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METHODS  
 
Samples and sequencing data.  

The 260 UK10K individuals investigated in this study were all female aged 27 -74 years (mean age 51 
years) from the TwinsUK cohort(1) (http://www.twinsuk.ac.uk/), except for 5 pairs of dizygous twins, 
the rest were all unrelated. Leukocyte telomere lengths of these individuals as mTRFs were 
measured using Southern blot. Whole genome sequencing was conducted using the Illumina HiSeq 
technology, yielding sequencing reads with coverage ranging from 4X to 16.6X (average 6.5X, pooled 
across lanes). Most samples were sequenced on multiple lanes (median=4 lanes, median per lane 
coverage=1.54X). These can be considered as technical replicates. For the generality of the method, 
as some studie may not have any technical replicates, we merged all lanes before analysis. However, 
when lanes analysed separately and the telomere length estimate calculated as the mean across 
lanes, weighted by lane yield, the sampling error was further reduced and the correlation with mTRF 
was stronger(ρ=0.62 with mTRF as opposed to ρ=0.60 when merged). Twelve individuals with a 
much higher duplication rate (more than 3 fold that of other samples) were investigated for duplication 
effect but excluded from the rest of the analysis (Supplementary Fig 3).  

Sequence data are available from the European Genome-phenome Archive (EGA) study number 
EGAS00001000108, submitted by UK10K (http://www.uk10k.org).  1000 Genomes Project sequence 
data were downloaded from http://www.1000genomes.org. 

Normalization and length measurement.  

The TelSeq telomere length estimate in kilobase pairs is given by l=tkscg, where l is the length 
estimate, tk is the abundance of telomeric reads at threshold k and cg is a constant for the cumulative 
length of genome sequences with GC composition g, divided by 46 (the number of telomere ends, 
23×2). To calculate g we divide the reference sequence into 100bp consecutive bins and add 100bp 
to cg if the GC composition of the bin is within g. Here g is chosen to be [48%, 52%], close to the 
telomeric GC composition, which is 50% at the TTAGGG dense regions.  Normalising only with reads 
close to 50% GC composition avoids bias due to uneven GC in sequencing library representation(2) 
and improves signal substantially (Supplementary Fig1). 

Simulation. 

SimSeq (https://github.com/jstjohn/SimSeq) was used for simulating Illumina pair-end reads. Human 
chromosome 1 (GRCh37) was used as the sequence source. 30,000 nucleotides of sequence, 
including strings of Ns that are placeholders for unknown nucleotides at the ends, were removed from 
each end, and the same of length of TTAGGG repeats were appended instead. This generates a new 



chromosome sequence of same length but with known telomere length (30kb). We simulated reads 
using parameters: -1 100 -2 100 --insert_size 500 --insert_stdev 200, with coverage ranging from 
0.2X (498,501 reads) to 10X (24,925,063 reads) in increments of 0.2X greater depth and with 
duplication rate fixed at 5%. For each setting we repeated the simulation 5 times. In total 255 BAMs 
were simulated. We then used TelSeq to estimate telomere length (Supplementary Fig 2).  

Associations 

The Pearson’s Correlation Coefficient was calculated using the “cor” function of the R language 
(http://www.r-project.org/). The regression between age and TelSeq and between age and mTRF was 
calculated using the “lm” function of R in models lm(age ~ telseq) and lm(age ~ mTRF). Two 
measures were also included in one model lm(age~telseq + mTRF) as two independent fixed effects. 
A t-test was done for each of the two regression coefficient (beta) against null hypothesis beta=0, the 
results of which can be seen in the output of the summary function.  

Calculating variance explained 

To compute the proportion of variance of age explained by mTRF, we used the “cor” function in R  
cor(age, mTRF, method="pearson")^2. And the same was done for TelSeq. To compute the additional 
variance that can be explained by mTRF while controlling for TelSeq, we firstly obtained the residuals 
from a regression between age and TelSeq (x <- lm(age~TelSeq)$residuals); and then used the 
residuals to compute the additional variation explained (cor(x,mTRF)^2). The same procedure was 
done for TelSeq.  

Comparing the correlation coefficients with age by the two methods 

To test whether the difference is significant in the strength of associations between age and each of 
two measures – ρ = -0.24 for TelSeq and ρ = -0.26 for mTRF, we conducted bootstrapping using R 
(sample(sample_index,sample_size,replace=TRUE))) sampling our cohort 1000 times, from which we 
obtained an estimate for the standard deviation of ρ for mTRF (0.052) and TelSeq(0.056). We can 
then compute the Student-t statistic t= (ρtelseq – ρmTRF)/sqrt(sd2

TelSeq + sd2
mTRF) for hypothesis testing 

(Supplementary Fig 4).  

	  

FIGURES	  

	  



	  
Supplementary Figure 1. Normalising by reads with similar GC improves the performance of TelSeq. 
It is known that read abundance in a sequencing library is affected by the GC composition of a read, a 
bias primarily introduced in the PCR step where high GC reads get amplified more often due to their 
high molecular affinity. Thus, using reads with similar GC content as background accounts for this 
molecular property and reflects the signal to noise ratio more accurately. To demonstrate this we 
evaluated the performance of TelSeq, as measured by the correlation with mTRF, when normalised 
by reads from different GC groups, 42%-58% (purple), 44%-56% (light green), 46%-54% (red), 48%-
52% (dark green) as well as by all reads (blue). The result showed that there was a gradient increase 
to the correlation when GC range approaches 50%. And in all these cases, the correlation was much 
higher than that when all reads were used from a library. Here the analysis was done for the whole 
range of threshold k, the number of TTAGGG repeats in a read.  
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Supplementary Figure 2. The effect of sequencing coverage on TelSeq measurement, assessed by 
simulation.  A group of BAMs were simulated using software SimSeq 
(https://github.com/jstjohn/SimSeq) (Supplementary Method). Sampling noise is substantially higher 
when the coverage is below 2.5X (mean=29.4kb, variation=5% of mean), compared to when 
coverage is above 2.5X (mean=29.5kb, variation=2.4% of mean) (left hand plot). The mean estimates 
are close to the true value 30kb independent of coverage.  When using the weighted average of 5 
BAMs for each coverage group (right hand plot), the variation is much smaller (1% of mean). This is 
justified theoretically by the relationship X~N(µ,σ), mean(X)~N(µ, σ/sqrt(n)), where n is the sample 
size. The coefficient of variation across lanes per sample is on average 3.2% (main Figure 3).  
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Supplementary Figure 3. The effect of duplication rate and coverage to TelSeq performance. In 
essence, TelSeq relies on sampling of genomic regions from a sequencing library. Coverage and 
duplication thus affect the translation of a relative measure into an absolute one. Low coverage 
indicates insufficient sampling and thus results in high variation in estimation (Supplementary Figure 2) 
while high duplication suggests over enrichment of certain genomic regions and thus changes the 
translation factor c (Supplementary Method). In whole genome sequencing high duplication rate 
indicates low library complexity and loss of information. Twelve of our samples were found to have an 
exceptionally high duplication rate (>3 fold greater than the rest, left panel), and were outliers when 
regressing against mTRF (right panel). We based our evaluation on samples with duplication rate 
below 10%, which is typically what is expected for whole genome sequencing.  
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Supplementary	  Figure	  4.	  	  Compare	  correlation	  coefficient	  obtained	  from	  mTRF	  and	  TelSeq.	  To	  
compare	  the	  correlation	  coefficients	  between	  age	  and	  telomere	  length	  estimates	  from	  TelSeq	  and	  
mTRF,	  we	  conducted	  1000	  bootstraps	  with	  replacement	  from	  the	  data	  set	  to	  obtain	  an	  estimate	  of	  
the	  standard	  deviations	  of	  the	  correlation	  estimates	  ρ.	  We	  can	  then	  perform	  a	  t-‐test	  for	  whether	  the	  
difference	  between	  the	  observed	  values	  -‐0.24	  and	  -‐0.26	  is	  significant.	  The	  result	  gave	  t=0.26,	  p=0.79,	  
which	  suggest	  no	  statistical	  difference	  between	  the	  coefficients	  obtained	  from	  the	  two	  
measurements.	  	  	  
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Supplementary Figure 5. The mTRF measurement is longer than TelSeq estimates across a range 
of values for the choices of TelSeq threshold (k).  The difference between mTRF and TelSeq is 
1.49kb at k=7, and 5.34kb at k=16. The difference reflects the fact that mTRF measures the average 
distance from subtelomeic regions, where the excision sites of restriction enzymes exist, to the 
chromosome ends, while TelSeq approaches include only the ends when choosing a large k.  

	  

	  

Supplementary Figure 6.  TelSeq estimates from exome data are highly correlated with those from 
whole genome data in 96 samples from the 1000 Genomes Project with matched whole genome 
sequences and exome sequence data. (left) Scatter plots for TelSeq estimates from matched whole 
genome sequence and exome sequence at different thresholds of k, the amount of TTAGGG repeats 
in a read. Panels are organised from left to right, top to bottom as k increases from 1 to 16, where in 
each plot X axis is the estimates from the whole genome sequences and y axis is the estimates for 
the matched exome sequences. A correlation coefficient is calculated for each panel and plotted in 
right panel.  The two measurements start becoming tightly correlated with each other when k>= 3.  
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