

Supplementary Figure 1. Semi-thin sections of *atusp/+* plant.

Half microspores in *atusp*/+ locule are defective. T, tapetum; Tds, tetrads; MSp, microspore; DMSp, degenerated microspores; PG, pollen grain; DPG, degenerated pollen grain. Bars=20 um.

Supplementary Figure 2. Characterization of NLC gene.

a, *NLC* is widely expressed in root, stem, leaf and flower tissues by RT-PCR analysis.
b, Phylogenetic tree of the Arabidopsis *NLC* homologues distinguishing two clade based on different type of AT-hook motifs.

c, Phylogenetic tree of *NLC* homologues. Sequences from http://plants.ensembl.org/index.html are aligned and used to construct an unrooted maximum likelihood tree by MEGA3.1. Bar = 0.05 amino acid substitutions.

Supplementary Figure 3. Identification of *ams nlc* double mutant plant.

- a, Genotyping of F1 heterozygous plant of *ams nlc* double mutant.
- **b**, Genotyping of *ams nlc* homozygous plant.
- **c**, *ams nlc* is the sterile plant with normal vegetable growth.

Supplementary Figure 4. Expression patterns of *NLC* and *MS188* in *ms188* and *nlc* mutant background, respectively.

Expression pattern of *NLC* is not affected in *ms188*, meanwhile expression pattern of *MS188* is not affected in *nlc*. Bars=20um.

ponen wan megranty in mutants												
Function	GeneName	AtID	Flod Chang	Pollen Wall Integrality			Deferences					
path			of Log2	sexine	nexine	intine	Kelelelices					
	AMS	At2G16910	0.46 ± 0.28	—	—	—	1					
	MS188	At5G56110	0.51 ± 0.07	—	+	+	2					
spoi	ACOS5	At1G62940	0.94 ± 0.17	—	*	+	3					
rope	<i>CYP703A2</i>	At1G01280	0.99 ± 0.17	—	*	+	4					
olle	CYP704B1	At1G69500	0.70 ± 0.06	—	+	+	5					
nin	TKRP1	At4G35420	0.93 ± 0.16	—	+	?	6					
	MS1	At5G22260	$\textbf{-0.73} \pm 0.22$	*	+	?	7,8					
sy	MS2	At3G11980	0.17 ± 0.23	—	+	?	9					
nth	LAP3	At3G59530	0.72 ± 0.21	*	+	+	10					
esis	LAP5/PKSB	At4G34850	1.16 ± 0.20	*	+	+	11,12					
U 1	LAP6/PKSA	At1G02050	0.73 ± 0.07	*	+	+	11,12					
	FLP1	At5G57800	0.19 ± 0.34	*	+	+	13					
transport protein	ABCG26	At3G13220	1.13 ± 0.40	—	+	+	14,15					
intine	AtUSP	At5G52560	0.28 ± 0.12	+	+		16					
synthesis	FLA3	At2G24450	$\textbf{-6.06} \pm 0.29$	+	+	—	17					

Supplementary Table 1. Genes expression in *nlc* buds compared with the wild type and pollen wall integrality in mutants

Pollen wall integrity of each mutant is marked +, normal; -, absent; *, abnormal; ?, unknown.

Gene expressions are used log_2 -transformed expression ratios (±SD) from three independent

hybridization slides.

The references are orderly listed in the Supplementary figure legend.

Sequences				
Prime	Sequence	Note		
Bar-F	5'-GCACCATCGTCAACCACTAC-3'	Amplifying the BAR gene for		
Bar-R	5'-TGCCAGAAACCCACGTCAT-3'	indentify the T-DNA insertion		
AtLB1	5'-ATACGACGGATCGTAATTTGTC-3'			
AtLB2	5'-TAATAACGCTGCGGACATCTAC-3'	For Tail-PCR		
AtLB3	5'-TTGACCATCATACTCATTGCTG-3'			
ILP	5'- ATAACAATGGCTGGAGGTACAG-3'	Identifiying the T-DNA		
IRP	5'-GAAACGTGGAGATTAG AGCAG TAG -3'	insertion site and mutant phenotype		
CLP-F	5'-AACAATCTCGAAATTTTAGGC-3'	For complementation		
CRP-R	5'-CGTGAGGTGCAAGGAGAA-3'			
CLPV-F	5'- CTGAGAGCATTACCCAAAGC -3'	Verifiying the background of		
CRPV-R	5'-TTATATCATTGCCTGGAG ACG-3'	the transformants		
GFP-F	5'-ATGGCTGGAGGTACAGCTCT-3'			
GFP-R	5'-AGGTTTCGACATGACA CGC-3'	For p35S:NLC-GFP fusion		
RTNLC-F	5'-AAGAACAAACCCAAACCACC-3'			
RTNLC-R	5'-AACAACAGGACCAGATGCG-3'			
Tublin-F	5'-GATTTCAAAGATTAGGGAAGAGTA-3'	For Real Time-PCR		
Tublin-R	5'-GTTCTGAAGCAAATGTCATAGAG-3'			
AMSpMAL-F	5'-GGATCCATGGAGAGTAATATGCAAAACTTG-3'	For recombinant MBP-AMS		
AMSpMAL-R	5'-CTGCAGTTATTGGTTGTGGTAATGGTTGA-3'	protein		
NLC-F	5'-TCGGATTTTGCAAGAAGGA-3'			
NLC-R	5'-CCAAGAGTAGATATCAGA AGCC-3'			
MS188-F	5'-GATGTGGGAAGAGTTGTAGGC-3'	For non-radioactive RNA in situ		
MS188-R	5'-GAAAGTTGTTTGGGTTAGG GT-3'	hybridization		
USP-F	5'-TCTGGTTGCTGGTGGTC-3'			
USP-R	5'-TACTGTATTTGTTGTGAGGGTCT-3'			
P1-F	5'-GGCACAGGTCGAGGACGA-3'			
P1-R	5'-CCACTGCTCTGTATTTTATCGC-3'			
P2-F	5'-GATTTTAGTTTTGGTCCCAAAAAG-3'			
P2-R	5'-CAAATTTATTTTGCAAAAAAAGAA-3'			
P3-F	5'-CTCCTACTCCTCACAATCATTCTTT-3'			
P3-R	5'-TGTTATGAATGTTGTTATATGTTCAACT-3'			
S1-F	5'-AAGTTGTGTTTTTTCCCAAGTCA-3'	For qChIP-PCR		
S1-R	5'-CCATCCCCCACAACTTGTG-3'			
S2-F	5'-CAGAGAAACTGAAACTAATTTTCCA-3'			
S2-R	5'-CTTGAATATCGATCAAAATGTAAATATA-3'			
S3-F	5'-GGAGTTGACCAGGCGTTGA-3'			
S3-R	5'-AACAAAAATGAAAACATAGTAAAAATT-3'			
ENLC-F	5' AGCATTATTATGAATCTCTCTGTTA 3'	For EMSA		

Supplementary Table 2. List of primers used in the study and their sequences

ENLC-R	5'	TTGTTATATGTTCAACTGAAAGATT	3'
EMS188-F	5'	CAGAGAAACTGAAACTAATTTTCCA	3'
EMS188-R	5'	GAATTTGAAAATTAGATGAGAGACA	3'

Supplementary References:

- Xu, J. *et al.* The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. *Plant Cell* 22, 91-107 (2010).
- Zhang, Z.B. *et al.* Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. *Plant J* 52, 528-538 (2007).
- de Azevedo Souza C. *et al.* A novel fatty Acyl-CoA synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. *Plant Cell* 21, 507–525 (2009).
- Morant M. *et al.* CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. *Plant Cell* 19, 1473–1487 (2007).
- Dobritsa AA. *et al.* CYP704B1 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. *Plant Physiol* 151, 574–589 (2009).
- Grienenberger E. *et al.* Analysis of TETRAKETIDE α-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. *Plant Cell* 22, 4067–4083 (2010).
- Ito T. *et al.* Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. *Plant Cell* 19, 3549–3562 (2007).
- Yang C, Vizcay–Barrena G, Conner K & Wilson Z.A. MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. *Plant Cell* 19, 3530–3548 (2007).
- 9. Aarts M.G. *et al.* The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. *Plant J* **12**, 615-23(1997).

- 10. Dobritsa A.A. *et al.* LAP3, a novel plant protein required for pollen development, is essential for proper exine formation. *Sex Plant Reprod* **22**, 167-77 (2009).
- 11. Dobritsa, A.A. *et al.* LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant Physiol. **153**, 937-955 (2010).
- Kim S.S. *et al.* LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B Encode Hydroxyalkyl-Pyrone Synthases Required for Pollen Development and Sporopollenin Biosynthesis in Arabidopsis thaliana. *Plant Cell* 22, 4045–4066 (2010).
- Ariizumi T. *et al.* A novel male–sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis–sensitive exine. *Plant Mol Biol* 53, 107–116 (2003).
- Quilichini, T.D., Friedmann, M.C., Samuels, A.L. & Douglas, C.J. ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis. *Plant Physiol.* 154, 678-690 (2010).
- Dou, X.Y. et al. WBC27, an adenosine tri-phosphate-binding cassette protein, controls pollen wall formation and patterning in Arabidopsis. *J Integr Plant Biol* 53, 74-88 (2011).
- Schnurr J.A., Storey K.K., Jung H.J., Somers D.A. & Gronwald J.W. UDP-sugar pyrophosphorylase is essential for pollen development in Arabidopsis. *Planta* 224, 520–532 (2006).
- Li J., Yu M., Geng L.L. & Zhao J. The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. *Plant J* 64, 482–497 (2010).