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Gašper Tkačik
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1 Experimentally measured promoter switching rates

Direct measurements of switching rates are rare since they require live imaging. Examples
include the relative measurements of on-, off- and mRNA-production rates in E. coli (44)
using the MS2-GFP system (72), reporting 2− 10 fold higher on- than off-rates, and mRNA
production rates an order of magnitude higher than the on-rates; original bursting reported
in (72) finds the on-time duration to be roughly 6 and the off time 37 minutes in a synthetic E.
coli reporter system. Recently, on-rates of ∼ 3 ·10−2 min−1, roughly ten-fold higher off-rates,
and mRNA production rates ranging from 0 − 5 min−1 have been reported in mammalian
cells using the luciferase reporter system (59). Using new high-throughput microfluidic
methods, it is now possible to measure TF binding and unbinding times directly: Ref (73)
reports mouse and yeast in vitro transcription factor dissociation rates between ∼ 10 s−1

and 10−2 s−1, as well as the range of the corresponding association rates; it is, however, less
clear if these can be unambiguously identified with switching rates in functional models.

A larger body of work extracts the rates of the two-state model from the noise char-
acteristics (which are the primary measurement), assuming the two-state model without
diffusion noise is applicable. The reported Fano factors for mRNA counts vary, but are of
the order of 1 − 10. The typical values for kinetic parameters extracted for a range of E.
coli promoters are 10−3 − 10−2 s−1 for the on-rate, 10−1 − 1 s−1 for the mRNA production
rate when induced, and a variable off-rate that depends strongly on the induction level (44).
Using a similar technique in mammalian cells, Raj et al (47) extracted two-state parameters
and found the on-rate normalized by mRNA decay time to be roughly of order unity, while
the ratio of mRNA production rate to the off-rate varied from ∼ 10− 400, depending on the
system and the induction level.
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Figure S1: Promoter architectures and interpretations. Scheme 2-1a: (i) State a is
the empty promoter (available for transcription), and state 1 corresponds to it being occupied
by a repressing protein (e.g. a specific TF or a nucleosome). Mechanisms that change the
rate of switching from state 1 into a (i.e. scheme 2-1a) are well documented for eukaryotic
cells (69, 74). (ii) Simple activation where state 1 is the empty promoter and state a has
an activating TF bound to it; changing TF concentration modulates k1a (41, 52). Scheme
2-a1: The bacterial lac-promoter, where the binding of a specific TF represses expression. A
change in the concentration of TFs now corresponds to modulating the rate ka1 and the rate
k1a is determined by the interaction energy between TF and its binding site (75, 76). Scheme
3E: (i) A promoter that has overlapping binding sites for both, an activator and a repressor
(dual regulation) (48, 50, 77). Changing the concentration of the activator (repressor) leads
to a change in rate k1a (k12), which means it can be modeled as a 3E-1a (3E-12) scheme.
(ii) Eukaryotic promoters with a TATA box can be modeled as 3E-21 (71). Here, state
2 is the DNA in a state not available for transcription (closed chromatin), state 1 is the
conformation where the promoter (and the TATA box) is exposed and state a corresponds
to the active configuration of the DNA with the pre-initiation complex assembled. Changing
the concentration of chromatin remodelers now influences the rate k21 (similar to the k1a-
modulation in the scheme 2-1a mentioned above), which yields scheme 3E-21. (iii) A coarse-
grained model of DNA-looping in the lac-operon (78). Scheme 3M: A nucleosome and
a specific, repressing TF compete for a promoter; changes in the input TF concentration
correspond to 3M-a1, while changes in factors decreasing nucleosome occupancy correspond
to 3M-1a. Scheme 3D: (i) State 1 is the closed chromatin formation, state a is the empty
promoter and in state b a TF is bound to the DNA in such a way that it prohibits the closing
of the chromatin (but still permits transciption) (79, 80). In this way, even though the input
molecule does not necessarily interact with the RNA polymerase directly, it can act as an
activator (or rather as a de-repressor), yielding scheme 3D-ab. (ii) A scheme used to describe
any promoter where the basal expression does not follow a Poisson process (optionally with
different rates of expression from a and b). (iii) Promoter with a TATA box and a competing
nucleosome (cf. 3E-21) if there is a significant amount of expression from the basal state
a. (iv) A scheme used as a phenomenological model with unidentified third state to explain
universal noise behavior in bacterial gene expression (44, 71). Cited references use similar
models.
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2 Multi-state promoters as state-transition graphs

In this section we describe the general method used to derive the behavior of noise and mean
for different promoter architectures, followed by a calculation for one example architecture.

2.1 Translating a state transition diagram into dynamic equations

Let {a, b, . . .M} denote the states of the promoter that produce mRNA at a fixed rate r
and {1, 2, . . . N} denote states without production. For S = {a, b, . . .M, 1, 2, . . . N} 3 i, j,
let kij ≥ 0, i 6= j be the rate with which the promoter switches from state i to state j, d be
the rate of mRNA-degradation, and pi be the fractional occupancy of state i. For simplicity,
we will only treat the case M = 1 here.

Deterministic equations. The list of (non-zero) rates fully defines the state-transition
graph, i.e. the promoter model. This directly translates into a linear system of equations
that describes the dynamics of the system:

∂tp = Kp , with (1)

K =


−
∑

j∈S kaj k1a · · · kNa
ka1 −

∑
j∈S k1j · · · kN1

...
...

. . .
...

kaN k1N · · · −
∑

j∈S kNj

 , p =


pa
p1
...
pN

 , (2)

subject to the normalization constraint
∑

i∈S pi = 1.
The dynamics of mRNA are described by linking them to the activity of the promoter:

∂tm = rpa − dm . (3)

To compute the average amount of mRNA m̄ in steady state, we set the time derivatives to
0 and solve the linear set of equations

Kp̄ = 0 , (4)

m̄ =
r

d
pa . (5)

As the occupancy of the active state pa is a function of the rates in K, we can obtain the
dependence of m̄ on any rate of interest, i.e. we can obtain the regulation function.

Langevin approach to calculate noise behavior. For the noise behavior, we linearize
Eqs (4,5) of the main text around the mean:

p(t) = p̄+ δp(t), (6)

m(t) = m̄+ δm(t) (7)

and introduce the Fourier-transformed variables

δpi(t) = (2π)−1
∫
dω δp̂i(ω) exp (−iωt) , (8)

δm(t) = (2π)−1
∫
dω δm̂(ω) exp (−iωt) , (9)
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so that we get the linear response to random fluctuations:

(−iω)δp̂ = Kδp̂+ ξ̂ , (10)

(−iω)δm̂ = rδp̂a − dδm̂+ ξ̂m . (11)

The statistics of the Langevin forces are given by:

〈ξ̂∗i ξ̂j〉 = −(p̂iKij + p̂jKji) , (12)

〈ξ̂∗mξ̂m〉 = 2dm̄ ; (13)

to see this for the variances, consider 〈ξiξ∗i 〉 = −2p̂iKii = 2p̂i
∑

j kij, since all entries in the
diagonal ofK are negative. This is two times the rate of leaving state i. Similarly, for 〈ξ∗mξm〉
the variance is two times the rate of degrading a molecule. The factor of two comes from the
fact that we consider a system at steady state, so the rates of entering and leaving a state
(or creating an destroying a molecule) must be equal. For the covariances 〈ξ∗i ξj〉 (i 6= j),
the two Langevin forces are anti-correlated, since leaving one state means entering another.
The rate of changing between the two states is the probability of being in state i (pi) times
the rate of transition from that state into the other (kij = Kij) – and this holds for both
directions between the pair of states. Also, since we assume that production of mRNA and
promoter switching are independent, 〈ξ∗i ξm〉 = 0 for all states i.

To get the variance in mRNA, we compute σ2
m = (2π)−1

∫
dω |δm̂(ω)|2, where δm̂(ω) is

obtained from Eq (11) as

〈δm̂∗δm̂〉 =
2dm̄

d2 + ω2
+

r2

d2 + ω2
〈δp̂∗aδp̂a〉 , (14)

where 〈δp̂∗aδp̂a〉 is calculated by solving Eq (10) and using the Langevin noise magnitudes
from Eqs (12,13).

With the assumption d� kij, Eq (10) becomes

0 = Kδp̂+ ξ̂ , (15)∑
i

δp̂i = 0 , (16)

which simplifies the expressions for the δp̂i. This is because the terms with (−iω) in the
denominator (as seen in the next section in Eqs (36,37)) would give an additional, multi-
plicative term of the form 1/(k2ij + ω2) in Eq (14). The ω-dependence of these terms can be
neglected for the integration, since for d� kij we have

1

k2ij + ω2

1

d2 + ω2
≈ 1

k2ij

1

d2 + ω2
. (17)



Supplement to “Noise and information: ...” 5

2.2 Example: Dual regulation (3E-1a)

We are interested in a system where the promoter of a gene can either be occupied by an
activator (present at concentration a) or a repressor (present at concentration b). If it is in
the active state, it produces mRNA at a constant rate r, which is later degraded at rate d.

1 a2 m O

ak+b k+

ka−

r

kb−

d

Deterministic equations. Following the setup from the last section, we translate the
state transition diagram into a matrix that describes the dynamics at the promoter:∂tpa∂tp1

∂tp2

 =

−ka− ak+ 0
ka− −(ak+ + bk+) kb−
0 bk+ −kb−

 ·
pap1
p2

 . (18)

This is then the basis for a description of the dynamics of the output (here mRNA):

∂tm = rpa − dm , (19)

∂t pa = ak+p1 − ka−pa , (20)

∂t p2 = bk+p1 − kb−p2 , (21)

pa + p1 + p2 = 1 . (22)

With the definitions A = ak+
ka−

, B = bk+
kb−

, S = 1 +A+B and R = r
d

we get for the steady

state:

p̄a = A/S, p̄1 = 1/S, p̄2 = B/S , (23)

m̄ = Rp̄a = RA/S . (24)

Langevin approach. To see how the dynamics of the promoter influence the statistics
of mRNA we perturb the systems with Langevin forces (while still keeping the gene copy
number constant):

∂tm = rpa − dm+ ξm , (25)

∂t pa = ak+p1 − ka−pa + ξa , (26)

∂t p2 = bk+p1 − kb−p2 + ξ2 , (27)

pa + p1 + p2 = 1 . (28)

The mean of the Langevin forces is zero (〈ξi(t)〉 = 0) and they are uncorrelated in time
(〈ξi(t)ξi(t′)〉 ∝ δ(t− t′)).

We linearize around the mean, where deviations from the mean are denoted by δ:

m(t) = m̄+ δm(t) , (29)

pa(t) = p̄a + δpa(t) , (30)

p2(t) = p̄2 + δp2(t) , (31)

δp1(t) = −δpa(t)− δp2(t) . (32)
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After inserting the linearized equations into the Langevin approach we perform a Fourier
transform:

−iωδm̂(ω) = rδp̂a − dδm̂+ ξ̂m , (33)

−iωδp̂a(ω) = ak+δp̂1 − ka−δp̂a + ξ̂a , (34)

−iωδp̂2(ω) = bk+δp̂1 − kb−δp̂2 + ξ̂2 . (35)

Starting with the equations for the occupancies, we rewrite Eqs (34,35) and use the approx-
imation that d is significantly slower than the other rates to get:

δp̂a(ω) =
ak+δp̂1 + ξ̂a
ka− − iω

≈ Aδp̂1 +
ξ̂a
ka−

, (36)

δp̂2(ω) =
bk+δp̂1 + ξ̂2
kb− − iω

≈ Bδp̂1 +
ξ̂2
kb−

, or (37)

δp̂a = −δp̂2
A

(1 + A)
+
ξ̂a
ka−

1

(1 + A)
, (38)

δp̂2 = −δp̂a
B

(1 +B)
+
ξ̂2
kb−

1

(1 +B)
. (39)

Solving this system yields:

δp̂a = − ξ̂2
kb−
p̄a +

ξ̂a
ka−

(p̄1 + p̄2) . (40)

The variances of the Langevin forces are:

〈ξ̂∗a ξ̂a〉 = 2ka−p̄a , (41)

〈ξ̂∗2 ξ̂2〉 = 2kb−p̄2 , (42)

〈ξ̂∗mξ̂m〉 = 2dm̄ , (43)

and their covariances vanish, since the direct transition from state a to state 2 is not allowed.
From Eqs (33,40) we get:

〈δp̂∗aδp̂a〉 = 2
p̄2
kb−
p̄2a + 2

p̄a
ka−

(p̄1 + p̄2)
2 , (44)

〈δm̂∗δm̂〉 =
2dm̄

d2 + ω2
+

r2

d2 + ω2
〈δp̂∗aδp̂a〉 . (45)

Finally, with 1
2π

∫∞
−∞ 2 1

x2+ω2 dω = 1
x

we get:

σ2
m =

dm̄

d
+
r2

d

(
p2
kb−
p2a +

pa
ka−

(p1 + p2)
2

)
=

= m̄

[
1 + r

(
p2
kb−
pa +

1

ka−
(1− pa)2

)]
. (46)
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This is one description of noise in the 3E architecture. To get the noise characteristics for
modulation scheme 3E-1a, we need to express p2 in terms of pa (not shown). From Eq (46)
we can see that in the absence of repressors (p2 = 0) and also for very fast unbinding of the
repressors (kb− → ∞) the noise shows the quadratic dependence on the occupation of the
promoter that we see in the corresponding two-state model 2-1a.

2.3 Comparison to other methods

The results obtained with the Langevin approach were compared against two other meth-
ods: (i) the exact numerical solution of the chemical master equation and (ii) results from
stochastic simulation using the Gillespie algorithm. Two kinds of comparisons are relevant:
first, how well the gaussian distribution approximates the true distribution of mRNA levels;
and second, how the Langevin-derived expressions for the noise characteristics compare to
the exact values.

Fig S2A compares the distribution of mRNA levels obtained from the numerical solu-
tion of the chemical master equation to the gaussian approximation for the dual regulation
architecture discussed in the last section.

The stochastic simulation algorithm is time consuming and offers no special benefit for the
simple systems studied here, but we have nevertheless checked a few example architectures
against simulation results. The results for dual regulation are shown in Fig S2B. Values for
ak+ and ka− were chosen from a grid. This makes it possible to show the agreement with
the Langevin-derived noise characteristics in two different modulation schemes (cf. inset in
Fig S2B).

Another way to obtain analytical expressions for the mean and variance of the mRNA-
distributions is the method of partial moments (e.g., (48, 52)). While this method can also be
used to derive higher moments, a minor advantage of the Langevin method for the purposes
here is that the approximation d � kij can be used earlier in the derivations, leading to
simpler expressions.
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Figure S2: Comparison of Langevin approach to other methods. (A) Probability
distribution of the model 3E for different values of ak+ (thus treating it as 3E-1a). Solid
lines are the numerical solution of the master equation and dashed lines are a gaussian
approximation using the analytical expressions for mean and variance described in the main
text. Different colors are for different values of ak+. Parameters for this plot: ak+ =
[1, 10, 50, 500], ka− = 10, bk+ = 10, kb− = 10, r = 75 and d = 1. Inset: The relative
difference in entropy between the full distribution and the gaussian approximation used in
this study (i.e. using the results for mean and variance from the Langevin method). The
error drops to < 5% very fast, with the main difference at slow rates stemming mainly from
non-gaussianity at low expression levels. Importantly, for information calculations this non-
gaussianity is mitigated by the protein averaging; even without the averaging, the effect on
the comparison between architectures is minor. (B) Comparison of Fano factors for different
mean expression levels for the 3E-1a model (black data points = Gillespie simulation, solid
lines = Langevin method). Different colors correspond to different values for ka−. For small
values of ka− and ak+ we start to see deviations since the approximation d � kij no longer
holds. Parameters for the Gillespie simulations: ka− = [10, 20, 50, 200], ak+ = [1, 10, 50, 500],
bk+ = 10, kb− = 10, r = 75 and d = 1. The Fano factor was calculated from 10000 runs.
Error bars from resampling are smaller than the symbols. Inset: The same results from the
Gillespie simulations replotted (on a log-log scale) and compared to the noise characteristics
of the 3E-a1 scheme, i.e. the rate ka− is modulated to obtain different mean mRNA levels.
The solid lines are the noise characteristics calculated with the Langevin methods for different
(fixed) values of ak+ = [1, 10, 50, 500].
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3 Magnitude of input noise

Our noise model includes the possibility of upstream noise propagating through a promoter.
Two sources for this noise that is already present when the signal enters the system are
considered here. The Poisson like fluctuations stemming from the production of the input
molecules was already mentioned in the main text. It led to the model where input noise
is propagated to the output variance in proportion to the “susceptibility” of the regulatory
element:

σ2
g = · · ·+ v

(
∂ḡ

∂k

)2

k, (47)

where (. . .) indicate output and switching terms (see main text).
The second, fundamental noise source at the input side is related to the fact that the

regulatory proteins need to find their interaction partners by diffusion. This puts a lower
bound on the variance of the local concentration at the regulatory site. This diffusion limit,
first formulated for the case of bacterial chemotaxis by Berg and Purcell (66), has been
subsequently derived for the general case of biochemical signaling (33, 34): the lower bound
on the variance in local concentration obeys σ2

c ∝ cd′/D`, where D is the diffusion constant
of the TF molecules, ` is the linear size of the binding site, and 1/d′ is the noise averaging
time (here the lifetime of the gene product). Analyses of high-precision measurements in
gene expression noise during early fruit fly development have shown that this diffusion noise
represents a substantial contribution to the total (35, 45). Thus, also this biophysical limit
set by diffusion yields a variance that is proportional to the input itself.

To see which values the constant v can take, note that σ2
k = k2+σ

2
c ∝ k2+cd

′/D` =
kk+d

′/D`. As an example, consider diffusion-limited association, where k+ = 4πD` (67).
Depending on the accuracy and the geometry of the sensing mechanism we now get different
values for ṽ = v/d′, but in general ṽ is expected to be of order unity. For example, the
perfect absorbing sphere has σ2

c = cd′/(4πD`) and therefore ṽ = 1; the perfect monitoring
sphere in the Berg–Purcell limit has σ2

c = 3cd′/(5πD`) and therefore ṽ = 2.4 (66, 68).
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