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This supplement describes the 2 × 2-state kinetic model including
global fit and analysis procedures, model derivation, parameter
uncertainty calculations, and procedural details for global fit im-
plementation. Figs. S1–S7 are located below.

Kinetic Modeling
Global Fit and Analysis of the 2 × 2-State Kinetic Model. Overview.
The 2 × 2-state kinetic model was introduced in the main text
and Fig. 7A, and was constrained by microscopic reversibility
(detailed in subsection below). The objective was to fit this model to
all experimental data, which consisted of three voltage-dependent
curves: τA–V, τD–V, and Q–V. This was achieved by simulta-
neously (globally) fitting these data with the respective model-
derived functions that describe these curves.
The global fit was initially performed by minimizing the sum of

the root-mean-squared errors (RMSEs) for the Q–V and τ–V
curve fits. To ensure that each function contributed equally
during the minimization, the RMSE were normalized according
to the number of experimental points and relative amplitude
between Q–V and τ–V data values. Furthermore, we observed
that the fit of τ–V curves worsened for voltages far from the
sigmoidal region of the corresponding Q–V curves. The reason is
that at extreme voltage pulses (far from V1/2), gating current
kinetics are less voltage-dependent and ultimately become rate-
limited by molecular frictions not accounted for in our model (τ
are solely limited by V in the model and asymptotically approach
τ = 0 ms for V << V1/2 or V >> V1/2; Fig. 7C). To minimize the
influence of these points on fit quality, the experimental time
constants τ were linearly weighted according to their rela-
tive amplitude, thus optimally favoring the voltage-dependent
region. To reduce the degrees of freedom in the model, the
values of equilibrium constants K1 and K2 were initially de-
termined from a global fit of the Q–V and τ–V curves from the
WT channel. These values were then used as fixed parameters
during the global fit operation for all mutants. Note that we
tested and verified that correlation results (Fig. 8) were not
affected by even moderate deviations from WT equilibrium
constant values.
The quality of each global fit was determined by calculating

a quality factor (QF), defined as the mean ratio of global to
individual function fit errors. For most mutants, this global fit
approach yielded satisfying fits with relatively low QF values (1 <
QF < 6) (Fig. 7B) and relatively small uncertainties for the fitted
parameters (i.e., narrow confidence surfaces in Fig. S3). Four
mutants yielded QF > 6.5 that were outside the main QF dis-
tribution in Fig. 7B. These four mutants (I241D, I320Y, F244N,
S240F) were considered outliers due to poor global fits (Fig. S4)
and were excluded from further analysis. In addition, the mu-
tants A319W and A319N produce activation τ–V curves with
unusual “two-bell” shapes (Fig. S5) and were excluded from
further analysis.
The remainder of this section derives the 2 × 2-state kinetic

model equations and describes the global fit methodology.
Subsequent sections describe evaluation of parameter uncer-
tainty and procedural details for the kinetic model fitting used
in this study.
Rate equations. The 2 × 2-state kinetic model (Fig. 7A) is
composed of separate, but circularly connected activation and
deactivation pathways. The model rates (α1, β1, α2, β2, k1f,
k1b, k2f, k2b) are linked to the membrane voltage V, absolute

temperature T, and Boltzmann constant k by the following
rate equations:

α1 = a10exp
�
z1f V

�ðkTÞ�; [S1]

β1 = b10exp
�
−z1bV=ðkTÞ�; [S2]

β2 = b20exp
�
−z2bV=ðkTÞ�; [S3]

α2 = a20exp
�
z2f V

�ðkTÞ�; [S4]

and equilibrium constants: K1 = k1f=k1b and K2 = k2f=k2b, where f
and b represent forward and backward transitions. The set of
model parameters consists of the preexponential factors (a10, b10,
a20, b20) that define the rate at V = 0 mV, the apparent valences
(z1f, z1b, z2f, z2b), and K1 and K2.
Microscopic reversibility. To ensure microscopic reversibility of the
system, the product of all rates in the forward (clockwise) and
backward (counterclockwise) directions must be equal. Expressed
in terms of α2, microscopic reversibility constrains the model by
Eq. S5:

α2 =
β2α1
β1

�
K2

K1

�
: [S5]

Eq. S5 provides two constraints on the model parameters. First,
evaluation of Eq. S5 at V = 0 mV removes voltage dependence,
thus yielding a constraint on the preexponential factors. Ex-
pressed in terms of a20:

a20 =
b20a10
b10

�
K2

K1

�
: [S6]

Second, division of Eq. S5 by Eq. S6 removes the preexponential
factors, thus yielding a constraint on the apparent valences. Ex-
pressed in terms of z2f:

z2f = z1f + z1b − z2b: [S7]

These two simplifications reduce the number of independent
model parameters from 10 to 8, which is especially important
for reliable fit convergence.
Model equations. The charge, activation time constant τA, and
deactivation time constant τD for the 2 × 2-state kinetic model
were derived, and are respectively given as follows:

Q
Qmax

=
1+K2

1+
β1
α1

+K2

�
1+

β2
α2

�; [S8]

τA =
α1

ðα1 + α2Þ
�
α1ð1+K2Þ+ β1ð1+K1Þ

�
+

α2

ðα1 + α2Þ
"
α2

�
1+

1
K2

�
+ β2

�
1+

1
K1

�#; [S9]
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The Q–V voltage midpoint was derived from Eqs. S1–S3, S5, S8
as follows:

V1=2 p =
�

kT
z1f + z1b

�
log

"
b10
a10

�
1+K1

1+K2

�#
: [S11]

Individual function fit. Although underdetermined, we first exam-
ined the individual fit of each model function, Eqs. S8–S10, to its
respective data curve. The fit was performed by minimization of
the root-mean-square error of the individual weighted objective
function:

RMSEi;Ω = min
θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nΩ

X�
ξΩðV Þ�fΩðV ; θΩÞ− yΩðV Þ�	2

s
; [S12]

for Ω∈fQ; τA; τDg, where f ðV ; θΩÞ represents the model function
defined by the fitted parameter set θΩ = ða10; b10; b20; z1f ; z1b; z2bÞ,
and y is the corresponding experimental mean data curve mea-
sured at n test voltages V. The least-squares estimate of θΩ is θ̂Ω.
Equilibrium constants K1 and K2 were fixed to WT values (see
text), and thus only six parameters are fit. The Q–V residual
weights were uniform: ξΩðV Þ= 1 for Ω=Q; and the τ–V residual
weights were linear and normalized: ξΩðV Þ= yðV Þ=P yðV Þ for
Ω∈fτA; τDg. This linear weighting scheme most accurately fit
the upper region of τ–V curves, including the slowest time con-
stant value, while minimizing the influence of the outer/voltage-
independent regions that are not well accounted for in our
model (lacking a molecular friction term). Due to the overpar-
ameterized nature of individually fitting each model function, we
found that individual fits for all mutants were remarkably good
(within limits of the model).
Global function fit. The 2 × 2-state kinetic model parameters were
solved by global analysis, wherein all three model functions, Eqs.
S8–S10, are simultaneously fit to their respective mean data
curve (Q–V, τA–V, or τD–V). This was performed by minimiza-
tion of the global weighted objective function:

Φg = min
θ

X
Ω

ωΩ


ξΩðV Þ�fΩðV ; θÞ− yΩðV Þ�

2; [S13]

for Ω∈fQ; τΑ; τDg, where double vertical lines denote the L2-
norm, function weights are obtained from individual fits
ωΩ = 1=RMSEi;Ω, and the residuals weighting schemes are the
same as for individual fits. The least-squares estimate of θ is θ̂.
Once again, equilibrium constants were fixed to WT values, and
thus only six parameters are fit. The root-mean-square error of
each function from the global fit ðRMSEg;ΩÞ is calculated by
evaluation of Eq. S12 using the globally derived parameter set
θ̂. Importantly, the function weights ωΩ are required to balance
the influence of all three functions. It is possible for an individual
function to overfit the data (e.g., too few data points, very low
noise), resulting in a disproportionately low RMSE and high
influence (weight). To avoid this in the weight calculation, a
lower limit was placed on RMSEi;Ω corresponding to a fit with
error per data point equal to 1% of ymax (the typical noise level).

We found this method satisfactory for the vast majority of mu-
tants tested. Procedural details for global fitting are discussed in
a separate section below.
Goodness of global fit.The goodness of global fit was assessed by the
mean ratio of global to individual fit errors, which we refer to as
the QF:

QF=
�
RMSEg;Ω

RMSEi;Ω

�
; [S14]

for Ω∈fQ; τA; τDg. Because the more constrained global fit will
always return functions with RMSE higher than an individual fit,
the quality factor range is QF ≥ 1, where lower values indicate
a better global fit (QF = 1 is optimal). The individual and global
fits of all mutants were visually inspected.
Optimization of global function weights. A few mutants (<10%)
achieved a visually more balanced fit of model functions by nu-
merical optimization of function weights ωΩ. In this case, the
global fit became a subproblem of a fit to optimize normalized
function weights ðPωΩ = 1Þ by minimization of the QF. The
inverse RMSE values were normalized, and used as initial con-
ditions. For consistency and best possible fits, we used this latter
method for all mutants.

Parameter Uncertainty and Distribution. Parameter uncertainty was
determined by use of the likelihood-ratio criterion. In our case of
RMSE-based global fit error, Eq. S13, the 100(1 − α)% confi-
dence region (1, 2) of the parameters is given by:

ΦgðθÞ=Φg

θ̂
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

1+
p

n− p
Fα
p;n−p

!vuut ; [S15]

where the model has p fitted parameters, n=
P

nΩ data obser-
vations, and Fα

p;n−p is the upper critical value of the Fp;n−p distri-
bution at significance level α. To calculate the confidence surface
(Fig. S3), the selected parameter is incrementally perturbed to
a fixed value away from its optimum (at θ̂), and the model is refit
with remaining model parameters variable (3, 4). The global
minimum is updated if any improvement is made. Initial condi-
tions are updated to the fit results of the last successful move.
This process is repeated until the fit error exceeds the threshold
value set by Eq. S15. The scan is then repeated in the opposite
direction to generate the full confidence surface. The exact con-
fidence interval boundaries are obtained by quadratic interpola-
tion. Here, we developed a “rescue” operation to automatically
detect and correct for any spurious (nonsmooth) transitions in
each search direction, which can occur if the solver becomes
trapped in a local minimum solution. In this case, a refit is
performed with all variable parameter initial conditions per-
turbed by addition of random noise. This process is repeated
until an expected improvement (smooth transition) is obtained.
After each unsuccessful rescue attempt, the expected improve-
ment criterion is linearly relaxed.

Procedural Details for Kinetic Model Fitting.All data processing and
fitting was performed using a custom program developed in the
commercial software package MATLAB (The MathWorks). Fits
used the built-in constrained optimization solver fmincon, with
solver parameters and tolerances optimized for our problem.
This section discusses important implementation topics.
Parameter transformation. Through examination of fitted parame-
ters from many mutants, we found that the preexponential fac-
tors and equilibrium constants (if fitted) were approximately
log-normal distributed, whereas the apparent valence terms
were in-between log-normal and normally distributed. There-
fore, all fitted parameters were log transformed for optimization
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by the solver, such that each parameter’s base-10 exponent was
optimized. Parameters were untransformed during function eval-
uations. Log transformation of parameters was critical for appro-
priate sampling and achieving robust convergence to the global
minimum solution.
Initial conditions.Because our objective function is nonlinear, initial
conditions must be of reasonable quality to ensure convergence to
the global minimum solution. TheWTdataset was globally fit (with
K1 and K2 variable) using an exhaustive grid search of different
initial parameter combinations to reliably obtain the WT param-
eter set θWT: (K1 = 1.09e-5, K2 = 32, a10 = 0.0398, b10 = 4.189e-4,
b20 = 1.295e-9, z1f = 2.4015, z1b = 1.7104, z2b = 3.4954), and
constrained parameters (a20 = 0.3609, z2f = 0.6165). For all mutant
fits, θWT was used as parameter initial conditions, and equilibrium
constants were held fixed at WT values. Each fit was repeated
from different initial conditions until convergence was reached.
The initial value for each parameter was randomly sampled ac-

cording to its known population distribution with mean given by
θWT. Thus, preexponential factors were randomly sampled from
a log-normal distribution, and apparent valences were sampled
from a normal distribution.
Convergence criterion. To ensure that the global minimum solution
was found, each fit was repeated from appropriately randomized
initial conditions until a convergence criterion was satisfied (n =
20 solutions must have fit error within 0.1% of the optimum fit
error). After convergence, the optimal fit was selected and used
for analysis. For the vast majority of mutants tested, ≥95% of
sampled fits converged to the optimal solution, thus demon-
strating the robustness of the implementation.
Error checking. All fit results were inspected to verify that any/all
constraints were satisfied. During function evaluations, precision
limits were placed on α and β rate evaluations, Eqs. S1–S5, to avoid
any numerical precision problems (i.e., divide by zero): rate values
were bound to the range [1e-30, 1e30].

1. Beale EML (1960) Confidence regions in non-linear estimation. J R Stat Soc B 22(1):
41–88.

2. Seber GAF, Wild CJ (1989) Nonlinear Regression (Wiley, New York).
3. Hyde HC, et al. (2012) Nano-positioning system for structural analysis of functional

homomeric proteins in multiple conformations. Structure 20(10):1629–1640.

4. Dalmas O, Hyde HC, Hulse RE, Perozo E (2012) Symmetry-constrained analysis of pulsed
double electron-electron resonance (DEER) spectroscopy reveals the dynamic nature of
the KcsA activation gate. J Am Chem Soc 134(39):16360–16369.
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Fig. S1. Conservation of gating pore function in different voltage sensor domain (VSD) conformations. The figure depicts structural models of the Kv1.2
channel VSD with explicit solvent and lipid molecules (from ref. 1) in hyperpolarized (“Down”; Left) and depolarized (“Up”; Right) states. The VSD helices are
colored as follows: S1, white; S2, yellow; S3, red; and S4, blue. The green surface represents the van der Waals surface of the 10 gating pore residues analyzed
in this study (V236, I237, S240, I241, F244, C286, I287, F290, A319, and I320 in Shaker numbering), and the water molecules are represented by red and white
spheres. Note that, in both states, the gating pore delineates a water exclusion zone (black dotted lines).

1. Khalili-Araghi F, et al. (2010) Calculation of the gating charge for the Kv1.2 voltage-activated potassium channel. Biophys J 98(10):2189–2198.
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Fig. S2. Additional relations between gating charge movement and hydrophobicity of substituted amino acids at position I237. (A–C) The mean V1/2 values
obtained from each Q–V curve of Fig. 3A are plotted as a function of the hydrophobicity of the substituted side chain at position I237, using three additional
hydrophobicity scales: (A) Hessa–Hejne, (B) Moon–Fleming, and (C) Wimley–White. The R2 values indicate the goodness of a linear fit to the data (red lines),
and letters indicate the substituted amino acid. The asterisk (*) indicates the native amino acid.
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Fig. S3. Confidence surfaces for globally fitted parameters fromWT Shaker. For a nonlinear model, the uncertainty in parameter estimation is most accurately
given by rigorous calculation of the exact confidence surface, as shown here for WT Shaker. Briefly, the method is to fit the model with one parameter in-
crementally perturbed (fixed) away from its optimal value until the fit error exceeds the desired statistical threshold. The procedure is then repeated in the
opposite direction. The dotted lines represent the 1σ (68%) and 2σ (95%) confidence levels. Equilibrium constants K1 and K2 are displayed as vertical lines at
their fixed values. This figure demonstrates that all parameters of our 2 × 2-state kinetic model are well determined when K1 and K2 are fixed (or even
moderately constrained, not shown here).
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Fig. S4. Gating pore mutations leading to poor global fits. The figure shows the individual (dotted lines) and global (solid lines) fits and data points for the
gating functions (Q–V, black; activation τ–V, blue; and deactivation τ–V, red) of the I241D, I320Y, F244N, and S240F mutants, which produce poor global fits
(QF > 6.5; see parentheses). The I241D mutation leads to poor global fits of the three gating functions (Q–V and τ–V curves). The global fit for the mutant I320Y
and S240F led to a poor fit of the Q–V curve and deactivation τ–V curve, respectively. The poor QF value obtained for the F244N mutant is mainly due to the
exceptionally good individual fits of its gating functions.
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Slowest Deactivation 
vs. Q-V Voltage Midpoint A B

Fig. S7. The side chain of gating pore residues modulates gating kinetics and the Q–V voltage midpoint over a large dynamic range. (A) Relation between
slowest activation time constant and Q–V voltage midpoint. (B) Relation between slowest deactivation time constant and Q–V voltage midpoint. All gating
pore mutants fit by the 2 × 2-state kinetic model are displayed (except 286V, which overlaps WT). The observable gating parameters shown are high-resolution
values derived from the model fit of individual functions. Note that the goodness of fit for individual functions was excellent for all mutants shown here.
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