
Supporting Information
Wuchty 10.1073/pnas.1311231111
SI Methods
Formulation of the Binary Integer Programming Problem. In general,
binary integer programming revolves around the problem of
finding a binary vector x that optimizes a linear function fTx
subject to linear constraints. For example, a binary integer pro-
gramming problem may bemin fTx such that Ax ≥ b, where x only
can assume binary values. In particular, A is a matrix that holds
the coefficients of the constraining variables, and b holds the
boundaries of the constraints.
In Fig. S10A we consider a simple network whose minimum

dominating set (MDSet) we want to determine. Each node vi can
either take value xi = 1 if vi is part of the MDSet or 0 otherwise. In
Fig. S10B, we formulate the underlying binary integer programming
problem for our toy network. In particular, we want to minimize
the number of nodes in the MDSet by min (x1 + x2 + x3 + x4).
Because we defined the MDSet as the minimum subset of nodes
that allow us to reach each remaining non-MDSet node by one step
(i.e., non-MDSet nodes are in the vicinity of an MDSet node), we
need to make sure that the sum of x’s of a given node vi and its
neighbors is at least 1. Therefore, our constraints can be formulated
for each node vi (i = 1,2,3,4) as xi +

P
j∈ΓðiÞ xj ≥ 1, where Γ(i) are

the neighbors of vi in the toy network. As a consequence, the matrix
notation of the constrains is Ax ≥ 1 where A is the adjacency matrix
of the underlying toy network, where Aii = 1 as well as Aij = 1 if
there exists an edge between nodes vi and vj and 0 otherwise.

Solving a Binary Integer Programming Problem with a Branch-and-
Bound Algorithm. lpSolve of the R package uses a linear pro-
gramming (LP)-based branch-and-bound algorithm (1) to solve
such a binary integer programming problem. The algorithm
searches for an optimal solution to the binary integer pro-
gramming problem by solving a series of LP-relaxation problems,
in which the binary integer requirement on the variables is re-
placed by the weaker constraint 0 ≤ xi ≤ 1. Briefly, the algorithm
(i) searches for a binary integer feasible solution, (ii) updates the
best binary integer feasible solution so far as the search tree
grows, and (iii) verifies that no better integer feasible solution is
possible by solving a series of linear programming problems.
Inmore detail, the algorithm creates a search tree by repeatedly

adding constraints of the problem (Fig. S10C). This step is called
“branching” where the algorithm chooses a variable xj that has
not been set to an integer value yet. Specifically, the algorithm
adds the constraint xj = 0 to form one branch and the constraint
xj = 1 to form the other branch. In our example the algorithm
starts out to add the constraint revolving around node v1 to the
tree by adding a node where x1 is set to 0 and another node,
where x1 = 1. As a consequence such branching steps generate
a binary tree. In general, however, the order of the variables
going down the levels in the tree is not necessarily the usual
order of their subscripts.

At each node, the algorithm solves an LP-relaxation problem
based on the constraints that were used up to this node. In our
example, let us consider the node where x1 = 0. Here, x1 is set to
0, but the remaining variables x2, x3, and x4 are still free to take
on either value. In other words, for each variable x2, x3, and x4 we
consider a relaxed constraint in the interval [0,1]. In the node
where x1 = 0, we, for instance, assume that x2 = 0.5, x3 = 0.9, and
x4 = 0.8, resulting in Z = 2.2. Such a feasible solution (i.e., no
violation of the constraints) to the LP-relaxation problem pro-
vides a lower bound for the binary integer programming prob-
lem. Inevitably, we will end up with a feasible solution where all
variables are set to an integer value (i.e., an integer solution). In
this case such a binary integer vector would provide an upper
bound or the best current integer solution Z* for the binary in-
teger programming problem. As a start, when no actual solution
is yet available we choose a default of Z* = ∞.
Depending on the outcome of this evaluation step, the algo-

rithm will decide either to continue branching (i.e., add another
constraint) or to move to another node. In particular, we consider
three possibilities in our toy model:

i) If the LP-relaxation problem at the current node is infeasible
or Z is greater than the corresponding value of the best
current integer solution Z*, the algorithm will not search
any branches below that node. The algorithm then moves
to a new node according to the underlying, implemented
search strategy. In our example, the algorithm moved to
the other branch where x2 = 1, after we found that the solu-
tion to the subproblem with x2 = 0 was infeasible.

ii) If a (new) feasible integer solution with a lower Z value than
that of the best current integer solution is found (Z < Z*),
then the algorithm keeps this solution as the new best cur-
rent integer solution and moves on to the next node. In our
toy example we found a best current integer solution (and
the ultimately optimal solution) where x2 = 1, whereas all
other variables were 0, and Z = Z* = 1. Our algorithm
continued searching at the last branching step where we left
off (x3 = 1). Although the solution was feasible, the corre-
sponding value Z = 1.9 was larger than Z* = 1.

iii) If the solution of the LP-relaxation problem is feasible but
not integer (i.e., a possible final solution) and the Z of the
LP-relaxation problem is less than the best current integer
solution Z < Z*, we start a new branching step. Following the
path to the optimal solution, we observed a series of branch-
ing steps in our toy example, illustrating this step.

Following this algorithmic outline, we end up with an optimal
solution of Z* = 1 and x1 = 1, whereas x1,3,4 = 0, suggesting that
the MDSet of our toy network consists of node v2 only.

1. Land AH, Doig AG (1960) An automatic method of solving discrete programming-
problems. Econometrica 28(3):497–520.

Wuchty www.pnas.org/cgi/content/short/1311231111 1 of 5

www.pnas.org/cgi/content/short/1311231111


Fig. S1. Degree distributions of MDSet proteins. The degree distributions of proteins that are involved in the MDSet of the combined, binary, and cocomplex
interactions in (A) human and yeast have fat tails. (B) Compared with the log-binned frequency distributions of degrees in the binary and cocomplex in-
teraction datasets, we observed that MDSet proteins are mostly enriched among highly connected proteins in human and yeast.

Fig. S2. Betweenness centrality distributions of MDSet proteins. (A) The frequency distributions of protein’s betweenness centrality that are involved in the
MDSet of the combined, binary, and cocomplex interactions in human and yeast have fat tails. (B) Determining node-specific betweenness centrality of all
proteins in the binary and cocomplex interaction datasets, we observed that MDSet proteins are mostly enriched among proteins with high betweenness in
both human and yeast.

Wuchty www.pnas.org/cgi/content/short/1311231111 2 of 5

www.pnas.org/cgi/content/short/1311231111


Fig. S3. Robustness of MDSets. We compared the MDSet of the actual and randomized networks by a Jaccard index, defined as Δij =Nij=(Ni +Nj −Nij), where
Nij was the number of common MDSet proteins in networks i and j, and Ni was the number of MDSet proteins in network i. To represent false-positive in-
teractions we randomly deleted the corresponding percentage of interactions in the underlying combined, binary, and cocomplex interaction sets in (A) human
and (B) yeast.

Fig. S4. Enrichment of hubs among disease and essential genes. (A) We calculated how often cancer-related genes, proteins that are targeted by human
viruses, and essential genes appeared in sets of most connected proteins that equaled the size of the corresponding MDSet in the given human and yeast
interaction sets. Using Fisher’s exact test we determined the significance of such functional proteins in these sets of most connected proteins. In parentheses we
show the corresponding numbers in the matching MDSets. In B we present the corresponding numbers using sets of proteins with highest betweenness
centrality that matched the corresponding MDSets in the underlying interaction networks.

Fig. S5. Involvement of MDSet proteins in protein complexes. Counting the number of complexes proteins are involved in, we observed that human MDSet
proteins in the combined human interaction network appeared in more complexes than non-MDSet proteins (P = 2.6 × 10−8, Wilcoxon test). (Inset) We ob-
served a similar result using (non)MDSet proteins in the combined yeast interaction network (P = 4.1 × 10−5).

Wuchty www.pnas.org/cgi/content/short/1311231111 3 of 5

www.pnas.org/cgi/content/short/1311231111


Fig. S6. Complex participation of MDSet proteins. (A) Focusing on the combined human network, we found that human MDSet proteins have significantly
lower complex participation values than non-MDSet proteins (P = 2.4 × 10−38, Wilcoxon test). In (B) we found a similar result for (non)MDSet proteins in the
combined yeast interactions set (P = 3.3 × 10−17).

Fig. S7. Robustness of underlying human network. We sorted all MDSet proteins in the combined human interaction network according to their degree. As
an equivalent set of equal size we collected and sorted the highest connected hub proteins. Furthermore, we randomly sampled a set of proteins of the same
size. Starting with the most connected protein, we gradually deleted proteins and calculated the number of connected components in the altered network.

Fig. S8. Enrichment of MDSet proteins among yeast transcription factors, kinases, and their targets. We calculated the enrichment of transcription regulatory
interactions and phosphorylation events between (non)MDSet proteins in the combined yeast interaction network. We observed that both types of inter-
actions preferably appeared between MDSet proteins, whereas we found the opposite for non-MDS proteins. Specifically, we obtained best results when the
corresponding transcription factor or kinase was involved in the MDSet.

Wuchty www.pnas.org/cgi/content/short/1311231111 4 of 5

www.pnas.org/cgi/content/short/1311231111


Fig. S9. Quality analysis of protein interaction sets. We counted the number of papers that reported the presence of an interaction. In (A) human and (B) yeast
we observed that the majority of interactions in the binary interactions sets were confirmed in more than one paper. Cocomplex interactions were only
accounted for when they appeared in at least two publications.

Fig. S10. Concept and solution of binary integer programming problems. (A) Toy network to illustrate the determination of an MDSet. (B) Formulation of the
binary integer programing problem to determine the MDSet of the toy network. (C) Search tree as generated by a branch-and-bound algorithm to solve the
underlying binary integer programming problem to find an MDSet.

Wuchty www.pnas.org/cgi/content/short/1311231111 5 of 5

www.pnas.org/cgi/content/short/1311231111

