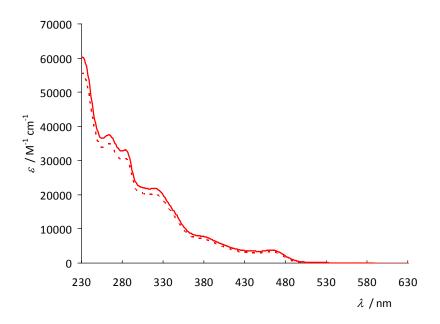
SUPPORTING INFORMATION

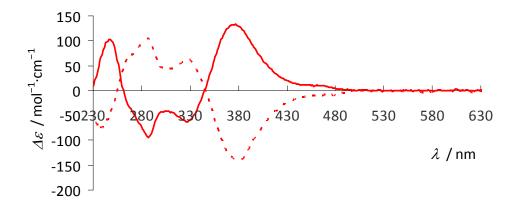
Straightforward access to mono- and bis-cycloplatinated helicenes that display circularly polarized phosphorescence using crystallization resolution methods

Chengshuo Shen, ^a Emmanuel Anger, ^a Monika Srebro, ^b Nicolas Vanthuyne, ^c Kirandeep K. Deol, ^d Truman D. Jefferson Jr., ^d Gilles Muller, ^d J. A. Gareth Williams, ^e Loïc Toupet, ^a Christian Roussel, ^c Jochen Autschbach, ^f Régis Réau, ^a and Jeanne Crassous ^a

General


All experiments were performed under an atmosphere of dry argon using standard Schlenk techniques. Commercially available reagents were used as received without further purification. Solvents were freshly distilled under argon from sodium/benzophenone (tetrahydrofuran, diethyl ether) or from phosphorus pentoxide (pentane, dichloromethane). Preparative separations were performed by gravity column chromatography on basic alumina (Aldrich, Type 5016A, 150 mesh, 58 Å) or silica gel (Merck Geduran 60, 0.063-0.200 mm) in 3.5-20 cm columns. ¹H, ¹³C, and ³¹P NMR spectra were recorded on Bruker Ascend 400. The ¹H NMR spectra show characteristic platinum satellites (195 Pt, I = $\frac{1}{2}$, 33.8 % natural abundance), $^{3}J_{Pt-H}$ constants are observed. 195 Pt, 1 H and ¹³C NMR chemical shifts were reported in parts per million (ppm) relative to Na₂PtCl₄ or Me₄Si as respective external standard. Assignment of proton atoms is based on COSY experiment. Assignment of carbon atoms is based on HMBC, HMQC and DEPT-135 experiments. Elemental analyses were performed by the CRMPO, University of Rennes 1. CD Specific rotations (in deg cm² g⁻¹) were measured in a 1 dm thermostated quartz cell on a Jasco-P1010 polarimeter. Circular dichroism (in M⁻¹ cm⁻¹) was measured on a Jasco J-815 Circular Dichroism Spectrometer (IFR140 facility - Université de Rennes 1). 2-(4'-Methoxy[6]helicen-1'-yl)pyridine (±)-1a, 1 1,8-bis-(2-pyridyl)-naphthalene 1b. and R-bis(methyl-(p-tolyl)sulfoxide-S)platinum(II)-bis-chloride ³ were prepared according to previously described procedure.

Diastereomeric complexes $(M,R_S)-2a^1$ and $(P,R_S)-2a^2$. mixture of (527 2-(4'-methoxy[6]helicen-1'-yl)pyridine (±)-1a 1.21 mg mmol), R-bis(methyl-(p-tolyl)sulfoxide-S)platinum(II) chloride (1040 mg 1.81 mmol) and Na₂CO₃ (194 mg 1.83 mmol) in 10 mL toluene was refluxed under argon overnight, and concentrated in vacuum. Diastereomeric separation over a column chromatography (silica gel, heptane/ethyl acetate 3:1) was then carefully conducted (very long column > 50 cm with a diameter $\Phi = 5$ cm). The first eluted compound (RF=0.65) afforded pure diastereomer (P,R_S) -2a² (330 mg, 33%) as a yellow powder, while the second eluted one (RF=0.62) afforded pure diastereomer (M,R_S) -2a¹ (166 mg, 18%) as orange crystals after recrystallization from the eluent mixture.


 (M,R_S) -2a¹ diastereomer. ¹H NMR (500 MHz, CDCl₃), δ 8.89 (ABMXsystem, ¹⁹⁵Pt satellites: ³ J_{Pt-H} = 34 Hz, 1H, H^6), 8.29 (d, J = 8.6 Hz, 1H, H^5), 8.11 (d, J = 8.4 Hz, 2H, H^{ortho}), 8.06 (dd, J = 8.0 Hz, J = 0.9 Hz, 1H, H^{13}), 7.99 (AB system, J = 8.2 Hz, 1H, H^8), 7.97 (AB system, J = 8.2 Hz, 1H, H^7), 7.86 (d, J = 8.6 Hz, 1H, H^6), 7.86 (d, J = 8.1 Hz, 1H, H^9), 7.70 (d, J = 8.5 Hz, 1H, H^{12}), 7.61 (d, J = 8.6 Hz, J8.1 Hz, 1H, H^{10}), 7.41 (ddd, J = 8.0 Hz, J = 6.9 Hz, J = 1.1 Hz, 1H, H^{14}), 7.33 (d, J = 8.5 Hz, 1H, H^{11}),7.31 (d, J = 8.4 Hz, 2H, H^{meta}),7.20 (d, J = 8.5 Hz, 1H, H^{16}), 7.17 (s, ¹⁹⁵Pt satellites: ³ $J_{\text{Pt-H}} = 52$ $Hz, 1H, H^3$), 6.71 (ddd, $J = 8.5 Hz, J = 6.9 Hz, J = 1.3 Hz, 1H, H^{15}$), 6.53 (ABMX system, 1H, $H^{5'}$), 6.51 (ABMX system, 1H, H^{4}), 5.53 (ABMX system, 1H, H^{3}), 3.90 (s, 3H, $-OCH_{3}$), 3.81 (s, 3H, $-SOCH_3$), 2.39 (s, 3H, ArC H_3). ¹³C { ¹H } NMR (100 MHz, CDCl₃), $\delta = 166.9$ (C^2), 155.8 (C^4), 147.7 $(C^{6'})$, 146.4 (C^{2}) , 143.3 (C^{para}) , 141.9 (C^{ipso}) , 136.1 $(C^{4'})$, 134.5 (C^{1}) , 132.3 (C^{12a}) , 132.2 (C^{8a}) , 131.7 (C^{6a}) , 131.3 (C^{10a}) , 129.9 (C^{meta}) , 128.7 (C^{16a}) , 128.5 (C^{13}) , 128.4 (C^{12}) , 128.1 (C^{16b}) , 127.5 (C^{8}) , 127.1 (C^{16e} and C^{16c}), 127.0 (C^{7}), 126.5 (C^{10}),126.1 (C^{9}), 125.97 (C^{ortho}), 126.0 (C^{14}),125.9 (C^{16}), $125.2 (C^{11}), 125.0 (C^{15}), 124.1 (C^{6}), 123.3 (C^{16d}), 122.7 (C^{4a}), 121.6 (C^{5}), 118.1 (C^{5'}), 118.0 (C^{3'}),$ 112.2 (C^3), 56.1 ($-OCH_3$), 49.3 ($-SOCH_3$), 21.5 (ArCH₃). [α]₀²³ = -2435, [ϕ]₀²³ = -19920 (CH₂Cl₂, 10⁻⁴ mol·L⁻¹). Elemental analysis, calcd. (%) for C₄₀H₃₀ClNO₂PtS: C 58.64, H 3.69; found: C 58.50, H 3.73.

(*P*,*R*_S)-2a² diastereomer. ¹H NMR (500 MHz, CDCl₃), δ 8.90 (ddd, J = 5.8 Hz, J = 1.8 Hz, J = 0.6 Hz, ¹⁹⁵Pt satellites: ³ $J_{\text{Pt-H}}$ = 34 Hz, 1H, H^6 '), 8.32 (d, J = 8.6 Hz, 1H, H^5), 8.21 (d, J = 8.5 Hz, 2H, H^{ortho}), 7.97 (ΔB system, J = 8.2 Hz, 1H, H^8), 7.96 (ΔB system, J = 8.2 Hz, 1H, H^7), 7.86 (d, J = 8.6 Hz, 1H, H^6), 7.84 (d, J = 8.2 Hz, 1H, H^9), 7.79 (s, ¹⁹⁵Pt satellites: ³ $J_{\text{Pt-H}}$ = 50 Hz, 1H, H^3), 7.65 (d, J = 7.9 Hz, 1H, H^{13}), 7.61 (d, J = 8.6 Hz, 1H, H^{12}), 7.58 (d, J = 8.5 Hz, 2H, H^{para}), 7.57 (d, J = 8.2 Hz, 1H, H^{10}), 7.29 (d, J = 8.6 Hz, 1H, H^{11}), 7.07 (d, J = 8.5 Hz, 1H, H^{16}), 6.56 (ddd, J = 7.2 Hz, J = 5.8 Hz, J = 1.6 Hz, 1H, H^5 '), 6.51 (ddd, J = 8.1 Hz, J = 7.2 Hz, J = 1.8 Hz, 1H, H^4 '), 6.32 (ddd, J = 8.5 Hz, J =

6.9 Hz, J = 1.3 Hz, 1H, H^{15}), 6.10 (ddd, J = 7.9 Hz, J = 6.9 Hz, J = 1.1 Hz, 1H, H^{14}), 5.55 (ddd, J = 8.1 Hz, J = 1.6 Hz, J = 0.6 Hz, 1H, $H^{3'}$), 4.06 (s, 3H, $-\text{OC}H_3$), 3.71 (s, 3H, $-\text{SOC}H_3$), 2.58 (s, 3H, ArC H_3). ¹³C { ¹H } NMR (100 MHz, CDCl₃), $\delta = 167.1$ (C^2), 155.9 (C^4), 147.7 (C^6), 144.6 (C^2), 143.3 (C^{para}), 141.3 (C^{ipso}), 135.8 (C^4), 134.6 (C^1), 132.1 (C^{8a}), 131.9 (C^{12a}), 131.8 (C^{6a}), 131.2 (C^{10a}), 129.9 (C^{meta}), 128.5 (C^{16a}), 128.1 (C^{12}), 128.0 (C^{13} and C^{16b}), 127.6 (C^{16e}), 127.4 (C^8), 127.1 (C^{16c}), 127.0 (C^7), 126.4 (C^{ortho}), 126.4 (C^{10}), 126.1 (C^9), 125.5 (C^{16}), 125.3 (C^{14}), 125.1 (C^{11}), 124.2 (C^6 and C^{15}), 123.4 (C^{16d}), 122.9 (C^{4a}), 121.7 (C^5),118.1 (C^5), 118.1 (C^5), 118.1 (C^3), 111.4 (C^3), 56.3 (C^{OCH_3}), 49.8 (C^{SOCH_3}), 21.7 (Ar C^{H_3}). [C^{12a}] = +2350, [C^{12a}] [C^{12a}] = +19210 (CH₂Cl₂, 10⁻⁴ mol·L⁻¹). Elemental analysis, calcd. (%) for C₄₀H₃₀ClNO₂PtS: C 58.64, H 3.69; found: C 58.60, H 3.71.

Figure S1. UV-vis spectra of (P,R_S) -2a¹ (red plain lines) and (M,R_S) -2a² (red dashed lines) diastereomers $(CH_2Cl_2, 10^{-5} \text{ mol L}^{-1})$

Figure S2. ECD spectra of (P,R_S) -2a¹ (red plain lines) and (M,R_S) -2a² (red dashed lines) diastereomers $(CH_2Cl_2, 10^{-5} \text{ mol L}^{-1})$

Enantiomeric complexes P-3a and M-3a. A mixture of platinum(II) complex (P,R_S) -2a² (74.2 mg, 0.1 mmol), sodium 2,4-pentanedionate (12.8 mg 0.105 mmol) in 10 mL toluene was refluxed for 18 hours under argon. The cooled reaction mixture was concentrated in vacuum and was purified by column chromatography (silica, chloroform) to afford the product (68.3 mg, 95%) as a yellow solid. $[\alpha]_D^{23} = +3091$, $[\phi]_D^{23} = +22500 \ (\pm 5\%) \ (CH_2Cl_2, \ 10^{-4} \ mol \cdot L^{-1})$. The same procedure applied to (M,R_S) -2a¹ afforded M-3a. $[\alpha]_0^{23} = -3111$, $[\phi]_0^{23} = -22650 (\pm 5\%) (CH_2Cl_2, 10^{-4} \text{ mol·L}^{-1})$. ¹H NMR (400 Hz, CDCl₃), δ 8.38 (d, J = 8.5 Hz, 1H, H⁵), 8.23 (ddd, J = 5.8 Hz, J = 1.7 Hz, J = 0.6 Hz, ¹⁹⁵Pt satellites: ${}^{3}J_{\text{Pt-H}} = 35 \text{ Hz}$, 1H, H^{6}), 8.00 (AB system, J = 8.3 Hz, 1H, H^{7}), 7.99 (AB system, J = 8.3 Hz, $1H, H^8$), 7.92 (d, $J = 8.2 Hz, 1H, H^9$), 7.84 (d, $J = 8.5 Hz, 1H, H^6$), 7.74 (d, $J = 8.0 Hz, 1H, H^{13}$), 7.65 $(d, J = 8.2 \text{ Hz}, 1H, H^{10}), 7.48 (d, J = 8.5 \text{ Hz}, 1H, H^{12}), 7.31 (d, J = 8.5 \text{ Hz}, 1H, H^{11}), 7.21 (d, J = 8.5 \text{ Hz}, 1H, H^{11})$ Hz, 1H, H^{16}) 7.16 (ddd, J = 8.0 Hz, J = 6.9 Hz, J = 1.1 Hz, 1H, H^{14}), 6.91 (s, ¹⁹⁵Pt satellites: ³ $J_{Pt-H} =$ 46 Hz,1H, H^3), 6.61 (ddd, J = 8.5 Hz, J = 6.9 Hz, J = 1.3 Hz, 1H, H^{15}), 6.51 (ddd, J = 8.3 Hz, J = 7.3Hz, J = 1.7 Hz, 1H, $H^{4'}$), 6.42 (ddd, J = 7.3 Hz, J = 5.8 Hz, J = 1.5 Hz, 1H, $H^{5'}$), 5.49 (ddd, J = 8.3 Hz, $J = 1.5 \text{ Hz}, J = 0.6 \text{ Hz}, 1\text{H}, H^{3'}), 5.42 \text{ (s, 1H, } -\text{C}H^{\text{Acac}}), 4.12 \text{ (s, 3H, } -\text{OC}H_{3}), 2.00 \text{ (s, 3H, } -\text{C}H_{3}^{\text{Acac}}),$ 1.98 (s, 3H, $-CH_3^{Acac}$). ¹³C{¹H} NMR (100 MHz, CDCl₃), δ 185.5 (C=O), 183.8 (C=O), 168.2 (C^2), $155.0 (C^4)$, $145.3 (C^{6'})$, $144.6 (C^2)$, $134.35 (C^{4'})$, $134.3 (C^1)$, $132.2 (C^{6a})$, $131.9 (C^{12a})$, $131.8 (C^{8a})$, $131.2 (C^{10a}), 128.7 (C^{16a}), 128.2 (C^{16b}), 127.9 (C^{12}), 127.6 (C^{13}), 127.2 (C^{16e}), 127.2 (C^{16c}), 127.2 (C^{8}), 127.2 (C^{10a}), 128.2 (C^{10a}), 128.2 (C^{10a}), 128.2 (C^{10a}), 128.2 (C^{10a}), 128.2 (C^{10a}), 128.2 (C^{10a}), 127.2 (C^{10a}), 127.2 (C^{10a}), 128.2 (C$ $126.9 (C^7)$, $126.3 (C^9)$, $126.2 (C^{10})$, $125.7 (C^{14})$, $125.5 (C^{16})$, $124.5 (C^{15})$, $122.9 (C^6)$, $122.8 (C^{16d})$, $122.6 (C^{4a}), 122.2 (C^{5}), 118.0 (C^{3'}), 117.8 (C^{5'}), 107.7 (C^{3}), 102.2 (-CH^{Acac}), 56.1 (-OCH_3), 28.3$ (-CH₃^{Acac}), 27.4 (-CH₃^{Acac}). Elemental analysis, calcd. (%) for C₃₇H₂₇NO₃Pt: C 60.99, H 3.73; found: C 60.93, H 3.76.

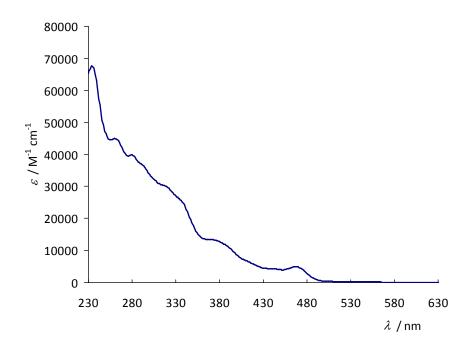
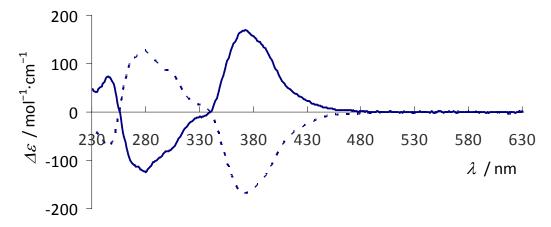
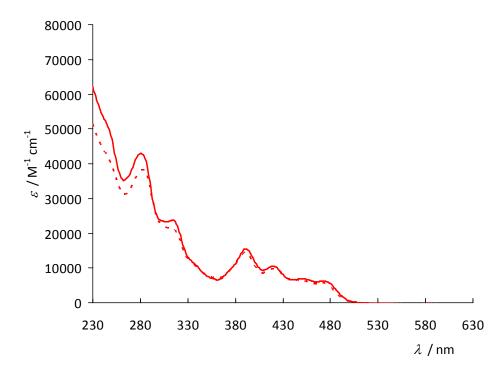



Figure S3. UV-vis spectrum of 3a (CH_2Cl_2 , 10^{-5} mol L^{-1})

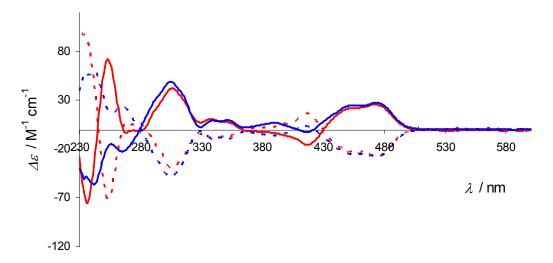
Figure S4. ECD spectra of P-3a (blue plain lines) and M-3a (blue dashed lines) (CH₂Cl₂, 10^{-5} mol L^{-1})

(1,8-di(pyriden-2-yl)naphthalenato- $(N^{1'},C^2)$, $(N^{1''},C^7)$)bis((methyl-(p-tolyl)sulfoxide-S)platinu m(II)chloride) 2b^{1,2}

A suspension of 1,8-di(pyriden-2-yl)naphthalene² (85 0.30 mg, mmol), (R_S,R_S)-bis(methyl-(p-tolyl)sulfoxide-S)platinum(II) chloride (370 mg, 0.64 mmol) and Na₂CO₃ (100 mg, 0.94 mmol) in 10 mL toluene was refluxed under argon overnight, and concentrated in vacuo. Column chromatography (silica gel, V_{heptane} : V_{ethyl} acetate = 1:1) afforded a first eluted fraction (pure (M,R_S,R_S) -2b¹, 25 mg, 8%) as a yellow powder, a second eluted fraction $((M,R_S,R_S)$ -2b¹ and (P,R_S,R_S) -2b¹ 11:9, 82 mg, 26%) and a third eluted fraction $((M,R_S,R_S)$ -2b¹ and (P,R_S,R_S) -2b¹, 1:3, 65 mg, 21%). The third eluted fraction was dissolved in a minimum solvent of CHCl₃ and precipitated with heptane/CHCl₃ (3:1) to afford (P,R_S,R_S) -2b¹ (48 mg, 15%) as a yellow powder. The complex mixture could be recycled and resolved again, yielding finally 50 mg (33% yield for resolution step, 16% global yield) of $(M,R_S,R_S)-2b^1$, $[\alpha]_D^{23} = -1123$, $[\phi]_D^{23} = -11790$ (CH₂Cl₂, 10^{-4} mol·L⁻¹). Elemental analysis, calcd. (%) for C₃₆H₃₂Cl₂N₂O₂Pt₂S₂: C 41.19, H 3.07; found : C 40.82, H 3.23.


The same procedure starting from (R_S,R_S) -bis(methyl-(p-tolyl)sulfoxide-S)platinum(II) chloride afforded (P,S_S,S_S) -**2b**¹, $[\alpha]_D^{23} = +1133$, $[\phi]_D^{23} = +11890$ (CH₂Cl₂, 10^{-4} mol·L⁻¹).

 $(P,S_{\rm S},S_{\rm S})$ -**2b**¹: ¹H NMR (400 MHz, CDCl₃), δ 9.63 (ddd, J = 6.0 Hz, J = 1.6 Hz, J = 0.6 Hz, ¹⁹⁵Pt satellites: ³ $J_{\rm Pt-H}$ = 30 Hz, 2H, H^6 and H^6 "), 8.24 (d, J = 8.4 Hz, 4H, $H^{\rm ortho}$), 7.70 (d, J = 8.4 Hz, 2H, H^3 and H^6), 7.57 (ddd, J = 8.3 Hz, J = 7.2 Hz, J = 1.6 Hz, 2H, H^3 and H^3 "), 7.51 (ddd, J = 8.3 Hz, J = 7.2 Hz, J = 1.6 Hz, 2H, H^4 and H^4 "), 7.43 (d, J = 8.4 Hz, 4H, $H^{\rm meta}$), 7.38 (d, J = 8.4 Hz, 2H, H^4 and H^5), 7.05 (ddd, J = 7.2 Hz, J = 6.0 Hz, J = 1.5 Hz, 2H, H^5 and H^5 "), 3.78 (s, 6H, -SOC H_3), 2.47 (s, 6H, ArC H_3). ¹³C {¹H } NMR (100 MHz, CDCl₃), δ = 166.8 (C^2 and C^2 "), 149.8 (C^6 and C^6 "), 148.9 (C^2 and C^7), 143.9 ($C^{\rm para}$), 140.6 ($C^{\rm ipso}$), 139.5 ($C^{\rm d}$ and $C^{\rm d}$), 137.2 ($C^{\rm l}$ and $C^{\rm s}$), 131.7 ($C^{\rm l}$ and $C^{\rm s}$), 130.9 ($C^{\rm d}$ and $C^{\rm s}$), 130.3 ($C^{\rm meta}$), 126.0 ($C^{\rm ortho}$), 125.6 ($C^{\rm sa}$), 123.3 ($C^{\rm l}$ and $C^{\rm l}$ "), 120.5 ($C^{\rm l}$ and $C^{\rm l}$ "), 49.8 ($C^{\rm log}$), 21.6 (ArCH₃).


A suspension of 1,8-di(pyriden-2-yl)naphthalene **1b** (85 mg 0.30 mmol), (S_S,S_S) -bis(methyl-(p-tolyl)sulfoxide-S)platinum(II) chloride (413 mg, 0.72 mmol) and Na₂CO₃ (254 mg, 2.4 mmol) in 10 mL toluene was refluxed under argon overnight, and concentrated in vacuo. Short column chromatography (silica gel, ethyl acetate) afforded the complex (154 mg, 49%, 1:1.5 mixture of (P,S_S,S_S) -**2b**¹ and (M,S_S,S_S) -**2b**²). The product was precipitated in heptane/CHCl₃ (3:1) to afford (M,S_S,S_S) -**2b**² (55 mg, 17% global yield) as a yellow powder. $[\alpha]_D^{23} = -863$, $[\phi]_D^{23} = -9060$ (CH₂Cl₂, 10^{-4} mol·L⁻¹). Elemental analysis, calcd. (%) for C₃₆H₃₂Cl₂N₂O₂Pt₂S₂: C 41.19, H 3.07; found : C 40.90, H 3.23.

The same procedure starting from (R_S, R_S) -bis(methyl-(p-tolyl)sulfoxide-S)platinum(II) chloride afforded (P, R_S, R_S) - $2\mathbf{b}^2$. $[\alpha]_D^{23} = +916$, $[\phi]_D^{23} = +9615$ (CH₂Cl₂, 10^{-4} mol·L⁻¹).

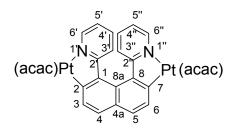
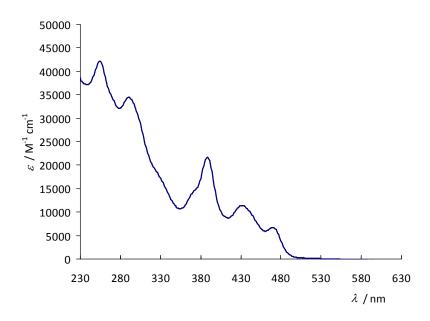
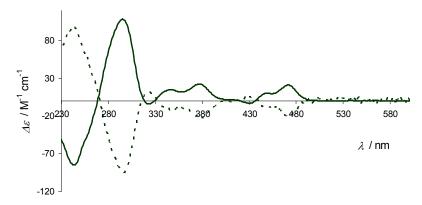

 $(P,R_{\rm S},R_{\rm S})$ -**2b**²: ¹H NMR (400 MHz, CDCl₃), δ 9.58 (dd, J = 5.9 Hz, J = 1.6 Hz, ¹⁹⁵Pt satellites: ³ $J_{\rm Pt-H}$ = 30 Hz, 2H, H^6 and H^6 "), 8.17 (d, J = 8.5 Hz, 2H, H^3 and H^6), 8.06 (d, J = 8.4 Hz, 4H, $H^{\rm ortho}$), 7.47 (ddd, J = 8.1 Hz, J = 7.4 Hz, J = 1.6 Hz, 2H, H^4 and H^4 "), 7.38 (d, J = 8.5 Hz, 2H, H^4 and H^5), 7.32 (d, J = 8.1 Hz, 2H, H^3 " and H^3 "), 7.29 (d, J = 8.4 Hz, 4H, $H^{\rm meta}$), 7.03 (ddd, J = 7.4 Hz, J = 5.9 Hz, J = 1.3 Hz, 2H, H^5 " and H^5 "), 3.77 (s, 6H, $-{\rm SOC}H_3$), 2.36 (s, 6H, ${\rm ArC}H_3$). ¹³C {¹H } NMR (100 MHz, CDCl₃), δ = 166.8 (C^2 " and C^2 "), 149.9 (C^6 " and C^6 "), 148.0 (C^2 and C^7), 143.6 ($C^{\rm para}$), 140.6 ($C^{\rm ipso}$), 139.3 (C^4 " and C^4 "), 136.9 (C^1 and C^8), 131.6 (C^4), 130.8 (C^4 and C^5), 130.7 (C^3 and C^6), 130.1 ($C^{\rm meta}$), 125.8 ($C^{\rm 8a}$), 125.6 ($C^{\rm ortho}$),123.4 (C^3 " and C^3 "), 120.5 (C^5 " and C^5 "), 49.4 ($-{\rm SOCH_3}$), 21.5 ($ArCH_3$).

Figure S5. UV-vis spectra of (M,R_S,R_S) -2b¹ (red plain lines) and (P,R_S,R_S) -2b² (red dashed lines) diastereomers $(CH_2Cl_2, 10^{-5} \text{ mol L}^{-1})$.


Figure S6. ECD spectra of (P,S_S,S_S) -**2b**¹ (blue plain lines) and (M,R_S,R_S) -**2b**¹ (blue dashed lines), (P,R_S,R_S) -**2b**² (red plain lines) and (M,S_S,S_S) -**2b**² (red dashed lines) diastereomers (CH₂Cl₂, 10⁻⁵ mol L⁻¹).

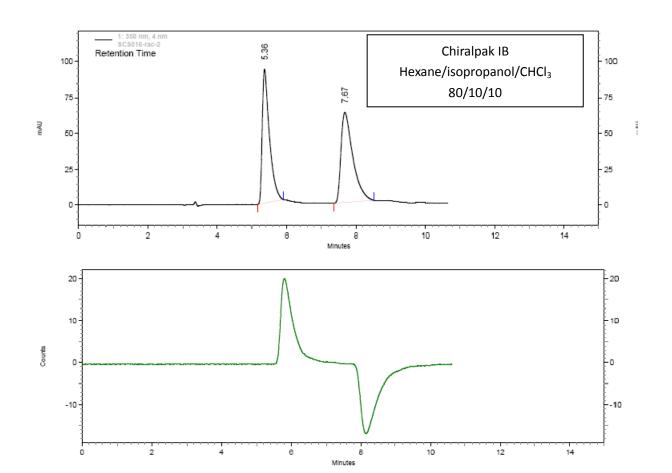

A mixture of (P,R_S,R_S) - $2\mathbf{b}^2$ (21 mg) and sodium 2,4-pentanedionate (5.9 mg) in 3 mL toluene was refluxed for 2 hours under argon. The cooled reaction mixture was concentrated in vacuo and was purified by column chromatography (silica gel, CH_2Cl_2) to afford P- $3\mathbf{b}$ (13 mg, 75%) as a yellow solid.

A mixture of (M,S_S,S_S) - $2b^2$ (22 mg) and sodium 2,4-pentanedionate (5.9 mg) in 3 mL toluene was refluxed for 2 hours under argon. The cooled reaction mixture was concentrated in vacuum and was purified by column chromatography (silica gel, CH_2Cl_2) to afford P-3b (13 mg, 71%) as a yellow solid.

¹H NMR (400 MHz, CDCl₃), δ 8.92 (ddd, J = 5.8 Hz, J = 1.6 Hz, J = 0.6 Hz, ¹⁹⁵Pt satellites: ³ $J_{\text{Pt-H}}$ = 34 Hz, 2H, H^6 and H^6 "), 7.73 (d, J = 8.1 Hz, 2H, H^3 and H^6), 7.64 (d, J = 8.1 Hz, 2H, H^4 and H^5), 7.32 (ddd, J = 8.3 Hz, J = 7.3 Hz, J = 1.6 Hz, 2H, H^4 and H^4 "), 7.18 (ddd, J = 8.3 Hz, J = 1.2 Hz, J = 0.6 Hz, 2H, H^3 " and H^3 "), 6.90 (ddd, J = 7.3 Hz, J = 5.8 Hz, J = 1.2 Hz, 2H, H^5 " and H^5 "), 5.53 (s, 2H, $-CH^{\text{Acac}}$), 2.06 (s, 6H, $-CH_3^{\text{Acac}}$), 2.05 (s, 6H, $-CH_3^{\text{Acac}}$). ¹³C{¹H } NMR (100 MHz, CDCl₃), δ 186.1 (C=O), 184.8 (C=O), 168.8 (C^2 ′ and C^2 ″), 147.2 (C^6 ′ and C^6 ″), 146.3 (C^2 and C^7), 136.9 (C^4 ′ and C^4 ″), 135.8 (C^1 and C^8), 131.5 (C^{Aa}), 130.3 (C^4 and C^5), 127.1 (C^3 and C^6), 126.1 (C^{8a}), 123.3 (C^3 ′ and C^3 ″), 119.7 (C^5 ′ and C^5 ″), 102.8 ($-CH^{\text{Acac}}$), 28.4 ($-CH_3^{\text{Acac}}$), 27.4 ($-CH_3^{\text{Acac}}$). Elemental analysis, calcd. (%) for $C_{30}H_{26}N_2O_4Pt_2$: C 41.48, H 3.02; found : C 41.49, H 3.03.

Figure S7. UV-vis spectrum of **3b** (CH₂Cl₂, 10^{-5} mol L⁻¹)

Figure S8. ECD spectra of P-**3b** (black plain lines) and M-**3b** (black dashed lines) (CH₂Cl₂, 10^{-5} mol L⁻¹)


10

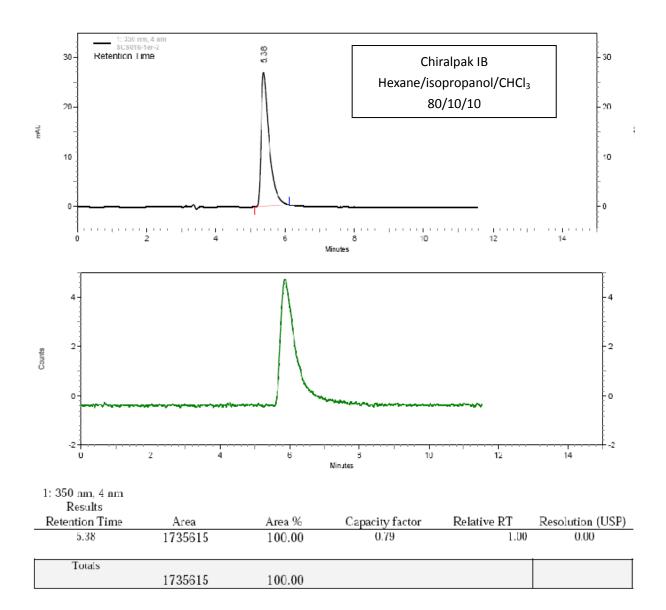
HPLC separations and analyses

Analytical chiral HPLC separation for compound 1a

• The sample is dissolved in hexane/isopropanol/chloroform (4/1/5), injected on the chiral columns, and detected with an UV detector at 350 nm with a CD at 254 nm. The flow-rate is 1 mL/min.

Column	Mobile Phase	t1	k1	t2	k2	α	Rs
Chiralpak IA	Hexane/Isopropanol 80/20	4.71 (-)	0.57	5.63 (+)	0.88	1.53	2.37
	Hexane/Ethanol 80/20	4.91 (-)	0.64	5.98 (+)	0.99	1.56	2.90
Chiralpak IB	Hexane/Isopropanol 80/20	6.74 (-)	1.25	11.22 (+)	2.74	2.20	4.56
	Hexane/Ethanol 80/20	5.21 (-)	0.74	6.62 (+)	1.21	1.64	3.16
Chiralpak IC	Hexane/Isopropanol 80/20	11.71 (+)	2.90	13.88 (-)	3.63	1.25	1.47
	Hexane/Ethanol 80/20	7.53 (+)	1.51	7.87 (-)	1.62	1.07	0.48
	Hexane/Isopropanol/Chloroform 80/5/15	4.49 (+)	0.50	7.09 (-)	1.36	2.75	2.91
Chiralpak IB	Hexane/Isopropanol/Chloroform 70/10/20	3.88 (+)	0.29	4.95 (-)	0.65	2.22	1.85
	Hexane/Isopropanol/Chloroform 80/10/10	5.36 (+)	0.79	7.67 (-)	1.56	1.98	4.61

1: 350 nm, 4 nm


Results					
Retention Time	Area	Area %	Capacity factor	Relative RT	Resolution (USP)
5.36	5481081	47.52	0.79	1.00	0.00
7.67	6052572	52.48	1.56	1.98	4.61

Totals	
11533653	100.00

Semi-preparative separation for compound 1a:

- Sample preparation: About 148 mg of compound **1a** are dissolved in 40 mL of a mixture hexane/isopropanol/chloroform (40/10/50).
- Chromatographic conditions: Chiralpak IB (250 x 10 mm), thermostated at 30° C, hexane/isopropanol/chloroform (80/10/10) as mobile phase, flow-rate = 5 ml/min, UV detection at 350 nm.
- Injection: 40 times 1 mL, every 11 minutes.
- Collection: the first eluted enantiomer is collected between 5 and 7 minutes and the second one between 7 and 9 minutes.
- First fraction: 56 mg of the first eluted ((+)-enantiomer, CD 254 nm) $[\alpha]_D^{23} = +1827 (\pm 7\%), [\phi]_D^{23} = +8290 (CH_2Cl_2, 2 \cdot 10^{-5} \text{ mol·L}^{-1}).$
- Second fraction: 81 mg of the second eluted ((-)-enantiomer, CD 254 nm) $[\alpha]_D^{23} = -2093 \ (\pm 7\%),$ $[\phi]_D^{23} = -9500 \ (\text{CH}_2\text{Cl}_2, 8.910^{-5} \ \text{mol}\cdot\text{L}^{-1}).$
- Chromatograms of the collected enantiomers:

- The first eluted ((+)-enantiomer, CD 254 nm)

- The second eluted ((-)-enantiomer, CD 254 nm)

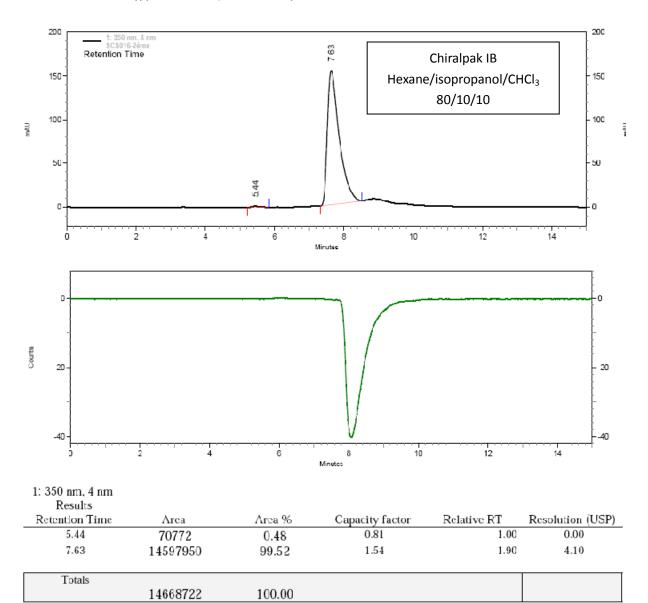


Figure S9. 1 H NMR (500 MHz) in CDCl₃ of diastereomer (P,R_S)-2a²

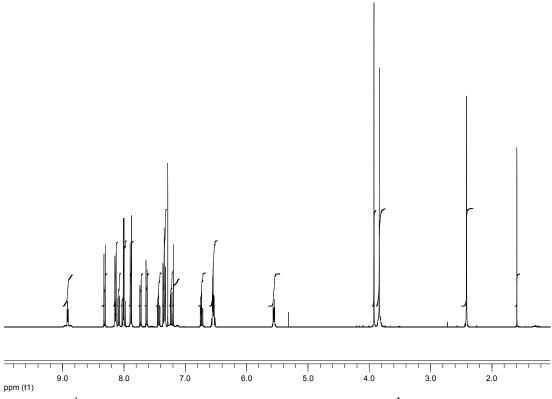


Figure S10. 1 H NMR (500 MHz) in CDCl₃ of diastereomer (M,R_S)-2a¹

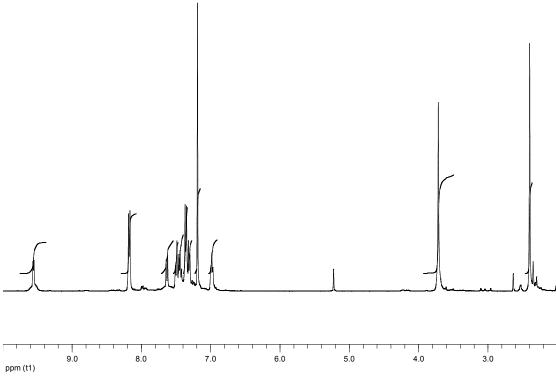


Figure S11. 1 H NMR (400 MHz) in CDCl₃ of diastereomer (P,S_S,S_S)-2 \mathbf{b} ¹

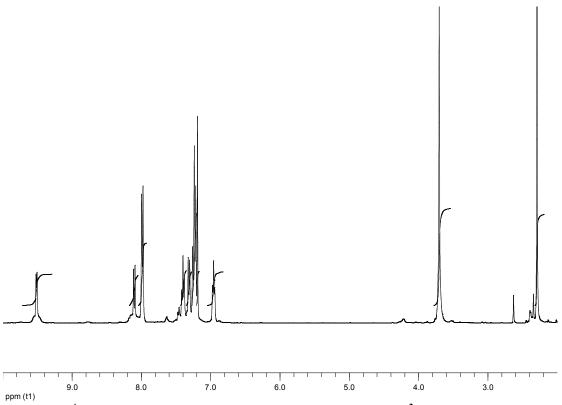
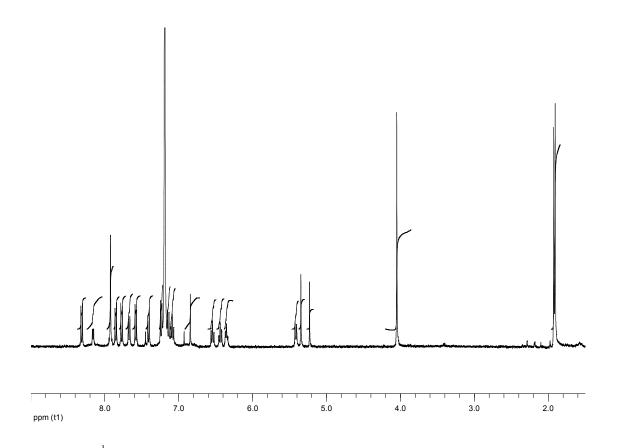
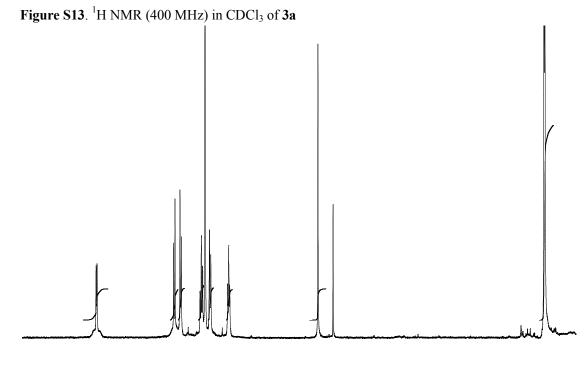




Figure S12. 1 H NMR (400 MHz) in CDCl₃ of diastereomer ($P_{1}R_{S},R_{S}$)-2 \mathbf{b}^{2}

6.0

5.0

4.0

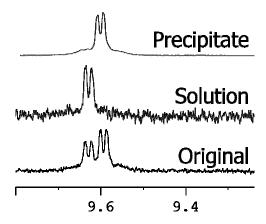

3.0

Figure S14. ¹H NMR (400 MHz) in CDCl₃ of **3b**.

ppm (t1)

7.0

2.0

Figure S15. Composition of the crude 1:1.5 mixture of (M, R_S, R_S) -2b¹ / (P, R_S, R_S) -2b² diastereomers after double cycloplatination.

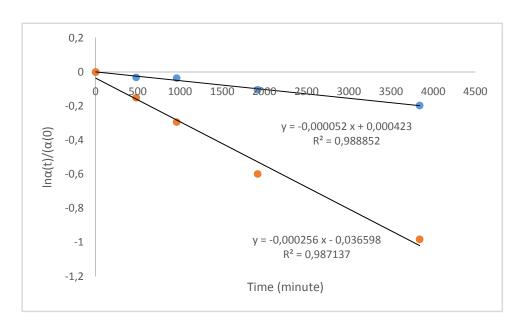

Epimerization study of $(P,S_S,S_S)-2b^2$

Figure S16. Evolution of ¹H NMR spectrum in CD_2Cl_2 of diastereomers (P,S_S,S_S) -2b¹ and (M,S_S,S_S) -2b² upon heating.

Racemization study of P-3b

P-**3b** (5.9 mg) was dissolved in 10.0 mL of xylene and refluxed at 100 °C and 120 °C. 1.0 mL solution was taken after 8, 16, 32 and 64 hours and experimental optical rotation (OR) was measured. The decrease of the initial OR value with time is reported below.

Racemization at 100 °C

$K_{racemization} =$	4.3E-07 s ⁻¹
----------------------	-------------------------

$$\Delta G_{\text{racemization}} = 138 \text{ kJ.mol}^{-1}$$

32.9 kcal.mol⁻¹

half-life time = 1.61E+06 s

268E+04 min 448 hours

Racemization at 120 °C

 $k_{racemization} = 2.1E-06 s^{-1}$

 $\Delta G_{\text{racemization}} = 140 \text{ kJ.mol}^{-1}$

33.5 kcal.mol⁻¹

half-life time= 3.3E+05 s

5.5E+03 min

92 hours

X-ray diffraction data

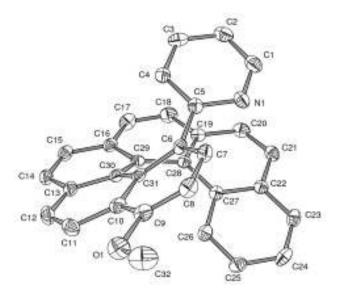


Figure S17. ORTEP diagram of ligand 1a with ellipsoids at 50% probability.

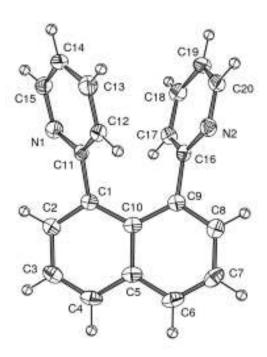
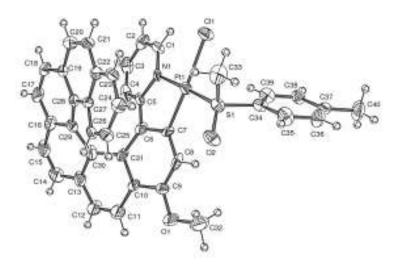
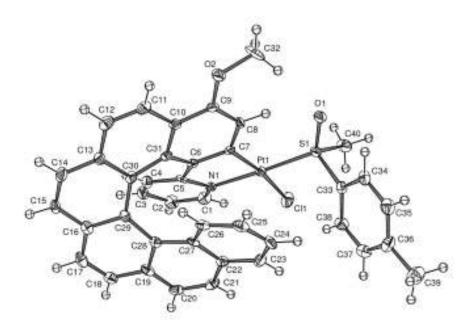




Figure S18. ORTEP diagram of ligand 1b with ellipsoids at 50% probability.

Figure S19. ORTEP diagram of complex (M,R_S) -2a¹ with ellipsoids at 50% probability.

Figure S20. ORTEP diagram of complex (P,R_S) -2a² with ellipsoids at 50% probability.

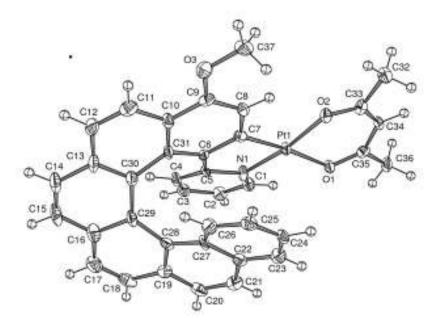
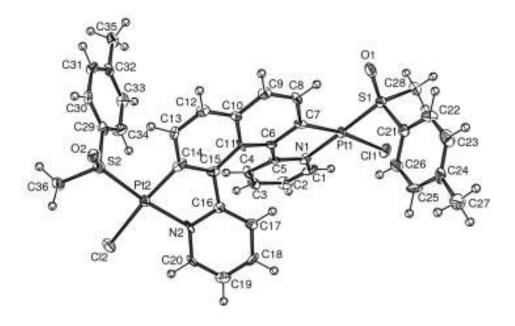
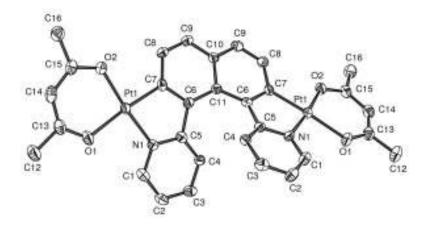




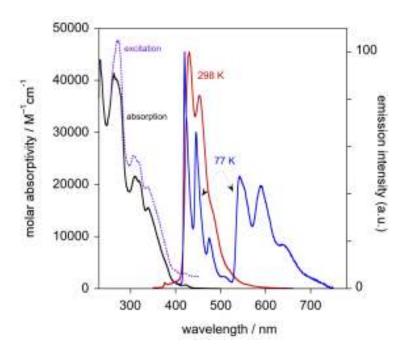
Figure S21. ORTEP diagram of complex 3a with ellipsoids at 50% probability.

Figure S22. ORTEP diagram of complex (P,R_S,R_S) -2b² with ellipsoids at 50% probability.

Figure S23. ORTEP diagram of complex **3b** with ellipsoids at 50% probability.

X-ray crystallographic data

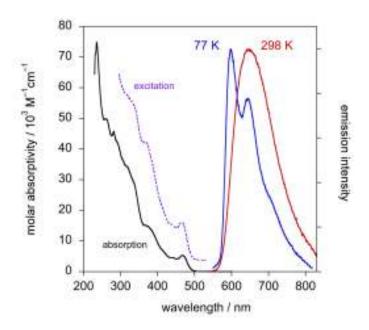
	3a	1a	$(P,R_{\rm S})$ -2a ²
Empirical formula	C ₇₄ H ₅₄ N ₂ O ₆ Pt ₂	C ₃₂ H ₂₁ NO	C ₄₁ H ₃₁ Cl ₄ NO ₂
CCDC	869338	821845	855139
Formula weight	1457.37	435.50	938.62
Temperature (K)	120(2)	120(2)	120(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Orthorhombic
Space group	P-1	$P2_1/a$	$P2_{1}2_{1}2_{1}$
$a(\mathring{A})$	7.55400(10)	8.5103(8)	13.2528(2)
$b(\mathring{A})$	17.9390(4)	30.003(2)	14.7365(2)
$c(\mathring{A})$	21.6527(6)	9.1190(8)	18.3823(3)
α (°)	66.669(2)	90	90
β $\stackrel{\smile}{(\circ)}$	87.131(2)	112.410(10)	90
γ (°)	86.992(2)	90	90
Volume (Å ³)	2689.18(10)	2152.6(3)	3590.06(9)
\mathbf{Z}	2	4	4
$\rho_{\text{Calculated}}(\text{g}\cdot\text{cm}^{-3})$	1.800	1.344	1.737
Absorption coefficient			
(mm^{-1})	5.260	0.081	4.303
F(000)	1432	912	1848
Crystal size (mm)	$0.208 \times 0.072 \times 0.065$	$0.24 \times 0.14 \times 0.12$	$0.24 \times 0.21 \times 0.18$
θ range for data			
collection (°)	3.79 to 27.00	2.68 to 26.99	2.61 to 27.00
Limiting indices	-9 ≤ <i>h</i> ≤ 9	-10 ≤ <i>h</i> ≤ 7	-16 ≤ <i>h</i> ≤ 16
Ç	-22 ≤ <i>k</i> ≤ 22	-38 ≤ <i>k</i> ≤ 38	-18 ≤ <i>k</i> ≤ 18
	-27 ≤ <i>l</i> ≤ 27	-11 ≤ <i>l</i> ≤ 11	-23 ≤ <i>l</i> ≤ 23
Reflections collected	38377	16034	50658
Reflections unique	$11638 (R_{\text{int}} = 0.0658)$	$4703 (R_{\text{int}} = 0.0871)$	$7834 (R_{\text{int}} = 0.0379)$
Completeness	$99.1\% (\theta = 27.00^{\circ})$	$99.9\% (\theta = 26.99^{\circ})$	$99.9\% (\theta = 27.00^{\circ})$
Absorption correction	Analytical	None	None
Max. transmission	0.76261		
Min. transmission	0.46734		
D. C	Full-matrix	Full-matrix	Full-matrix
Refinement method	least-squares on F^2	least-squares on F^2	least-squares on F^2
Data / restraints / parameters	11638 / 0 / 727	4703 / 0 / 308	7834 / 0 / 451
Goodeness-of-fit on F^2	1.139	0.714	1.098
Final R indices $(I > 2\sigma_I)$	$R_1 = 0.0524$	$R_1 = 0.0423$	$R_1 = 0.0270$
	$wR_2 = 0.1165$	$wR_2 = 0.0599$	$wR_2 = 0.0719$
R indices (all data)	$R_1 = 0.0819$	$R_1 = 0.1255$	$R_1 = 0.0310$
. ,	$wR_2 = 0.1222$	$wR_2 = 0.0715$	$wR_2 = 0.0729$
Absolute structure parameter			-0.017(6)
Extinction coefficient		0.0030(3)	,
Largest diff. peak (e·Å ³)	9.811	0.194	1.516
Largest diff. hole (e·Å ³)	-1.439	-0.185	-1.296


	$(M,R_{\rm S})$ -2a ¹	1b	$(P,R_{\rm S},R_{\rm S})$ -2 \mathbf{b}^2
Empirical formula	$C_{40}H_{30}CINO_2PtS$	$C_{20}H_{14}N_2$	$C_{37}H_{33}Cl_5N_2O_2Pt_2S_2$
CCDC	804094	827045	846305
Formula weight	819.25	282.33	1169.20
Temperature (K)	140(2)	140(2)	120(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Orthorhombic
Space group	$P2_1$	$P2_1$	$P2_{1}2_{1}2_{1}$
a (Å)	7.7976(2)	7.5661(2)	17.2805(2)
b (Å)	13.3596(4)	12.3042(3)	17.2812(2)
c (Å)	15.2470(4)	7.9592(3)	12.5128(2)
α (°)	90	90	90
β (°)	93.639(2)	105.511(3)	90
γ (°)	90	90	90
Volume (Å ³)	1585.12(8)	713.97(4)	3736.67(9)
Z	2	2	4
$ ho_{ ext{Calculated}}(ext{g}{\cdot} ext{cm}^{-3})$	1.716	1.313	2.078
Absorption coefficient	4.615	0.078	7.986
(mm^{-1})	4.013	0.078	7.900
F(000)	808	296	2232
Crystal size (mm)	$0.23 \times 0.19 \times 0.12$	$0.25 \times 0.22 \times 0.21$	$0.147 \times 0.061 \times 0.047$
θ range for data	2.62 to 26.99	2.79 to 26.99	2.64 to 26.99
collection (°)	2.02 10 20.99	2.79 10 20.99	2.04 10 20.33
Limiting indices	-9 ≤ <i>h</i> ≤ 9	-9 ≤ <i>h</i> ≤ 9	-18 ≤ <i>h</i> ≤ 22
	-17 ≤ <i>k</i> ≤ 17	-15 ≤ <i>k</i> ≤ 14	-22 ≤ <i>k</i> ≤ 22
	-19 ≤ <i>l</i> ≤ 19	-10 ≤ <i>l</i> ≤ 10	-15 ≤ <i>l</i> ≤ 14
Reflections collected	21943	5354	28455
Reflections unique	$6871 (R_{\text{int}} =$	$2967 (R_{int} =$	9115 (D = 0.0610)
Reflections unique	0.0913)	0.0176)	$8115 (R_{\rm int} = 0.0610)$
Completeness	$99.9\% (\theta = 26.99^{\circ})$	$99.7\% (\theta = 26.99^{\circ})$	$99.9\% (\theta = 26.99^{\circ})$
Absorption correction	Analytical	None	Analytical
Max. transmission	0.65230		0.73384
Min. transmission	0.45772		0.52497
Daffin amount mostly a d	Full-matrix	Full-matrix	Full-matrix
Refinement method	least-squares on F^2	least-squares on F^2	least-squares on F^2
Data / restraints	6871 / 1 / 415	2067/1/200	8115 / 0 / 445
/ parameters	08/1/1/413	2967 / 1 / 200	8113 / 0 / 443
Goodeness-of-fit on F^2	0.927	1.001	0.796
Final R indices $(I > 2\sigma_I)$	$R_1 = 0.0418$	$R_1 = 0.0319$	$R_1 = 0.0312$
,	$wR_2 = 0.0790$	$wR_2 = 0.0677$	$wR_2 = 0.0397$
R indices (all data)	$R_1 = 0.0641$	$R_1 = 0.0398$	$R_1 = 0.0509$
,	$wR_2 = 0.0826$	$wR_2 = 0.0695$	$wR_2 = 0.0415$
Absolute structure parameter	-0.017(8)	-3(2)	-0.018(5)
Extinction coefficient		0.042(3)	· /
Largest diff. peak (e·Å ³)	1.787	0.150	1.813
Largest diff. hole (e·Å ³)	-0.568	-0.142	-1.021

	21
D :: 10 1	3b
Empirical formula	$C_{30}H_{26}N_2O_4Pt_2$
CCDC number	883281
Formula weight	868.71
Temperature (K)	120(2)
Wavelength (Å)	0.71069
Crystal system	Monoclinic
Space group	C2/c
a (Å)	11.8533(2)
b (Å)	9.92050(10)
c (Å)	22.5187(4)
a (°)	90
β (°)	103.333(2)
γ (°)	90
Volume (Å ³)	2576.62(7)
Z	4
$ ho_{ m Calculated}({ m g\cdot cm}^{-3})$	2.240
Absorption coefficient	
(mm ⁻¹)	10.888
F(000)	1632
1 (000)	0.234×0.189×0.1
Crystal size (mm)	31
Aranga for data	31
θ range for data	2.71 to 27.00
collection (°)	-15 ≤ <i>h</i> ≤ 15
Limiting indices	
	$-12 \le k \le 12$
D 0 4 11 4 1	$-28 \le l \le 28$
Reflections collected	18028
Reflections unique	$2815 (R_{int} =$
•	0.0330)
Completeness	$100.0\% (\theta =$
•	27.00°)
Absorption correction	Analytical
Max. transmission	0.33631
Min. transmission	0.15490
	Full-matrix
Refinement method	least-squares on
	F^{2^1}
Data / restraints	2815 / 0 / 173
/ parameters	2013 / 0 / 1 / 3
Goodeness-of-fit on F^2	1.046
Final R indices ($I > 2\sigma_I$)	$R_1 = 0.0232$
, ,	$wR_2 = 0.0586$
R indices (all data)	$R_1 = 0.0307$
($wR_2 = 0.0603$
Absolute structure parameter	2
Extinction coefficient	
Largest diff. peak (e·Å ³)	1.258
Largest diff. hole (e·Å ³)	-0.652
Largest diff. note (e.A.)	-0.032

Photophysical measurements.

Absorption spectra were measured on a Biotek Instruments XS spectrometer, using quartz cuvettes of 1 cm path length. Steady-state luminescence spectra were measured using a Jobin Yvon FluoroMax-2 spectrofluorimeter, fitted with a red-sensitive Hamamatsu R928 photomultiplier tube. The spectral λ_{max} values in Table 1 are those obtained after correction for the wavelength dependence of the detector and emission monochromator. Samples for emission measurements at room temperature were contained within quartz cuvettes of 1 cm path length modified with appropriate glassware to allow connection to a high-vacuum line. Degassing was achieved via a minimum of three freeze-pump-thaw cycles whilst connected to the vacuum manifold; final vapour pressure at 77 K was $< 5 \times 10^{-2}$ mbar, as monitored using a Pirani gauge. Luminescence quantum yields were determined using quinine sulfate in $H_2SO_4(aq)$ as the standard for the proligands ($\Phi_{lum} = 0.548^4$), and [Ru(bpy)₃]Cl₂ in degassed aqueous solution for the complexes ($\Phi_{lum} = 0.042^5$). The estimated uncertainty in Φ_{lum} is $\pm 20\%$ or better.


The fluorescence lifetimes of the proligands were measured by time-correlated single-photon counting, following excitation at 374.0 nm with an EPL-375 pulsed-diode laser. The emitted light was detected at 90° using a Peltier-cooled R928 PMT after passage through a monochromator. The estimated uncertainty in the quoted lifetimes is \pm 10% or better. The phosphorescence lifetimes of the proligands and of the Pt-helicenes were determined following excitation with a microsecond flashlamp, using the same detector operating in multichannel scaling mode. The bimolecular rate constants for quenching by molecular oxygen, k_Q , were determined from the lifetimes in degassed and air-equilibrated solution, taking the concentration of oxygen in CH₂Cl₂ at 0.21 atm O₂ to be 2.2 mM dm⁻³. Luminescence data at 77 K were acquired in a glass of diethyl ether / isopentane / ethanol (2:2:1 v/v), abbreviated EPA below, using 4 mm diameter quartz tubes within a home-built quartz Dewar.

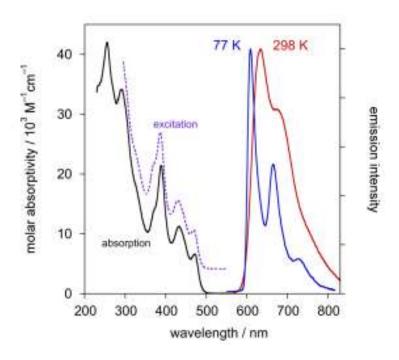

Figure S24. Absorption, excitation (λ_{em} = 446 nm) and emission spectrum of **1a** in CH₂Cl₂ at 298 K, and emission spectrum in EPA at 77 K.

Figure S25. Absorption, excitation (λ_{em} = 660 nm) and emission spectrum of $2a^1$ in CH_2Cl_2 at 298 K, and emission spectrum in EPA at 77 K.

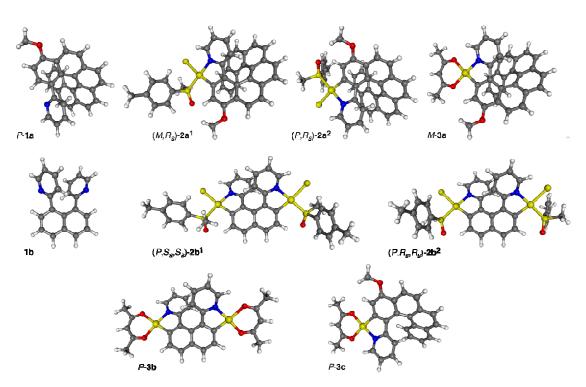
Figure S26. Absorption, excitation (λ_{em} = 670 nm) and emission spectrum of **3a** in CH₂Cl₂ at 298 K, and emission spectrum in EPA at 77 K.

Figure S27. Absorption, excitation ($\lambda_{em} = 630$ nm) and emission spectrum of **3b** in CH₂Cl₂ at 298 K, and emission spectrum in EPA at 77 K.

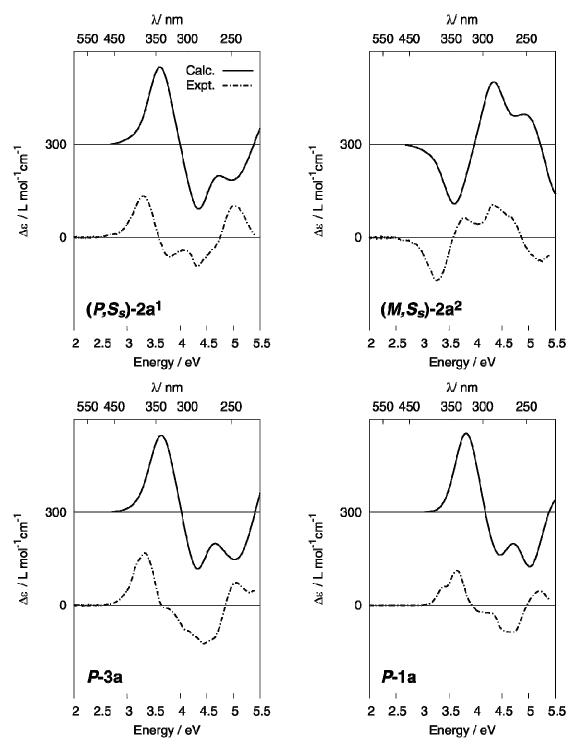
CPL measurements

The circularly polarized luminescence (CPL) and total luminescence spectra were recorded on an instrument described previously, ⁷ operating in a differential photon-counting mode. The light source for excitation was a continuous wave 1000 W xenon arc lamp from a Spex Fluorolog-2 spectrofluorimeter, equipped with excitation and emission monochromators with dispersion of 4 nm/mm (SPEX, 1681B). To prevent artifacts associated with the presence of linear polarization in the emission, ⁸ a high quality linear polarizer was placed in the sample compartment, and aligned so that the excitation beam was linearly polarized in the direction of emission detection (z-axis). The key feature of this geometry is that it ensures that the molecules that have been excited and that are subsequently emitting are isotropically distributed in the plane (x,y) perpendicular to the direction of emission detection. The optical system detection consisted of a focusing lens, long pass filter, and 0.22 m monochromator. The emitted light was detected by a cooled EMI-9558B photomultiplier tube operating in photo-counting mode. All measurements were performed with quartz cuvettes with a path length of 1.0 cm.

Computational details


DFT structure optimizations were performed with the Turbomole program version 5.7.1. 9 employing the BP exchange-correlation functional 10 and a standard Turbomole split-valence basis set with one set of polarization functions for non-hydrogen atoms, SV(P). 11 A 60-electron scalar relativistic effective core potential (ECP-60) was applied for Pt. 12 The resulting optimized structures of the systems and their absolute configurations are shown in Figure S28.

TDDFT linear response optical rotation (OR) and circular dichroism (CD) calculations were performed with the BHLYP functional ¹³ using the SV(P)-ECP basis set. Some benchmark calculations employing two functionals with range-separated exchange, ¹⁴ CAM-B3LYP and LC-PBE0 as used in prior related works ^{1,15} with SV(P)-ECP and a SVPD basis set optimized for molecular response calculations ¹⁶ were carried out employing the NWChem package. ¹⁷ The optical rotation parameters were computed at the sodium *D*-line wavelength λ = 589.3 nm. The CD calculations reported here cover the 120 lowest singlet excited states (S1 to S120) for each system. The simulated spectra shown are the sums of Gaussian functions centered at the vertical excitation energies and scaled using the calculated rotatory strengths with the parameter of σ = 0.2 eV applied for the root mean square width, as previously described. ¹⁸ In some cases, chiroptical properties are given with the sign opposite that of the ones calculated because experimental data are reported for its optical antipode.


1a and 3a-c were optimized in their S_1 and T_1 states using TDDFT BHLYP/SVP-ECP for the purpose of calculating emission spectra. In the case of triplet states calculations, the Tamm-Dancoff approximation $(TDA)^{19}$ was used, as we found full TDDFT results unreliable. To validate the TDDFT optimization of T_1 , structures optimized with unrestricted ground-state DFT BP/SV(P) and a spin multiplicity of 3 were also examined as they are supposed to give a good description of the lowest-energy electronic triplet states. Additional calculations of ground and excited state energies as well as transition moments were carried out at the spin-orbit complete active space self-consistent field (CASSCF) / complete active space second-order perturbation (CASPT2) level were performed for 1a and 3c at DFT-optimized S_0 and T_1 structures with default ANO basis sets contracted to Pt=7s6p4d2f1g, (C, N, O) = 3s2p1d, and H = 2s1p using Molcas version 7.8.²⁰An active space with

the LUMO and 17 occupied orbitals was used for **3c** in order to include most of the orbitals with significant Pt5d contributions. ACAS(2,2) level was employed for **1a**.

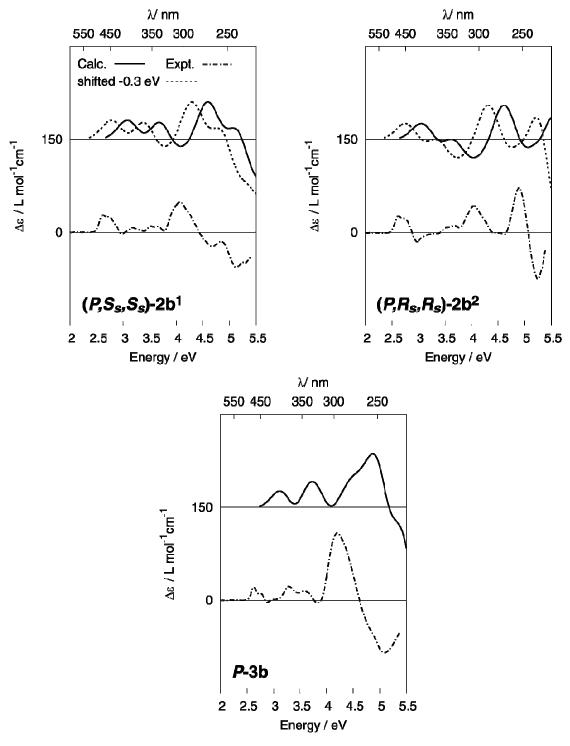

Additional calculated data

Figure S28. Structures and absolute configurations of mono- and bis-cycloplatinated helicene complexes and of the individual starting ligands.

Figure S29. Comparison of experimental and TDDFT BHLYP/SV(P) calculated CD spectra of the 'a' series of systems. No spectral shifts were applied.

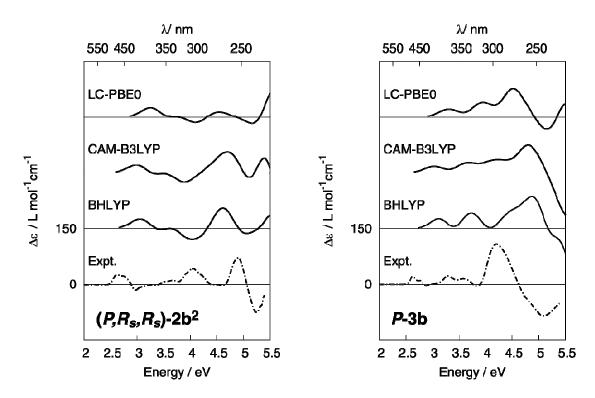


Figure S30. Comparison of experimental and TDDFT BHLYP/SV(P) calculated CD spectra of the 'b' series of systems. No spectral shifts were applied except for $2b^1$ as indicated.

Table S1. Optical rotations for the bis-cycloplatinatedhelicenes **2b**² and **3b** calculated with different basis sets and density functionals, and with different ways to eliminate gauge-origin dependence (MVG vs. GIAO).^{a)}

	$(P,R_{\rm S},R_{\rm S})$ -2 b ²		<i>P</i> -3b		
	$[lpha]_{\!\scriptscriptstyle D}$	$[\phi]_{\!\scriptscriptstyle D}$	$[lpha]_{\!\scriptscriptstyle D}$	$[\phi]_{\!\scriptscriptstyle D}$	
Turbomole					
BHLYP/SV(P)	413.1	4337	1185	10297	
NWChem					
BHLYP/SV(P)/MVG	497.3	5221	1198	10411	
BHLYP/SV(P)/GIAO			1221	10606	
CAM/SV(P)/MVG	486.0	5102	1189	10330	
LC-PBE0/SV(P)/MVG	375.7	3944	997	8663	
BHLYP/SVPD/MVG	515.4	5411	1242	10790	
BHLYP/SVPD/GIAO			1066	9260	
CAM/SVPD/MVG	494.4	5191	1240	10776	
LC-PBE0/SVPD/MVG	380.8	3998	1035	8992	
Expt. (23°C)		9616		8950	

^{a)} MVG: Modified Velocity Gauge, GIAO: Gauge-Including Atomic Orbitals, CAM: CAM-B3LYP. Specific and molar rotations in degree/(dm g/cm⁻³) and degree cm²/dmol, respectively.

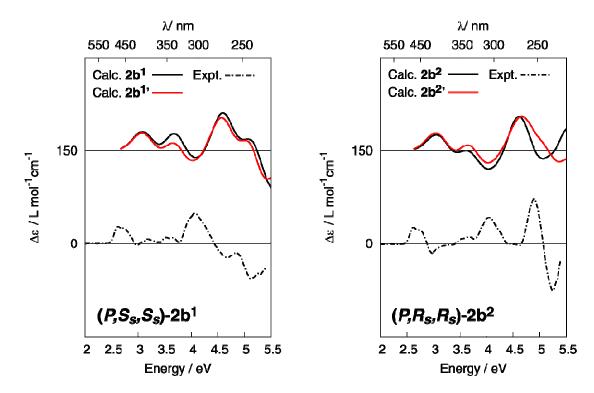


Figure S31. Comparison of experimental CD spectra for selected systems with calculations using different functionals. No spectral shifts were applied. SV(P) basis.

Table S2. Experimental and calculated optical rotations for the **2b**^{1,2} complexes and their **2b**^{1,2}, conformers, and relative energies of the conformers.

	ΔE^a /	BHLYP	P/SV(P)	Expt. (23°C)
	kcal/mol	$[\alpha]_{\!\scriptscriptstyle D}$	$[\phi]_{\!\scriptscriptstyle D}$	$[\phi]_{\!\scriptscriptstyle D}$
(P,S_S,S_S) -2 b ¹	0.00	933.4	9800	11720
(P,S_S,S_S) -2b ¹ ,	5.26	498.6	5234	11720
$(P,R_{\rm S},R_{\rm S})$ -2 b ²	0.00	413.1	4337	0616
$(P,R_{\rm S},R_{\rm S})$ -2b ² ,	13.72	823.5	8645	9616

^{a)} Relative energy with respect to **2b**¹ and **2b**². Specific and molar rotations in units of degree/(dm g cm⁻³) and degree cm²/dmol, respectively.

Figure S32. Comparison of the experimental and TDDFT BHLYP/SV(P) CD spectra calculated for the $2b^1$ and $2b^2$ conformers. No spectral shifts were applied.

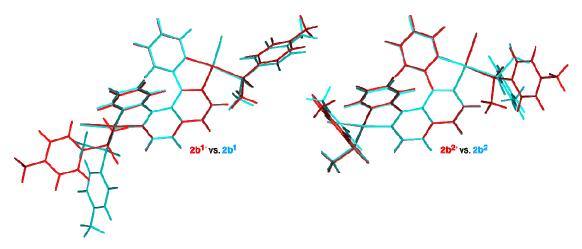
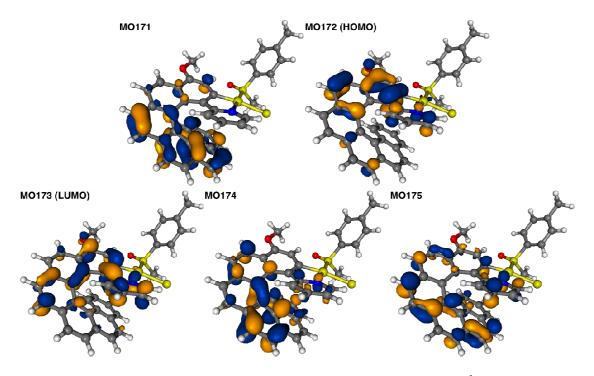
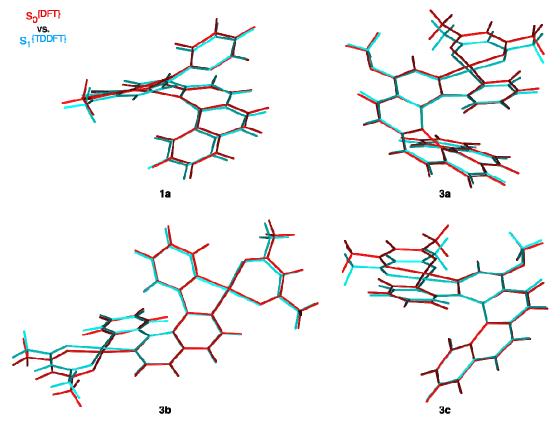
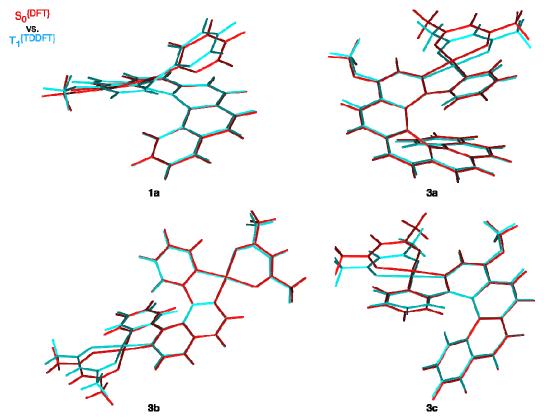
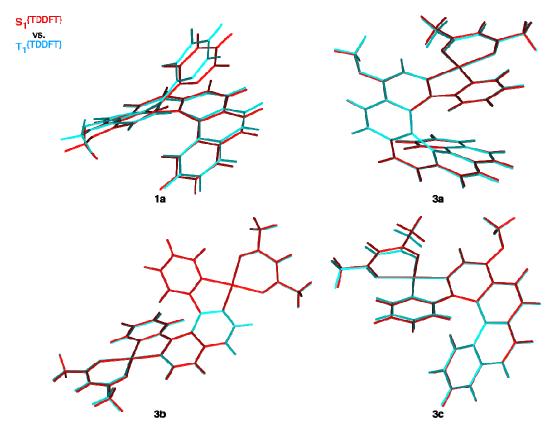


Figure S33. Overlays of optimized structures of $2b^1$ and $2b^1$, and $2b^2$ and $2b^2$.


Figure S34. Isosurfaces (0.04 au) of MOs involved in selected excitations of 2a¹.

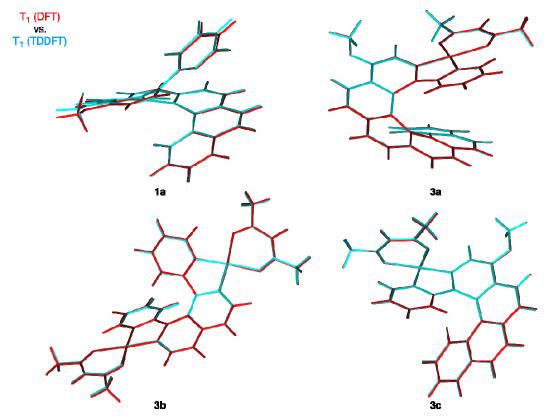

Figure S35. Overlays of optimized ground-state ($S_0^{\{DFT\}}$, red) and singlet excited-state ($S_1^{\{TDDFT\}}$, blue) structures of **1a** and **3a,b,c**.

Figure S36. Overlays of optimized ground-state $(S_0^{\{DFT\}}, red)$ and triplet excited-state $(T_1^{\{TDDFT\}}, blue)$ structures of **1a** and **3a,b,c**.

Figure S37. Overlays of optimized singlet excited-state $(S_1^{\{TDDFT\}}, red)$ and triplet excited-state $(T_1^{\{TDDFT\}}, blue)$ structures of **1a** and **3a,b,c**.

Figure S38. Overlays of optimized triplet excited-state $(T_1^{\{DFT\}}, red)$ and triplet excited-state $(T_1^{\{TDDFT\}}, blue)$ structures of **1a** and **3a,b,c**.

Table S3. Calculated BHLYP/SV(P) energy values, in au, of ground and excited states for ligand **1a** and mono- and bis-cycloplatinatedhelicenes**3a,b,c**. ^a

System	1a	3a	3b	3c
$S_0//S_0^{\{DFT\}}$	-1360.175152	-1823.566400	-1805.625278	-1516.717320
$T_1 / / T_1^{\{DFT\}}$	-1360.089661	-1823.487922	-1805.544491	-1516.638257
$S_0 / / T_1^{\{DFT\}}$	-1360.152239	-1823.554412	-1805.615490	-1516.704383
$T_1/\!/S_0^{\{DFT\}}$	-1360.075143	-1823.479602	-1805.539381	-1516.629719
$S_0/\!/S_1^{\{TDDFT\}}$	-1360.173640	-1823.578130	-1805.637346	-1516.724815
$S_0 /\!/ T_1^{\{TDDFT\}}$	-1360.163152	-1823.574839	-1805.634673	-1516.721081

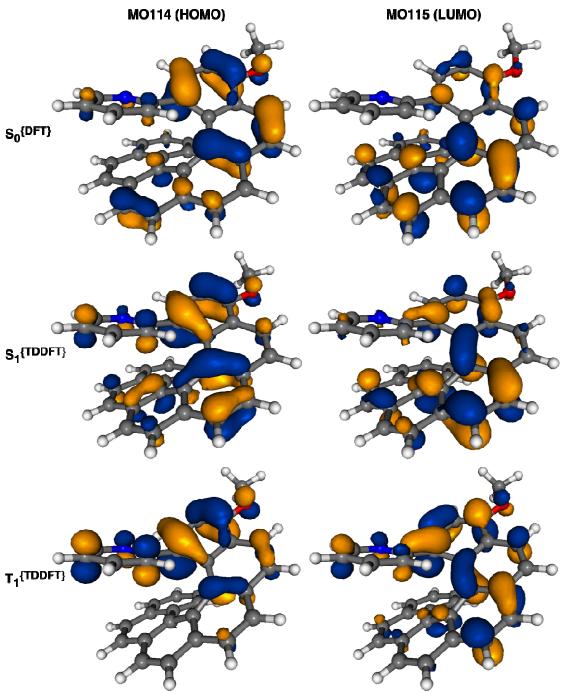
^a spin state // geometry^{method}

Table S4. Calculated photophysical data, in eV, of ligand **1a** and of the mono-cycloplatinated helicene **3c**.^a

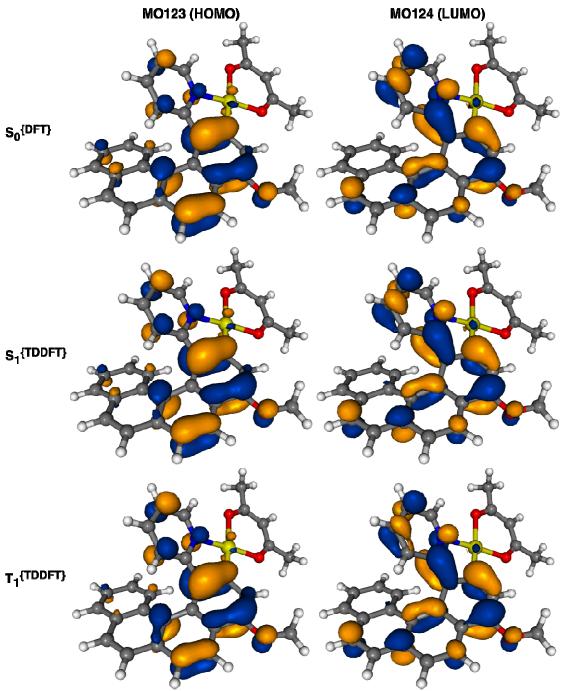
System	1a	3c
	TDDFT S_0 - S_1 // S_0 ^{{DFT}b}	
E	3.47	3.25
f/R	0.0100 / 15.16	0.1377 / 22.67
Assignment	MO114-to-MO116: 31.7%	MO123-to-MO124: 89.4%
	MO114-to-MO115: 25.3%	
	MO113-to-MO116: 17.3%	
	MO113-to-MO115: 11.3%	
	CASSCF (CASPT2) S ₀ -S ₁ //S ₀ ^{{I}	DFT}c
E	4.64 (3.50)	4.23 (2.95)
f/R	0.5163 (0.3865) /	0.5438 (0.2794) /
	190.15 (189.70)	40.45 (41.92)
	$TDDFTS_0-S_1//S_1^{\{TDDFT\}}d$	
E	2.93	2.92
f/R	0.0477 / 390.92	0.1524 / 6.75
Assignment	MO114-to-MO115: 93.7%	MO123-to-MO124: 93.0%
	$TDDFTS_0-T_1//T_1^{\{TDDFT\}e}$	
E	1.63	1.89
Assignment	MO114-to-MO115: 80.3%	MO123-to-MO124: 88.9%
	$TDDFTS_0$ - $T_1//T_1$ {DFT} f	
E	1.76	1.89
Assignment	MO114-to-MO115: 75.1%	MO123-to-MO124: 87.3%
	CASSCF (CASPT2) S ₀ -T ₁ //T ₁ ^{{I}	DFT}g
E	1.68 (2.42)	2.11 (2.05)
f/R	0.0000 (0.0000) /	$1.31 \cdot 10^{-6} (1.35 \cdot 10^{-5}) /$
	0.0000 (0.0000)	$9.19 \cdot 10^{-5} (1.57 \cdot 10^{-3})$

^a EnergyE in eV, oscillator strength f in au, rotatory strength, R in 10^{-40} cgs.

 $^{^{\}it b}$ TDDFT S_0 - S_1 transition at DFT BP/SV(P) optimized singlet configuration S_0 .


 $[^]c$ Spin-orbit CASSCF(CASPT2) S_0 - S_1 transition at DFT BP/SV(P) optimized singlet configuration S_0 .

^d TDDFT S₀-S₁ transition at TDDFT BHLYP/SV(P) optimized S₁ geometry.


^e TDDFT S₀-T₁transitionat TDDFT BHLYP/SV(P) optimized T₁ geometry.

^fTDDFT S₀-T₁ transition at DFT BP/SV(P) optimized triplet configuration.

 $[^]g$ Spin-orbit CASSCF(CASPT2) S_0 - T_1 transition at DFT BP/SV(P) optimized triplet configuration.

Figure S39. Isosurfaces (0.04 au) of frontier MOs in **1a** for $S_0^{\{DFT\}}$, $S_1^{\{TDDFT\}}$, and $T_1^{\{TDDFT\}}$ geometry.

Figure S40. Isosurfaces (0.04 au) of frontier MOs in **3c** for $S_0^{\{DFT\}}$, $S_1^{\{TDDFT\}}$, and $T_1^{\{TDDFT\}}$ geometry.

¹ C. Shen, E. Anger, M. Srebro, N. Vanthuyne, L. Toupet, C. Roussel, J. Autschbach, R. Réau, J. Crassous, *Chem. Eur. J.*, 2013, **19**, 16728.

- ⁷ E. Brunet, L. Jiménez, M. de Victoria-Rodriguez, V. Luu, G. Muller, O. Juanes, J.C. Rodríguez-Ubis, *Microporous and Mesoporous Mater.*, 2013, **169**, 222 and references therein.
- ⁸ H. P. J. M. Dekkers, P. F. Moraal, J. M. Timper, J. P. Riehl, *Appl. Spectrosc.*, 1985, **39**, 818.
- ⁹ (a) TURBOMOLE V5.7.1 2005, Quantum Chemistry Group, University of Karlsruhe, Germany. (b) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, **162**, 165.
- (a) A. D. Becke, *Phys. Rev. A* 1988, **38**, 3098. (b) J. P. Perdew, *Phys. Rev. B* 1986, **33**, 8822. (c) J. P. Perdew, *Phys. Rev. B* 1986, **34**, 7406.
- ¹¹ (a) A. Schäfer, H. Horn, R. Ahlrichs, *J. Chem. Phys.* 1992, **97**, 2571. (b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, *Theor. Chem. Acc.* 1997, **97**, 119. (c) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, **7**, 3297.
- ¹² D. Andrae, U. Häußermann, M. Dolg, H. Stroll, H. Preuß, *Theoret, Chim. Acta* 1990, 77, 123.
- ¹³ (a) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, **37**, 785. (b) A. D. Becke, *J. Chem. Phys.* 1993, **98**, 1372.
- ¹⁴ T. Yanai, D. P. Tew, N. C. Handy, *Chem. Phys. Lett.* 2004, **393**, 51.
- ¹⁵ M. Srebro, N. Govind, W. A. de Jong, J. Autschbach, J. Phys. Chem. A, 2011, **115**, 10930.
- ¹⁶ D. Rappoport, F. Furche, J. Chem. Phys. 2010, **133**, 134105-11.
- ¹⁷ (a) E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, J. J. van Dam, D. Wang, E. Apra, T. L. Windus, J. Hammond, J. Autschbach, F. Aquino, P. Nichols, S. Hirata, M. T. Hackler, Y. Zhao, P.-D. Fan, R. J. Harrison, M. Dupuis, D. M. A. Smith, K. Glaesemann, J. Nieplocha, V. Tipparaju, M. Krishnan, A. Vazquez-Mayagoitia, L. Jensen, M. Swart, Q. Wu, T. Van Voorhis, A. A. Auer, M. Nooijen, L. D. Crosby, E. Brown, G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao, R. Kendall, J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, L. Pollack, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong, Z. Zhang, NWChem, A Computational Chemistry Package for Parallel Computers, Version 6.0 (2011 developer's version); Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA.; 2011. (b) M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. V. Dam, D. Wang, J. Nieplocha, E. Apra, T. Windus, W. de Jong, Comput. Phys. Commun. 2010, 181, 1477. (c) J. Autschbach, ChemPhysChem 2011, 12, 3224. (d) S. Hirata, C.-G. Zhan, E. Aprà, T.L. Windus, D.A. Dixon, J. Phys. Chem. A, 2003, 107, 10154.
- ¹⁸ J. Autschbach, T. Ziegler, S. J. A. van Gisbergen, E. J. Baerends, *J. Chem. Phys.* 2002, **116**, 6930.
 ¹⁹(a) I. Tamm, *J. Phys.* (USSR) 1945, **9**, 449. (b) S. M. Dancoff, *Phys. Rev.* 1950, **78**, 382. (c) S. Hirata, M. Head-Gordon, *Chem. Phys. Lett.* 1999, **314**, 291. (d) M. J.G. Peach, M. J. Williamson, D.

² (a) C. Wolf, X. Mei, *J. Am. Chem. Soc.*, 2003, **125**, 10651. (b) X. Mei, R. M. Martin, C. Wolf, *J. Org. Chem.*, 2006, **71**, 2854.

³ R. Romeo, L. Monsu Scolaro, *Inorganic Syntheses*, 1998, **32**, 153.

⁴ S. R. Meech and D. Phillips, *J. Photochem.*, 1983, **23**, 193.

⁵ J. Van Houten, and R. J. Watts, J. Am. Chem. Soc., 1976, **98**, 4853.

⁶ S. L. Murov, I. Carmichael, I. and G. L. Hug, *Handbook of Photochemistry*, 2nd ed., Marcel Dekker: New York, 1993.

J. Tozer, J. Chem. Theory Comput. 2011, 7, 3578. (e) M. J. G. Peach, D. J. Tozer, J. Chem. Phys. A 2012, 116, 9783. (f) M. J. G. Peach, N. Warner, D. J. Tozer, Mol. Phys. 2013, 111, 1271.

²⁰ F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P.-å. Malmqvist, P. Neogrády, T. B. Pedersen, M. Pitoňák, M. Reiher, B. O. Roos, L. Serrano-Andrés, M. Urban, V. Veryazov, R. Lindh, *J. Comput. Chem.* 2010, **31**, 224.