0.05.

 BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies	S
--	---

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-7
Bias	9	Describe any efforts to address potential sources of bias	7-8
Study size	10	Explain how the study size was arrived at	5-6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	7-8
		(c) Explain how missing data were addressed	7-8
		(d) If applicable, explain how loss to follow-up was addressed	no losses (Table 1)
		(e) Describe any sensitivity analyses	
Results			

Page	52	of	52
------	----	----	----

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	8, Table 1
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	5-6
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8, Table 1
		(b) Indicate number of participants with missing data for each variable of interest	8, Table 1
		(c) Summarise follow-up time (eg, average and total amount)	8, Table 1
Outcome data	15*	Report numbers of outcome events or summary measures over time	8, Table 2
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	9-10, Table 2-3
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	8
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9-10, Table 3
Discussion			
Key results	18	Summarise key results with reference to study objectives	10
Limitations			10-11
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other information			14-15
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	15
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.