Supplementary Figures

Supplementary Fig. 1: Body weights of the animals used for mitochondrial proteomics. Data are mean ± SD, n=3. DR animals weigh less (p<0.05, ANOVA), while weights of all other animals are not different.

Supplementary Fig. 2: Lower ROS production from complex I in long-lived ICRFa mice. H₂O₂ release from purified liver (A) and brain (B) mitochondria from ICRFa and C57BI/6 mice at 8-10 months of age. Data are mean ± SEM, n= 5 (liver) or 4 (brain). * indicates p<0.05, t test. PM: basal conditions (pyruvate+malate), PM+Rot: Pyruvate/malate plus rotenone, indicating maximum ROS production from complex I.

MitoCarta, broken line: all mouse proteins with any evidence for mitochondrial localisation in MitoMiner.

Supplementary Fig. 4: Full SDS-PAGE Western blots of complex I matrix arm subunits NDUFS3 and NDUFV2, prohibitin (PhB), membrane arm subunits NDUFA9 and NDUFB9 and UQCRC2 (UQ) in liver mitochondria from control and rapamycin-treated C57BI/6 mice. Marker positions are shown on the left.

Supplementary Fig. 5: Assembly of complex I is more complete in long-lived mice. A) Complex I activity and blue native gels/Western blots of the indicated subunits of complex I in mice liver mitochondria from 8 months old ICRFa and C57Bl/6 mice. Same blots as in Fig. 5C but over-exposed. Arrowheads mark the position of the bands quantified in Fig. S4B. B) Ratio of lower/holocomplex band intensity of the indicated complex I subunits on blue native gel Westerns. Data are mean ± SEM, 3 animals/group. * indicates p<0.05, t test.

Supplementary Fig. 6: Oxygen consumption (A) and medium acidification (B) by HeLa cells transfected with anti-NDUFAF1 siRNA (brown) or scrambled control siRNA (orange). Data are mean ± SD from 4 wells per condition with 35,000 cells each. Red: blank.

Supplementary Fig. 7: Full SDS-PAGE Western blots of complex I assembly factor NDUFAF1, prohibitin (phB) and tubulin following siRNA-mediated knock-down of the indicated mRNAs in HeLa cells.

Supplementary Fig. 8: Knock down of the mitochondrial chaperone prohibitin reduces hydrogen peroxide release triggered by suppression of the complex I assembly factor NDUFAF1. H₂O₂ release under pyruvate+malate (native conditions) and under PM + rotenone (CI max) in isolated Hela cell mitochondria following transfection with the indicated siRNAs. Data are from a single experiment.

Supplementary Fig. 9: Full SDS-PAGE Western blots of complex I assembly factor NDUFAF1 and tubulin following siRNA-mediated knock-down of the indicated mRNAs in MRC5 fibroblasts.

			DR -AL		Old -You	ng	ICRFa –C57BI/6	
Uniprot ID	Gene names	Protein names	β	Fold change	β	Fold change	β	Fold change
O35129	Phb2	Prohibitin-2 (B-cell receptor-associated protein BAP37)	1	-2.47	1	1.84	1	-1.73
P12787	Cox5a	Cytochrome c oxidase subunit 5A, mitochondrial (Cytochrome c oxidase polypeptide Va)	1	-3.17	1	2.11	1	-2.19
P51881	Slc25a5	ADP/ATP translocase 2 (Solute carrier family 25 member 5)	1	-1.84	1	2.25	1	-1.52
P67778	Phb	Prohibitin (B-cell receptor-associated protein 32)	1	-2.80	1	1.76	1	-1.76
Q6PF96	Etfdh	Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial	1	-2.31	1	1.95	1	-1.79
Q9CR68	Uqcrfs1	Cytochrome b-c1 complex subunit Rieske, mitochondrial (Complex III subunit 5) (Rieske iron-sulfur protein)	1	-1.96	1	2.43	1	-2.34
B1ASE2	Atp5h	ATP synthase subunit d, mitochondrial	1	-2.64	0.9998	2.08	0.646	-1.45
P56480	Atp5b	ATP synthase subunit beta,	1	-1.22	0.9922	1.19	1	-1.93

Supplementary Table 1. Proteins significantly changed in all three comparisons

		mitochondrial						
Q9CZ13	Uqcrc1	Cytochrome b-c1 complex subunit 1, mitochondrial (Complex III subunit 1)	1	-2.39	0.9034	1.49	1	-1.59
Q9DCT2	Ndufs3	NADH dehydrogenase [ubiquinone] iron- sulfur protein 3, mitochondrial (Complex I-30kD)	1	-2.29	0.7084	1.32	0.982	-1.46
Q62425	Ndufa4	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4	0.998	-2.06	0.8794	1.78	0.82	-1.55
Q99J99	Mpst	3-mercaptopyruvate sulfurtransferase (MST) (EC 2.8.1.2)	0.9676	1.34	1	1.66	1	-1.54
Q8BYC3	Acox1	Peroxisomal acyl-coenzyme A oxidase 1 (Palmitoyl-CoA oxidase)	0.9655	-1.32	0.9994	-1.51	0.805	-1.29

Supplementary Tab 2. Mitochondria specific KEGG pathway enrichment analysis: Pathways significantly (Q<0.05) enriched based on proteins that are more abundant in young C57Bl/6 under DR as compared to AL controls (more in DR). Q values for enrichment of the same pathways based on proteins more abundant in long-lived young ICRFa (centre) and on proteins less abundant in old ICRFa mice (right) are shown for comparison. No pathway (except the most general mmu01100) is consistently enriched in all three conditions.

KEGG Metabolic pathway		Q-Values	
	more in DR	more in young ICRFa	less in old ICRFa
mmu01100 Metabolism	0	0	0.041249
mmu00280 Valine, leucine and	0	.	01011213
isoleucine degradation			
	8.21E-22	NA	NS0.137044
mmu00410 beta-Alanine			
metabolism			
	1.43E-17	NA	NS 0.112764
mmu00640 Propanoate			
metabolism			
	1.49E-16	NA	NS 0.136363
mmu00020 Citrate (TCA) cycle	3.64E-13	NA	NA
mmu00071 Fatty acid			
metabolism			
	6.14E-11	NA	0.046149
mmu00650 Butanoate			
metabolism			
	8.40E-11	NA	NS 0.124042
mmu00330 Arginine and			
proline metabolism			
	1.09E-10	0.000348	NA
mmu00250 Alanine, aspartate	4.84E-10	5.54E-05	NA

and glutamate metabolism			
mmu00310 Lysine degradation			
	6.26E-10	NA	NS0.145341
mmu00620 Pyruvate			
metabolism			
	4.68E-08	NA	NA
mmu00010 Glycolysis /			
Gluconeogenesis			
	3.32E-07	NA	NS 0.160339
mmu00380 Tryptophan			
metabolism			
	3.83E-06	NA	NS 0.169911
mmu00910 Nitrogen			
metabolism			
	8.29E-06	0.001127	NA
mmu00340 Histidine			
metabolism			
	8.22E-05	NA	NA
mmu00561 Glycerolipid			
metabolism			
	8.90E-05	NA	NA
mmu00471 D-Glutamine and D-			
glutamate metabolism			
	0.000104	NA	NA
mmu00630 Glyoxylate and			
dicarboxylate metabolism			
	0.000168	NA	NA
mmu00053 Ascorbate and			
aldarate metabolism			
	0.00018	NA	NA
mmu00062 Fatty acid	0.000238	0.044435	NA

elongation			
mmu03320 PPAR signaling			
pathway			
	0.002648	NA	NA
mmu00300 Lysine biosynthesis			
	0.003505	0.03399	NA
mmu00040 Pentose and			
glucuronate interconversions			
	0.004877	NA	NA
mmu00260 Glycine, serine and			
threonine metabolism			
	0.009143	NA	NA
mmu00290 Valine, leucine and			
isoleucine biosynthesis			
	0.009433	NA	NA
mmu04964 Proximal tubule			
bicarbonate reclamation			
	0.013225	NA	NA
mmu04146 Peroxisome			
	0.019191	NA	NA
mmu00480 Glutathione			
metabolism			
	0.042182	NS 0.077449	NS 0.156108
mmu01040 Biosynthesis of			
unsaturated fatty acids			
	0.048593	NA	NS 0.122241

NA: no proteins in the pathway, NS: not significant

Supplementary Table 3. Mitochondria specific KEGG pathway enrichment analysis: Pathways significantly (Q<0.05) enriched based on proteins that are less abundant in young C57BI/6 under DR (left). Q values for enrichment of the same pathways based on proteins less abundant in long-lived young ICRFa mice (centre) and on proteins more abundant in old ICRFa mice (right) are also shown. Multiple pathways are enriched in all three conditions.

KEGG Metabolic pathway		Q-Values	
	less in DR	less in young ICRFa	more in old ICRFa
mmu01100 Metabolism	0	0	0
mmu00190 Oxphos	1.55E-22	3.34E-12	1.18E-11
mmu05012 Parkinson's disease	2.76E-18	3.67E-12	3.62E-13
mmu05016 Huntington's disease	1.44E-17	1.05E-12	8.12E-13
mmu05010 Alzheimer's disease	4.07E-17	4.24E-12	1.89E-10
mmu04146 Peroxisome	0.000815	0.009966	NA
mmu04141 Protein processing in	0.001745	NA	NA
endoplasmic reticulum			
mmu00120 Primary bile acid	0.010878	NA	NA
biosynthesis			
mmu00360 Phenylalanine	0.029513	NS 0.131602	NS 0.114578
metabolism			
mmu03320 PPAR signaling	0.043446	NA	NS 0.225012
pathway			

NA: no proteins in the pathway, NS: not significant

Supplementary table 4. Complex I profiling in C57BI/6 AL liver mitochondria (15 months of age). Data are normalized peptide counts for all detected complex I proteins (plus NDUFA4 and prohibitins) in 12 BN gel slices as shown in Fig. 4E. Data are means from 3 mice run in separate gel lanes (± SEM in slice 1).

	Slice 1											
	M±SEM	Slice2	Slice 3	Slice 4	Slice 5	Slice 6	Slice 7	Slice 8	Slice 9	Slice 10	Slice 11	Slice 12
MT-ND1	535±101											
MT-ND2	195 ± 41											
MT-ND3	113 ± 19	16										
MT-ND4	371±138											
MT-ND5	484±123											
NDUFA1	97 ± 7											
NDUFA10	949±169										250	169
NDUFA11	351 ± 19											
NDUFA12	298 ± 14							19			71	86
NDUFA13	1549±33	51	33									
NDUFA2	737±125											
NDUFA3	339 ± 59											
NDUFA4	134 ± 57	60	107	66	33	108	73	55		48	160	188
NDUFA5	397 ± 84											
NDUFA6	893±109	27										
NDUFA7	123 ± 20							19		16	194	242
NDUFA8	347 ± 48	16										
NDUFA9	2293±345	97										
NDUFB11	715 ± 80											
NDUFB3	343 ±58	27										
NDUFB4	435±145											
NDUFB5	273 ± 30											
NDUFB6	660 ± 41	44	17									

NDUFB7	328 ± 63	16						
NDUFB8	779±181							
NDUFB9	808 ± 15							
NDUFC2	441 ± 75							
NDUFS1	5160±455	200						
NDUFS2	1983±160	92						
NDUFS3	1451±206	60						
NDUFS4	263 ± 31							
NDUFS5	79 ± 11							
NDUFS7	896 ± 41							
NDUFS8	451 ± 65							
NDUFV1	1739±214	81						
NDUFV2	290 ± 26							
РНВ	277 ± 56							
PHB2	413 ± 16						43	

Supplementary table 5. Complex I profiling in C57BI/6 DR liver mitochondria (15 months of age, 12 months DR). Data are normalized peptide counts for all detected complex I proteins (plus NDUFA4 and prohibitins) in 12 BN gel slices as shown in Fig. 4E. Data are means from 3 mice run in separate gel lanes (± SEM in slice 1).

	Slice 1											
	M±SEM	Slice2	Slice 3	Slice 4	Slice 5	Slice 6	Slice 7	Slice 8	Slice 9	Slice 10	Slice 11	Slice 12
MT-ND1	344 ± 48											
MT-ND2	190 ± 57											
MT-ND3	124 ± 17		14									
MT-ND4	242 ± 54											
MT-ND5	311 ± 35											
NDUFA1	59 ± 37											
NDUFA10	642 ± 73										209	223
NDUFA11	264 ± 64											34
NDUFA12	187 ± 9							20			93	80
NDUFA13	1111± 89	64	30									
NDUFA2	293 ± 22											
NDUFA3	179 ± 74		20									
NDUFA4	64 ± 19	31	60	76	75	94	66	109	123	62	156	175
NDUFA5	308 ± 7											
NDUFA6	393±122											
NDUFA7	62 ± 16						31	61	45	52	110	174
NDUFA8	327 ± 17											
NDUFA9	1655±155	17										
NDUFAB1	92 ± 64											
NDUFB11	328 ± 39	16										
NDUFB3	332 ± 70	19	30									
NDUFB4	373 ± 51											

NDUFB5	294 ± 7	17								
NDUFB6	407 ± 51	33	30							
NDUFB7	231 ± 15		13							
NDUFB8	571 ± 12									
NDUFB9	679 ± 60									
NDUFC2	243 ±48									
NDUFS1	3722±390	17			19					
NDUFS2	1650±128									
NDUFS3	1158±128	17				16				
NDUFS4	191 ± 53									
NDUFS5	78 ± 16									
NDUFS7	599 ± 73									
NDUFS8	353±132									
NDUFV1	1566±193	34								
NDUFV2	250 ± 28									
PHB	140 ± 7									
PHB2	254 ± 67						18		29	

	Slice 1											
	M±SEM	Slice2	Slice 3	Slice 4	Slice 5	Slice 6	Slice 7	Slice 8	Slice 9	Slice 10	Slice 11	Slice 12
MT-ND1	575 ± 17											
MT-ND2	232 ± 90											
MT-ND3	233 ± 9											
MT-ND4	329 ± 66											
MT-ND5	412 ± 71	20										
NDUFA1	154 ± 5											
NDUFA10	1104±127										391	87
NDUFA11	447 ± 55											36
NDUFA12	323 ± 26									19	145	245
NDUFA13	1528±75	39	73									
NDUFA2	531±110											
NDUFA3	235 ± 21											
NDUFA4	126 ± 37	87	131		71	46	51	19	95	83	265	268
NDUFA5	578±131											
NDUFA6	884 ± 45											
NDUFA7	123 ± 42							18	29	50	178	447
NDUFA8	681±254											
NDUFA9	2725±176											
NDUFB11	546 ± 73	20	36									
NDUFB3	630 ± 17	50	38									
NDUFB4	791 ± 18											
NDUFB5	420 ± 83		18									
NDUFB6	394 ± 24											

Supplementary table 6. Complex I profiling in C57BI/6 liver mitochondria (8 months of age). Data are normalized peptide counts for all detected complex I proteins (plus NDUFA4 and prohibitins) in 12 BN gel slices as shown in Fig. 4E. Data are means from 3 mice run in separate gel lanes (± SEM in slice 1).

NDUFB7	576±100							
NDUFB8	814±100							20
NDUFB9	1178±115							
NDUFC2	502 ± 35							
NDUFS1	5332±152		55					
NDUFS2	2387±166	17			15			
NDUFS3	1799± 92							
NDUFS4	328 ± 74							
NDUFS5	254 ± 55							
NDUFS7	917 ± 55							
NDUFS8	589±155							
NDUFV1	2405±30							
NDUFV2	308 ± 68							
PHB	367±107							47
PHB2	654±120	36	38				30	

	Slice 1											
	M±SEM	Slice2	Slice 3	Slice 4	Slice 5	Slice 6	Slice 7	Slice 8	Slice 9	Slice 10	Slice 11	Slice 12
MT-ND1	905±183											
MT-ND2	433 ± 15											
MT-ND3	229 ± 29											
MT-ND4	836 ± 56											
MT-ND5	723 ± 80											
NDUFA1	180 ± 39											
NDUFA10	2458± 77									149	63	
NDUFA11	493 ± 48											
NDUFA12	415 ± 75									34	42	
NDUFA13	2640±233											
NDUFA2	908 ± 69											
NDUFA3	497 ± 69											
NDUFA4	248 ± 58	80	117	82	31	14	47	20	16	79	75	97
NDUFA5	769 ± 44											
NDUFA6	1532±23											
NDUFA7	263 ± 50						15	57	32	156	105	
NDUFA8	1181±52											
NDUFA9	4551±287											
NDUFAB1	30 ± 30											
NDUFB11	1129± 27											
NDUFB3	826 ± 83											14
NDUFB4	868±120											
NDUFB5	532 ± 44											

Supplementary table 7. Complex I profiling in ICRFa liver mitochondria (8 months of age). Data are normalized peptide counts for all detected complex I proteins (plus NDUFA4 and prohibitins) in 12 BN gel slices as shown in Fig. 4E. Data are means from 3 mice run in separate gel lanes (± SEM in slice 1).

NDUFB6	1142±14							
NDUFB7	841 ± 42							
NDUFB8	851 ± 69							
NDUFB9	1368±122							
NDUFC2	863 ± 74							
NDUFS1	8528±190		17					
NDUFS2	3571± 50							
NDUFS3	3039±176							
NDUFS4	565 ± 58							
NDUFS5	503 ± 32							
NDUFS7	1424±131							
NDUFS8	932±104							
NDUFV1	3836±102							
NDUFV2	490 ± 20							
PHB	810 ± 28							
PHB2	918 ± 84	47	46				30	28