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Study Sample. The study protocol was approved by the In-
stitutional Review Board at each local site. After a complete
description of the study was given to volunteers, their written
informed consent was obtained. In addition to the resting state
functional MRI (RS-fMRI), blood samples from each volunteer
were collected and stored for genetic analysis.

Data Acquisition and Pre-Processing. Imaging. All subjects at each
site underwent a single 5-min run of RS-fMRI on a 3-T scanner
(1). Participants were instructed to keep their eyes open, focus
on a crosshair displayed on a monitor, and remain still during the
entire scan. In addition, head motion was restricted with a custom-
built head-coil cushion. Alertness during the scan was confirmed
immediately afterward. If necessary, the scan was repeated. These
instructions helped reduce head motion, prevented subjects from
falling asleep, and served as an experimental control over visual
input. Scanning protocols were mostly consistent; a few differences
between sites noted in Table S4 were accounted for during analysis.
The initial six images, during which T2 effects stabilized, were

discarded. Remaining images were reconstructed offline and
realigned with INRIAlign (www-sop.inria.fr/epidaure/software/
INRIAlign/index.php), implemented in Statistical Parametric
Mapping (SPM8; www.fil.ion.ucl.ac.uk/spm/software/spm8/). Re-
aligned images then were corrected for differences in slice timing,
were spatially normalized to MNI space, and were smoothed by
an 8-mm isotropic Gaussian kernel. At each stage the output was
validated visually, and scans were discarded if they did not meet
quality control (QC) standards (e.g., regarding artifacts, noise,
excessive motion, missing data, and so forth). After QC, 1,305
subjects were selected for further imaging analysis.
Genetics.Blood samples were drawn after fMRI scanning. A subset
(n = 620) of those who underwent fMRI scanning was genotyped
using an Illumina’s Human Omni1-Quad Bead Chip for 1,140,419
common SNPs at Genomas Inc., Hartford Hospital. Genomic
markers (SNPs) were interrogated although a two-step detection
process. Carefully designed 50-mer probes were selectively hy-
bridized to the loci of interest, stopping one base before the in-
terrogated marker. Marker specificity was conferred by enzymatic
single-base extension to incorporate a labeled nucleotide. Sub-
sequent dual-color fluorescent staining allowed the labeled nu-
cleotide to be detected by the Illumina’s iScan imaging system.
Genotyped data were preprocessed in PLINK (http://pngu.

mgh.harvard.edu/∼purcell/plink/) following a published work-
flow reported by Anderson et al. (2), combining both per-
individual and per-marker QC (Fig. 1). After preprocessing, SNPs
in high linkage disequilibrium were removed (window of 50
SNPs; r2 >0.5) to increase independence between markers and
then were subjected to a principal component analysis (PCA)
using custom Matlab scripts to identify stratifying factors using
an algorithm similar to EIGENSTRAT. Data were adjusted
using the top three eigenvectors to exclude any underlying
stratification, and SNPs then were statistically prioritized for
parallel independent component analysis (para-ICA) using lo-
gistic regression across each proband group separately. All SNPs
that were both unique and common to both disorders and
associated significantly at a nominal P < 0.05 uncorrected
threshold were retained for further analysis, achieving three
important goals: (i) effectively restricting core analyses to po-
tentially disease-related genetic data in the current sample; (ii)
reducing potential noise from other interacting genes with
minimal relationship to the disease model, thereby providing

hypothesis-free data-driven enhancement; and (iii) improving
accuracy and the linking coefficient of the para-ICA algorithm.
After genetic QC, 549 subjects and 10,136 SNPs remained for
the final para-ICA analysis. Fig. 1 illustrates the general pro-
cessing workflow.

Primary Data Analysis. ICA. fMRI data were analyzed using a group–
ICA algorithm (GIFT v1.3f; http://mialab.mrn.org/software/gift) to
identify spatially independent networks by pooling data from all
participants (n = 1,305) into a single ICA analysis. After data re-
duction through two PCA stages, that typically retains 99% of data
variance (3), 20 mutually independent components were de-
termined using minimum description length (MDL) criteria ad-
justed to account for correlated samples (4). Time courses and
spatial maps (SM) were then back-reconstructed for each partici-
pant, maintaining interindividual variability. The SM loading co-
efficients from a group ICA represent the degree of connectivity of
each voxel’s time course with the aggregate/overall time course of
the network, thus inherently representing a functional connectivity
map. Each network’s consistency metrics were derived from mul-
tiple ICA runs using a clustering approach called ICASSO (5).
Default mode network selection. Because we were specifically in-
terested in default mode networks (DMNs), all aggregate SMs
derived from the group ICA were spatially correlated to a default
mode intrinsic network map generated using an ICA decom-
position of modeled activation images achieved using the recently
published Brainmap behavioral metadatabase coordinates (6).
We identified DMNs by assessing all SMs that correlated highly
(and that also were visually verified using a scree method) with
the previously published metanetwork DMN map from the
above study.
Conventional analysis of DMNs. Each DMN was subjected to an
SPM8 full-factorial model comprising two factors (diagnosis and
site), each with five levels. F-contrasts were generated to detect
voxels showing significant diagnosis-by-site interaction, which, if
found, were removed from subsequent analyses. Remaining
voxels were subjected to a permutation-testing model used in
FMRIB Software Library’s (FSL) Randomize (http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/Randomise) to test for a voxelwise main effect of
diagnosis across all groups, using the threshold-free cluster en-
hancement (TFCE) option that minimizes potential bias toward
threshold dependence and localization of cluster inference (7).
Voxels surviving a P < 0.05 familywise error adjusted for multiple
comparisons threshold from an omnibus F-test contrast were
averaged and imported to SPSS18 (www-01.ibm.com/software/
analytics/spss/) for further post hoc tests. Statistical tests were
conducted on the regional measurements extracted in the pre-
vious step to investigate our biomarker and/or endophenotype
hypothesis using an ANOVA model and subsequent post hoc t
tests. All these analyses were adjusted for age, sex, and site.
Heritability. Heritability (h2) estimates for the regional connec-
tivity measurements for each DMN were computed using Se-
quential Oligogenic Linkage Analysis Routines (SOLAR) (8),
using maximum likelihood variance-decomposition methods to
modeling covariance among family members as a function of
kinship.
Correlation analyses with clinical measures. Average DMN connec-
tivity measures were correlated against symptom measures
obtained on scanning day, including the Young Mania Rating
Scale (YMRS) (9), Montgomery-Asberg Depression Rating Scale
(MADRS) (10), Social Functioning Scale (SFS) (11), Schizo-
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Bipolar Scale (SBS) (12), and Positive and Negative Symptom
Scale (PANSS) (13).
Parallel-ICA (imaging–genetics). Because no relatives were geno-
typed, genetic relationships and biological processes were derived
only for controls and probands. To identify genetic underpinnings
of DMNs identified using ICA, we used separate para-ICAs (14–
19) on each DMN using Fusion ICA Toolbox (FIT: http://mialab.
mrn.org/software/fit/) in MATLAB 7.7, an algorithm validated in
imaging–genetic studies encompassing a range of sample sizes
(20–23). Para-ICA is a second-level analysis that essentially al-
lows investigation of cross information between two different
data modalities. The goal of para-ICA was threefold: (a) to run
an ICA on the subject-specific back-reconstructed DMN to ex-
tract fMRI subnetworks that are maximally spatially independent
and measure variation/modulation in connectivity across in-
dividuals; (b) simultaneously to run another ICA on the SNP-
subject matrix to extract distinct, linear combinations of SNP data
(covarying genetic networks across subjects); and (c) iteratively to
update the unmixing matrices derived from a and b to maximize
correlations between the derived networks from steps a and
b until a stopping criterion is reached. This process results in
a number of components for each feature set that are variably
expressed across subjects and quantified by a subject-level loading
coefficient for each data type. The variation of expression (esti-
mated loading parameter) of a single component for one data
type is correlated across subjects with the expression of a single
component from the second data type, resulting in pairs of cor-
related components from each data modality. The number of
genetic components in the current study was estimated to be 14,
and the number of components estimated for the fMRI networks
varied between two and three depending on the input DMN.
Component estimation used standard MDL criteria (4). The re-
sidual loading parameters for each feature (imaging, genetic)
were tested post hoc for between-group differences across pro-

bands using one-way ANOVA after adjusting for age, sex, and
site effects in SPSS-18, per prior publications (21–23). Fig. S3
illustrates the para-ICA procedure.
Gene annotation, visualization, and enrichment. During para-ICA,
voxels within each DMN subnetwork and SNPs within each ge-
netic subnetwork were assigned Z-scores according to their
contribution toward a particular network’s overall signal. All
gene components were arbitrarily thresholded at a jZj>2 cutoff,
and SNPs surpassing this threshold were deemed to be contrib-
uting significantly to that particular genetic network. All SNPs
were mapped to their respective genes using the genome varia-
tion server database (http://gvs.gs.washington.edu/GVS137/).
Before enrichment analysis all SNPs along with their respective

P values for each para-ICA network were fed into the VEGAS
software (http://gump.qimr.edu.au/VEGAS/) to derive a gene-
based trait association value that allowed us to account for any
bias in gene size. Only genes with a P < 0.05 value were input for
further enrichment analysis. Enrichment and visualization of
significant SNPs mapped onto their respective genes were carried
out using Metacore, (GeneGo Inc: www.genego.com/metacore.
php) to interpret results in the context of a curated biological
knowledge base. Functional enrichment was derived in multiple
ontologies, including pathways, network processes, diseases, gene
ontology processes, and metabolic networks. Quantitative en-
richment scores were calculated using a hyper-geometric ap-
proach to estimate the likelihood that significant genes were
overrepresented in particular biological pathways, networks, or
processes. Significance values were adjusted using false discovery
rate (FDR) correction for multiple comparisons (24). This en-
richment analysis was done using genes both (i) mapped within
each network separately and (ii) pooled across all DMN sub-
networks. The latter strategy provided a global perspective of
possible biological processes mediating disease risk via DMN
connectivity.

1. Tamminga CA, et al. (2013) Clinical phenotypes of psychosis in the Bipolar-
Schizophrenia Network on Intermediate Phenotypes (B-SNIP). Am J Psychiatry 170
(11):1263–1274.

2. Anderson CA, et al. (2010) Data quality control in genetic case-control association
studies. Nat Protoc 5(9):1564–1573.

3. Calhoun VD, Liu J, Adali T (2009) A review of group ICA for fMRI data and ICA for joint
inference of imaging, genetic, and ERP data. Neuroimage 45(1, Suppl):S163–S172.

4. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group
inferences from functional MRI data using independent component analysis. Hum
Brain Mapp 14(3):140–151.

5. Himberg J, Hyvärinen A, Esposito F (2004) Validating the independent components of
neuroimaging time series via clustering and visualization. Neuroimage 22(3):
1214–1222.

6. Laird AR, et al. (2011) Behavioral interpretations of intrinsic connectivity networks. J
Cogn Neurosci 23(12):4022–4037.

7. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: Addressing
problems of smoothing, threshold dependence and localisation in cluster inference.
Neuroimage A44(1):83–98.

8. Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general
pedigrees. Am J Hum Genet 62(5):1198–1211.

9. Young RC, Biggs JT, Ziegler VE, Meyer DA (1978) A rating scale for mania: Reliability,
validity and sensitivity. Br J Psychiatry 133:429–435.

10. Montgomery SA, Asberg M (1979) A new depression scale designed to be sensitive to
change. Br J Psychiatry 134:382–389.

11. Birchwood M, Smith J, Cochrane R, Wetton S, Copestake S (1990) The Social
Functioning Scale. The development and validation of a new scale of social
adjustment for use in family intervention programmes with schizophrenic patients. Br
J Psychiatry 157:853–859.

12. Keshavan MS, et al. (2011) A dimensional approach to the psychosis spectrum
between bipolar disorder and schizophrenia: The Schizo-Bipolar Scale. Schizophr Res
133(1-3):250–254.

13. Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS)
for schizophrenia. Schizophr Bull 13(2):261–276.

14. Allen EA, et al. (2011) A baseline for the multivariate comparison of resting-state
networks. Front Syst Neurosci 5:2.

15. Calhoun VD, Eichele T, Adalı T, Allen EA (2012) Decomposing the brain: Components
and modes, networks and nodes. Trends Cogn Sci 16(5):255–256.

16. Guo Y, Pagnoni G (2008) A unified framework for group independent component
analysis for multi-subject fMRI data. Neuroimage 42(3):1078–1093.

17. Joel SE, Caffo BS, van Zijl PC, Pekar JJ (2011) On the relationship between seed-based
and ICA-based measures of functional connectivity. Magn Reson Med 66(3):644–657.

18. Khadka S, et al. (2013) Is aberrant functional connectivity a psychosis
endophenotype? A resting state functional magnetic resonance imaging study. Biol
Psychiatry 74(6):458–466.

19. Meda SA, et al. (2010) A pilot multivariate parallel ICA study to investigate
differential linkage between neural networks and genetic profiles in schizophrenia.
Neuroimage 53(3):1007–1015.

20. Jamadar S, et al. (2011) Genetic influences of cortical gray matter in language-related
regions in healthy controls and schizophrenia. Schizophr Res 129(2-3):141–148.

21. Liu J, et al. (2009) Combining fMRI and SNP data to investigate connections between
brain function and genetics using parallel ICA. Hum Brain Mapp 30(1):241–255.

22. Rzepecki-Smith CI, et al. (2010) Disruptions in functional network connectivity during
alcohol intoxicated driving. Alcohol Clin Exp Res 34(3):479–487.

23. Meda SA, et al. (2012) A large scale multivariate parallel ICA method reveals novel
imaging-genetic relationships for Alzheimer’s disease in the ADNI cohort.
Neuroimage 60(3):1608–1621.

24. Reiner-Benaim A (2007) FDR control by the BH procedure for two-sided correlated
tests with implications to gene expression data analysis. Biom J 49(1):107–126.

Meda et al. www.pnas.org/cgi/content/short/1313093111 2 of 4

http://mialab.mrn.org/software/fit/
http://mialab.mrn.org/software/fit/
http://gvs.gs.washington.edu/GVS137/
http://gump.qimr.edu.au/VEGAS/
http://www.genego.com/metacore.php
http://www.genego.com/metacore.php
www.pnas.org/cgi/content/short/1313093111


Fig. S1. Distribution of spatial correlation coefficients (Pearson r values) between the DMN reported in Laird et al. (6) and all intrinsic ICA-derived networks
from the initial global ICA. Intrinsic DMN s identified and reported in the present study are color coded per designations in the main text.

• aDMNS1, aDMNS2, ipDMNS1, spDMNS1, spDMNS2Development
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• aDMNS1, ipDMNS1Signal Transduc�on
• aDMNS1, spDMNS1Neurophysiologic process
• aDMNS1, ipDMNS1G-Protein Signalling
• spDMNS1Transport
• ipDMNS1Transcrip�on
• ipDMNS1Apoptosis
• aDMNS1Cytoskeleton
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Enriched Ontology Para-ICA Sub-Network

Fig. S2. A bird’s-eye view of different processes significantly enriched (FDR <0.05) within each genetic subnetwork identified using para-ICA. Note the overall
presence of certain processes such as development (mostly genes regulating neurodevelopment, guidance, and so forth) common to all subnetworks.
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Fig. S3. A pictorial depiction of the para-ICA (fusion) procedure used to derive genotype–phenotype relationships in the current study.
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