Supporting Information

2-(2-Arylphenyl)benzoxazole as a Novel Anti-Inflammatory Scaffold: Synthesis and Biological Evaluation

Kapileswar Seth,^a Sanjeev K. Garg,^a Raj Kumar,^a Priyank Purohit,^a Vachan S. Meena,^b Rohit Goyal,^{c,†} Uttam C. Banerjee,^b Asit K. Chakraborti.^{*a}

^aDepartment of Medicinal Chemistry, ^bDepartment of Pharmaceutical Technology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India; ^cIndo-Soviet Friendship (ISF) College of Pharmacy, Moga, 142 001, Punjab, India.[†] Present address: Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan 173212, HP, India.

E-mail: akchakraborti@niper.ac.in; akchakraborti@rediffmail.com

Table of Contents

Evolution of selective COX-2 inhibitors from non-selective COX-2 inhibitors:	5
Figure A. Transformation of nonselective cyclooxygenase inhibitor to COX-2 selective agnets in the	
phenyl propionic acid class.	5
Figure B. Transformation of nonselective cyclooxygenase inhibitor to COX-2 selective agnets in the	
indole-3-acetic acid class.	5
Figure C. Transformation of nonselective cyclooxygenase inhibitor diclofenac to COX-2 selective	
analogue as the most selective COX-2 inhibitor.	6
Figure D. Evolution of the 1,2-diarylheterocycle class (coxibs) selective COX-2 inhibitors from non-	
selective COX-2 inhibitors	6
Determination of Interaction of the Newly Designed Scaffold II in the COX-2 Active Site:	6
Figure E. Docking pose of 3a representing the new pharmacophoric feature (II) and of Celecoxib on th	e
active site of COX-2 (6COX)	7
Figure F: Comparison of poses of different coxibs with 3a inside the active site of COX-2.	7
General consideration	8

Typical procedure for the preparation of 2-(2-bromo-phenyl)-benzoxazole 1 (Ref 6):	8
Typical procedure for the conventional Suzuki coupling of 1 with phenylboronic acid 2a to form 2-	
biphenyl-2-yl-benzoxazole 3a in the presence of Pd catalyst (Scheme 1):	9
Typical procedure for the synthesis of 2'-benzoxazol-2-yl-3-chloro-biphenyl-4-ol 3n (Scheme 2):	9
Typical procedure for the synthesis of 2-(4'-methanesulfonyl-biphenyl-2-yl)-benzoxazole 3o (Scher	ne
2):	10
Characterization of compounds	10
2-Biphenyl-2-yl-benzoxazole ⁷ 3a (Scheme 1):	10
2-(4'-Methoxy-biphenyl-2-yl)-benzoxazole 3b (Scheme 1):	10
2-(3',4'-Dimethoxy-biphenyl-2-yl)-benzoxazole 3c (Scheme 1):	10
2-(2',3'-Dimethoxy-biphenyl-2-yl)-benzoxazole 3d (Scheme 1):	11
2-(3'-Cyclopentyloxy-4'-methoxy-biphenyl-2-yl)-benzoxazole 3e (Scheme 1):	11
2-(4'-Methylsulfanyl-biphenyl-2-yl)-benzoxazole 3f (Scheme 1):	11
2-(3'-Chloro-4'-methoxy-biphenyl-2-yl)-benzoxazole 3g (Scheme 1):	11
2-(3'-Chloro-4'-isopropoxy-biphenyl-2-yl)-benzoxazole 3h (Scheme 1):	11
2-(4'-Benzyloxy-3'-chloro-biphenyl-2-yl)-benzoxazole 3i (Scheme 1):	12
2-(4'-Fluoro-biphenyl-2-yl)-benzoxazole 3j (Scheme 1):	12
2-(4'-Trifluoromethyl-biphenyl-2-yl)-benzoxazole 3k (Scheme 1):	12
2'-Benzoxazol-2-yl-biphenyl-4-carbaldehyde 3l (Scheme 1):	12
2'-Benzoxazol-2-yl-biphenyl-4-carbonitrile 3m (Scheme 1):	12
Biology Data	13
Cyclooxygenase Inhibition Studies	13
Carrageenan-Induced Paw Edema Method	13
Rationalisation of COX-2 selectivity of the novel inhibitors 3g, 3n, and 3o through Computational Stu	dies
(3D QSAR) and correlation with the coxibs (Celecoxib, Rofecoxib, and Etoricoxib)	14
Table C: Comparison of benzoxazole derivatives with celecoxib in COX-2 (6COX)	15

Figure G: Comparison of poses of different coxibs (celecoxib, etoricoxib, rofecoxib) with 3b-3f and	3h-
3m inside the active site of COX-2.	21
Figure H: Comparison of interaction poses of 3g, 3n and 3o with celecoxib inside the active site of	
COX-2	24
Scanned NMR Spectra	25
¹ H NMR of 2-(2-Bromophenyl)-benzoxazole 1:	25
¹³ C NMR of 2-(2-Bromophenyl)-benzoxazole 1:	25
¹ H NMR of 2-Biphenyl-2-yl-benzoxazole 3a (Scheme 1):	26
¹ H NMR of 2-(4'-Methoxy-biphenyl-2-yl)-benzoxazole 3b (Scheme 1):	27
¹³ C NMR of 2-(4'-Methoxy-biphenyl-2-yl)-benzoxazole 3b (Scheme 1):	27
¹ H NMR of 2-(3',4'-Dimethoxy-biphenyl-2-yl)-benzoxazole 3c (Scheme 1):	28
¹³ C NMR of 2-(3',4'-Dimethoxy-biphenyl-2-yl)-benzoxazole 3c (Scheme 1):	28
¹ H NMR of 2-(2',3'-Dimethoxy-biphenyl-2-yl)-benzoxazole 3d (Scheme 1):	29
¹³ C NMR of 2-(2',3'-Dimethoxy-biphenyl-2-yl)-benzoxazole 3d (Scheme 1):	29
¹ H NMR of 2-(3'-Cyclopentyloxy-4'-methoxy-biphenyl-2-yl)-benzoxazole 3e (Scheme 1):	30
¹³ C NMR of 2-(3'-Cyclopentyloxy-4'-methoxy-biphenyl-2-yl)-benzoxazole 3e (Scheme 1):	30
¹ H NMR of 2-(4'-Methylsulfanyl-biphenyl-2-yl)-benzoxazole 3f (Scheme 1):	31
¹³ C NMR of 2-(4'-Methylsulfanyl-biphenyl-2-yl)-benzoxazole 3f (Scheme 1):	31
¹ H NMR of 2-(3'-Chloro-4'-methoxy-biphenyl-2-yl)-benzoxazole 3g (Scheme 1):	32
¹³ C NMR of 2-(3'-Chloro-4'-methoxy-biphenyl-2-yl)-benzoxazole 3g (Scheme 1):	32
¹ H NMR of 2-(3'-Chloro-4'-isopropoxy-biphenyl-2-yl)-benzoxazole 3h (Scheme 1):	33
¹³ C NMR of 2-(3'-Chloro-4'-isopropoxy-biphenyl-2-yl)-benzoxazole 3h (Scheme 1):	33
¹ H NMR of 2-(4'-Benzyloxy-3'-chloro-biphenyl-2-yl)-benzoxazole 3i (Scheme 1):	34
¹³ C NMR of 2-(4'-Benzyloxy-3'-chloro-biphenyl-2-yl)-benzoxazole 3i (Scheme 1):	34
¹ H NMR of 2-(4'-Fluoro-biphenyl-2-yl)-benzoxazole 3j (Scheme 1):	35
¹³ C NMR of 2-(4'-Fluoro-biphenyl-2-yl)-benzoxazole 3j (Scheme 1):	35

	¹ H NMR of 2-(4'-Trifluoromethyl-biphenyl-2-yl)-benzoxazole 3k (Scheme 1):	36
	¹³ C NMR of 2-(4'-Trifluoromethyl-biphenyl-2-yl)-benzoxazole 3k (Scheme 1):	36
	¹ H NMR of 2'-Benzoxazol-2-yl-biphenyl-4-carbaldehyde 3I (Scheme 1):	37
	¹³ C NMR of 2'-Benzoxazol-2-yl-biphenyl-4-carbaldehyde 3l (Scheme 1):	37
	¹ H NMR of 2'-Benzoxazol-2-yl-biphenyl-4-carbonitrile 3m (Scheme 1):	38
	¹³ C NMR of 2'-Benzoxazol-2-yl-biphenyl-4-carbonitrile 3m (Scheme 1):	38
	¹ H NMR of 2-(4'-Methanesulfonyl-biphenyl-2-yl)-benzoxazole 3o (Scheme 2):	39
	¹³ C NMR of 2-(4'-Methanesulfonyl-biphenyl-2-yl)-benzoxazole 3o (Scheme 2):	39
	¹ H NMR of 2'-Benzoxazol-2-yl-3-chloro-biphenyl-4-ol 3n (Scheme 2):	40
	¹³ C NMR of 2'-Benzoxazol-2-yl-3-chloro-biphenyl-4-ol 3n (Scheme 2):	40
S	canned HPLC Spectra to Determine the Purity of Compounds	41
	HPLC of 2-Biphenyl-2-yl-benzoxazole 3a (Scheme 1):	41
	HPLC of 2-(4'-Methoxy-biphenyl-2-yl)-benzoxazole 3b (Scheme 1):	42
	HPLC of 2-(3',4'-Dimethoxy-biphenyl-2-yl)-benzoxazole 3c (Scheme 1):	43
	HPLC of 2-(2',3'-Dimethoxy-biphenyl-2-yl)-benzoxazole 3d (Scheme 1):	44
	HPLC of 2-(3'-Cyclopentyloxy-4'-methoxy-biphenyl-2-yl)-benzoxazole 3e (Scheme 1):	45
	HPLC of 2-(4'-Methylsulfanyl-biphenyl-2-yl)-benzoxazole 3f (Scheme 1):	46
	HPLC of 2-(3'-Chloro-4'-methoxy-biphenyl-2-yl)-benzoxazole 3g (Scheme 1):	47
	HPLC of 2-(3'-Chloro-4'-isopropoxy-biphenyl-2-yl)-benzoxazole 3h (Scheme 1):	48
	HPLC of 2-(4'-Benzyloxy-3'-chloro-biphenyl-2-yl)-benzoxazole 3i (Scheme 1):	49
	HPLC of 2-(4'-Fluoro-biphenyl-2-yl)-benzoxazole 3j (Scheme 1):	50
	HPLC of 2-(4'-Trifluoromethyl-biphenyl-2-yl)-benzoxazole 3k (Scheme 1):	51
	HPLC of 2'-Benzoxazol-2-yl-biphenyl-4-carbaldehyde 3I (Scheme 1):	52
	HPLC of 2'-Benzoxazol-2-yl-biphenyl-4-carbonitrile 3m (Scheme 1):	53
	HPLC of 2-(4'-Methanesulfonyl-biphenyl-2-yl)-benzoxazole 3o (Scheme 2):	54
	HPLC of 2'-Benzoxazol-2-yl-3-chloro-biphenyl-4-ol 3n (Scheme 2):	55

Evolution of selective COX-2 inhibitors from non-selective COX-2 inhibitors:

Figure A. Transformation of nonselective cyclooxygenase inhibitor to COX-2 selective agnets in the phenyl propionic acid class.

J. Med. Chem. (2000) 43:2860-2870. Bioorg. Med. Chem. Lett. (2005) 13:6810-6822. Figure C. Transformation of nonselective cyclooxygenase inhibitor diclofenac to COX-2 selective analogue as the most selective COX-2 inhibitor.

Determination of Interaction of the Newly Designed Scaffold II in the COX-2 Active Site:

To ascertain whether the newly designed scaffold **II** would be a ligand for COX-2 it was planned to identify the various possible interaction of the representative compound **3a** (belonging to the scaffold **II**) in the COX-2 active site. Therefore, the computational studies (3D QSAR) was performed individually on the COX-1 (3KK6.pdb)¹ and COX-2 (6COX.pdb)² active sites using the 'GOLD 4.1.2' software.³⁻⁵

The X-ray crystal structures of CYCLOOXYGENASE-2 with compound SC-558 was used. 'PyMOL 1.3' was used to optimize the enzyme by removing water molecules, residues and fragments of enzyme. The file was saved in pdb file format. After protein optimization a standard mode of 'GOLD 4.1.2' software was used for the docking purpose. 'GOLD' gives the best poses by a Genetic algorithm search strategy. In 'GOLD' software 'hermes 1.3.1' was used as the visualizer. Validation of process was done by calculating root-mean-square deviation (RMSD), which was 0.21. For docking of the molecules, optimized protein was loaded in the 'GOLD' software, followed by addition of hydrogen and deletion of ligand. The atom and residue were selected in 10 Å range. Then celecoxib and **3a** were separately added to the active site. The analysis of the interactions was done in 'PyMOL' software. The specific interactions are provided in the docking pose in Fig. E. The satisfactory docking score was obtained with the simplest molecular structure **3a** representing the newly designed scaffold **II**. This encouraged us to generate structural analogues of **3a** through modification/functionalisation of the aryl 2 moiety (Fig. F).

Figure E. Docking pose of 3a representing the new pharmacophoric feature (II) and of Celecoxib on the active site of COX-2 (6COX).

Docking pose of **3a** with score 54.3682

Docking pose of **Celecoxib** with score 70.5354

Comparison of docking pose of **3a** with marketed COX-2 selective drugs celecoxib, etoricoxib and rofecoxib was performed (Fig. F) and it is observed that **3a** has similar 'V shape' docking pose like celecoxib, etoricoxib and rofecoxib.

Figure F: Comparison of poses of different coxibs with 3a inside the active site of COX-2.

(Celecoxib is in green color, Rofecoxib is in blue color, Etoricoxib is in light pink color and compound **3a** is in yellow color).

General consideration

The ¹H and ¹³C NMR spectra were recorded on a Bruker Advance 400 MHz NMR spectrometer in CDCl₃ with residual undeuterated solvent (CDCl₃: 7.26/77.0) using Me₄Si as an internal standard. Chemical shifts (δ) are given in ppm and *J* values are given in Hz. The IR spectra were recorded either on KBr pellets (for solids) or neat (for liquids) on a Nicolet Impact 410 FTIR spectrometer. The HRMS spectra were recorded on Bruker Maxis instrument. Melting points were measured with Gupta scientific, India melting point apparatus. Open column chromatography, thin layer chromatography (TLC) was performed on Silica gel [CDH silica gel 60-120 mesh, F254 and Merck® silica gel respectively]. Evaporation of solvents was performed at reduced pressure, using a Búchi rotary evaporator. The HPLC was performed in Shimadzu CLASS-VP V6.12 SP3 instrument. All chemicals were purchased from Aldrich, Lancaster and Fluka Chemicals and used as received.

Typical procedure for the preparation of 2-(2-bromo-phenyl)-benzoxazole 1 (Ref 6):-

2-Bromobenzoic acid (2.01 g, 10 mmol) was treated with SOCl₂ (1.427 g, 12 mmol, 0.88 mL, 1.2 equiv) in dry toluene (20 mL) at 80 °C until quenching of an aliquot with few drops of MeOH revealed the complete consumption of acid and appearance of new spot in TLC (1 h). The excess SOCl₂ was distilled off and the reaction mixture was treated with 2-aminophenol (1.09 g, 10 mmol) in dry 1,4-dioxane (20 mL) followed by addition of CH₃SO₃H (2 mL) and the mixture was stirred magnetically at 100 °C. After complete consumption of 2-aminophenol (checked through TLC, 5 h), dioxane was distilled off in rotary evaporator and the residue was diluted with EtOAc (20 mL) followed by saturated aq. NaHCO₃ (20 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3×20 mL). The combined EtOAc extracts were washed with H₂O (3 \times 10 mL), dried (anh Na₂SO₄) and purified by column chromatography (60-120 mesh silica-gel) using hexane/EtOAc solvent system to afford the 1 as yellow solid, (2.056 g, 75%), mp: 51-53 °C; TLC (Hexane:EtOAc, 95:5 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta$ (ppm): 7.46-7.38 (m, 3H), 7.50 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 7.66-7.63 (m, 1H), 7.81 (dd, J = 8.0 Hz, 1.2 Hz, 1H), 7.90-7.87 (m, 1H), 8.11 (dd, J = 7.8 Hz, 1.7 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 110.8, 120.6, 121.9, 124.7, 125.6, 127.5, 128.4, 132.0, 132.2, 134.7, 141.6, 150.7, 161.6; IR (KBr) ν_{max} : 2927, 1277, 1267, 1057, 1039 cm⁻¹; HRMS (ESI) (M + Na)⁺ calcd. for C₁₃H₈NOBrNa, 295.9687; found, 295.9684.

Typical procedure for the conventional Suzuki coupling of 1 with phenylboronic acid 2a to form 2-biphenyl-2-yl-benzoxazole 3a in the presence of Pd catalyst (Scheme 1):-

To a magnetically stirred solution of [Pd(PPh₃)₄] (3.5 mg, 0.03 mmol, 3 mol%) in DMF (2 mL) were added **1** (0.274 g, 1 mmol), phenylboronic acid **2a** (0.146 g, 1.2 mmol, 1.2 equiv) and Na₂CO₃ (0.127 g, 1.2 mmol, 1.2 equiv) at reflux (the oil-bath temperature was 165 °C). Upon completion of the reaction (4 h, TLC), the reaction mixture was cooled to room temperature; diluted with H₂O (10 mL) and extracted with DCM (2 × 5 mL) followed by washing with brine (5 mL). The DCM layer was separated from the aqueous layer and then dried (anh Na₂SO₄); filtered off and evaporated to dryness under vacuum (30 mm Hg). The residue was passed through chromatography column (silica-gel; 60-120 mesh) and eluted with hexane-EtOAc to afford the **3a** as off white semi-solid, (0.176 g, 65%); TLC (Hexane:EtOAc, 95:5 v/v): $R_f \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.32 – 7.37 (m, 8H), 7.52 – 7.56 (m, 2H), 7.60 – 7.64 (m, 1H), 7.74 – 7.76 (m, 1H), 8.14 – 8.16 (m, 1H); IR (KBr) v_{max}: 1616, 1455, 1247, 1027 cm⁻¹; MS (ESI) (M + H)⁺ = 272.6.

Typical procedure for the synthesis of 2'-benzoxazol-2-yl-3-chloro-biphenyl-4-ol 3n (Scheme 2):-

To a solution of 2-(4'-benzyloxy-3'-chloro-biphenyl-2-yl)-benzoxazole **3i** (0.412 g, 1 mmol, 1 equiv) in EtOH (10 mL) was added catalytic Pd/C (10% w/w, 100 mg) at room temperature (30-40 °C). The reaction mixture was charged with H₂ (40 psi pressure) and shaken on parr hydrogenator. After the completion of the reaction (4 h, TLC), the reaction mixture was filtered through a pad of celite and was concentrated under reduced pressure in rotary vacuum evaporator to afford the crude product which was purified by column chromatography (60-120 mesh silicagel) using hexane/EtOAc solvent system to afford the **3n** as off white semi-solid, (0.257 g, 80%); TLC (Hexane:EtOAc, 85:15 v/v): $R_f \approx 0.5$; ¹H NMR (CD₃OD, 400 MHz) δ (ppm): 6.84 (d, J = 8.0 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 7.26 (s, 1H), 7.38–7.32 (m, 2H), 7.42–7.40 (m, 1H), 7.55–7.48 (m, 2H), 7.65–7.61 (m, 1H), 7.70–7.68 (m, 1H), 8.00 (d, J = 8.0 Hz, 1H); ¹³C NMR (CD₃OD + CDCl₃, 100 MHz) δ (ppm): 110.5, 116.0, 119.4, 120.2, 124.6, 125.3, 125.7, 127.4, 128.1, 129.9, 130.7, 130.9, 131.3, 133.0, 140.9, 141.1, 150.6, 152.4, 164.0; IR (KBr) v_{max}: 3549, 2987, 1612, 1501, 1476, 1455, 1281, 1259, 1243, 1103 cm⁻¹; HRMS (ESI) (M + Na)⁺ calcd. for C₁₉H₁₂NO₂ClNa, 344.0454; found, 344.0459.

Typical procedure for the synthesis of 2-(4'-methanesulfonyl-biphenyl-2-yl)-benzoxazole 30 (Scheme 2):-

An aqueous solution of oxone (50% w/v, 3 mmol, 3 equiv) was added dropwise to a stirred solution of 2-(4'-methylsulfanyl-biphenyl-2-yl)-benzoxazole **3f** (0.317 g, 1 mmol) in 1,4-dioxane (5 mL) at 0 °C. The reaction was allowed to proceed with stirring at room temperature (30-40 °C) for 4 h (TLC). The reaction mixture was diluted with H₂O (5 mL), extracted with EtOAc (2 × 5 mL), the EtOAc layer was washed successively with brine solution and water (5 mL each), the organic phase was separated, dried (anh Na₂SO₄) and concentrated under reduced pressure in rotary vacuum evaporator to afford the crude product which was purified by column chromatography (60-120 mesh silica-gel) using hexane/EtOAc solvent system to afford the **3o** as off white semi-solid, (0.279 g, 80%); TLC (Hexane:EtOAc, 80:20 v/v): $R_f \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 3.10 (s, 3H), 7.34–7.31 (m, 3H), 7.46 (dd, *J* = 7.2 Hz, 1.6 Hz, 1H), 7.52–7.50 (m, 2H), 7.62–7.57 (m, 2H), 7.69–7.63 (m, 1H), 7.94–7.92 (m, 2H), 8.20 (dd, *J* = 7.2 Hz, 1.6 Hz, 1H), ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 44.6, 110.5, 120.2, 124.6, 125.4, 126.2, 127.2, 128.7, 129.9, 131.0, 131.2, 139.3, 140.3, 141.5, 146.9, 150.6, 162.7; IR (KBr) v_{max}: 2953, 2853, 1667, 1594, 1452, 1311, 1150 cm⁻¹; HRMS (ESI) (M + Na)⁺ calcd. for C₂₀H₁₅NO₃SNa, 372.0670; found, 372.0666.

Characterization of compounds

2-Biphenyl-2-yl-benzoxazole⁷ **3a (Scheme 1):-** Off white semi-solid; TLC (Hexane:EtOAc, 95:5 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.32 – 7.37 (m, 8H), 7.52 – 7.56 (m, 2H), 7.60 – 7.64 (m, 1H), 7.74 – 7.76 (m, 1H), 8.14 – 8.16 (m, 1H); IR (KBr) $v_{\rm max}$: 1616, 1455, 1247, 1027 cm⁻¹; MS (ESI) (M + H)⁺ = 272.6.

2-(4'-Methoxy-biphenyl-2-yl)-benzoxazole 3b (Scheme 1):- Off white solid; mp: 109-111 °C; TLC (Hexane:EtOAc, 80:20 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 3.78 (s, 3H), 6.83 – 6.85 (m, 2H), 7.18 – 7.22 (m, 2H), 7.23 – 7.31 (m, 3H), 7.42 – 7.44 (m, 2H), 7.51 – 7.55 (m, 1H), 7.71 – 7.73 (m, 1H), 8.05 – 8.08 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 55.3, 110.6, 113.7, 120.1, 124.3, 124.9, 126.2, 127.2, 130.0, 131.0, 131.1, 131.2, 133.3, 141.8, 142.1, 150.8, 159.0, 164.1; IR (KBr) v_{max} : 2952, 2929, 1615, 1457, 1249, 1184, 1030 cm⁻¹; HRMS (M + Na)⁺ calcd. for C₂₀H₁₅NO₂Na, 324.1000; found, 324.1021.

2-(3',4'-Dimethoxy-biphenyl-2-yl)-benzoxazole 3c (Scheme 1):- Off white semi-solid; TLC (Hexane:EtOAc, 75:25 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 3.46 (s, 3H), 3.88 (s, 3H), 6.88 (dd, J = 7.6 Hz, 1.5 Hz, 1H), 6.98 (dd, J = 8.2 Hz, 1.5 Hz, 1H), 7.08 – 7.12 (m, 1H), 7.26 – 7.30 (m, 3H), 7.49 – 7.51 (m, 1H), 7.54 – 7.60 (m, 2H), 7.68 – 7.71 (m, 1H), 8.24 –

8.26 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 56.1, 60.4, 110.4, 112.3, 120.1, 122.7, 123.8, 124.2, 124.7, 127.0, 127.6, 130.2, 130.6, 131.7, 135.6, 138.3, 141.8, 146.6, 150.7, 152.5, 163.8; IR (KBr) ν_{max} : 2933, 1609, 1521, 1457, 1249, 1027 cm⁻¹; HRMS (M + Na)⁺ calcd. for C₂₁H₁₇NO₃Na, 354.1106; found, 354.1107.

2-(2',3'-Dimethoxy-biphenyl-2-yl)-benzoxazole 3d (Scheme 1):- Off white semi-solid; TLC (Hexane:EtOAc, 75:25 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 3.64 (s, 3H), 3.92 (s, 3H), 6.79 (d, J = 1.9 Hz, 1H), 6.86 – 6.91 (m, 2H), 7.30 – 7.35 (m, 3H), 7.51 – 7.56 (m, 2H), 7.59 – 7.61 (m, 1H), 7.75 – 7.77 (m, 1H), 8.05 – 8.08 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 55.7, 55.9, 110.6, 110.9, 112.1, 120.0, 121.1, 124.4, 125.0, 126.4, 127.3, 130.9, 131.0, 131.1, 133.5, 141.6, 142.1, 148.4, 148.5, 150.7, 164.1; IR (KBr) v_{max}: 2933, 1575, 1471, 1453, 1263, 1022 cm⁻¹; HRMS (M + Na)⁺ calcd. for C₂₁H₁₇NO₃Na, 354.1106; found, 354.1104.

2-(3'-Cyclopentyloxy-4'-methoxy-biphenyl-2-yl)-benzoxazole 3e (Scheme 1):- Off white semi-solid; TLC (Hexane:EtOAc, 90:10 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 1.61 – 1.67 (m, 8H), 3.88 (s, 3H), 4.42 – 4.44 (m, 1H), 6.72 (d, J = 2.0 Hz, 1H), 6.89 – 6.96 (m, 2H), 7.27 – 7.37 (m, 3H), 7.48 – 7.54 (m, 2H), 7.58 – 7.62 (m, 1H), 7.74 – 7.76 (m, 1H), 8.04 (dd, J = 7.8 Hz, 1.1 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 24.0, 32.6, 56.0, 80.2, 110.7, 111.6, 115.7, 120.0, 120.8, 124.3, 124.9, 126.4, 127.2, 130.9, 131.0, 131.1, 133.4, 141.8, 142.3, 147.1, 149.4, 150.9, 164.2; IR (KBr) v_{max} : 2929, 2657, 1522, 1473, 1457, 1249, 1022 cm⁻¹; HRMS (M + Na)⁺ calcd. for C₂₅H₂₃NO₃Na, 408.1576; found, 408.1575.

2-(4'-Methylsulfanyl-biphenyl-2-yl)-benzoxazole 3f (Scheme 1):- Off white solid; mp: 89-91 °C; TLC (Hexane:EtOAc, 95:5 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.51 (s, 3H), 7.23 (s, 4H), 7.29 – 7.36 (m, 3H), 7.48 – 7.53 (m, 2H), 7.58 – 7.61 (m, 1H), 7.73 – 7.75 (m, 1H), 8.11 (dd, J = 7.7 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 15.7, 110.6, 120.1, 124.3, 125.0, 126.1, 127.5, 129.2, 131.0, 131.1, 131.1, 137.7, 141.7, 141.8, 150.7, 163.8; IR (KBr) v_{max} : 2927, 2657, 1599, 1473, 1451, 1249, 1020 cm⁻¹; HRMS (M + Na)⁺ calcd. for C₂₀H₁₅NOSNa, 340.0772; found, 340.0770.

2-(3'-Chloro-4'-methoxy-biphenyl-2-yl)-benzoxazole 3g (Scheme 1):- Light yellow solid; mp: 103-105 °C; TLC (Hexane:EtOAc, 90:10 v/v): $R_f \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 3.94 (s, 3H), 6.88 (d, J = 8.5 Hz, 1H), 7.10 (dd, J = 8.5 Hz, 2.2 Hz, 1H), 7.31 – 7.38 (m, 3H), 7.44 (dd, J = 2.2 Hz, 1H), 7.46 – 7.48 (m, 1H), 7.53 (dt, J = 8.6 Hz, 1.4 Hz, 1H), 7.58 – 7.60 (m, 1H), 7.74 – 7.76 (m, 1H), 8.13 (dd, J = 7.8 Hz, 1.3 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 56.2, 110.6, 111.5, 120.2, 122.1, 124.4, 125.1, 126.2, 127.7, 128.3, 130.6, 131.1, 131.2, 134.2, 140.7, 141.6, 150.7, 154.3, 163.5; IR (KBr) v_{max}: 2983, 1611, 1500, 1476, 1453, 1282, 1260, 1243, 1106, 1059 cm⁻¹; HRMS (M + Na)⁺ calcd. for C₂₀H₁₄NO₂ClNa, 358.0611; found, 358.0611.

2-(3'-Chloro-4'-isopropoxy-biphenyl-2-yl)-benzoxazole 3h (Scheme 1):- Off white semi-solid; TLC (Hexane:EtOAc, 95:5 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 1.41 (d, *J* = 6.1 Hz, 6H), 4.55 – 4.60 (m, 1H), 6.88 (d, *J* = 8.5 Hz, 1H), 7.04 (dd, *J* = 8.4, 2.2 Hz, 1H), 7.30 – 7.37 (m, 3H), 7.43 (d, *J* = 2.2 Hz, 1H), 7.47 – 7.49 (m, 1H), 7.52 – 7.54 (m, 1H), 7.57 – 7.60 (m, 1H), 7.74 – 7.76 (m, 1H), 8.14 (dd, *J* = 7.7 Hz, 1.3 Hz, 1H); ¹³C NMR (CDCl₃, 100

MHz) δ (ppm): 22.0, 72.2, 110.5, 116.0, 120.1, 124.0, 124.4, 125.0, 126.2, 127.6, 128.2, 130.7, 131.0, 131.1, 134.4, 140.8, 141.7, 150.7, 153.0, 163.6; IR (KBr) v_{max}: 2977, 1613, 1509, 1478, 1452, 1281, 1260, 1241, 1111, 1062 cm⁻¹; HRMS (M + Na)⁺ calcd. for C₂₂H₁₈NO₂ClNa, 386.0924; found, 386.0927.

2-(4'-Benzyloxy-3'-chloro-biphenyl-2-yl)-benzoxazole 3i (Scheme 1):- Off white semisolid; TLC (Hexane:EtOAc, 93:7 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 5.18 (s, 2H), 6.90 (d, J = 8.5 Hz, 1H), 7.06 (dd, J = 8.4, 2.1 Hz, 1H), 7.31 – 7.38 (m, 4H), 7.40 – 7.45 (m, 2H), 7.47 – 7.54 (m, 5H), 7.56 – 7.60 (m, 1H), 7.76 – 7.78 (m, 1H), 8.16 (d, J = 7.7Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 70.9, 110.6, 113.5, 120.2, 122.9, 124.5, 125.1, 126.2, 127.1, 127.7, 128.0, 128.3, 128.6, 130.7, 131.1, 131.1, 131.2, 134.6, 136.5, 140.7, 141.6, 150.7, 153.5, 163.5; IR (KBr) v_{max}: 1607, 1500, 1453, 1293, 1260, 1241, 1057 cm⁻¹; HRMS (M + Na)⁺ calcd. for C₂₆H₁₈NO₂ClNa, 434.0924; found, 434.0922.

2-(4'-Fluoro-biphenyl-2-yl)-benzoxazole 3j (Scheme 1):- Off white semi-solid; TLC (Hexane:EtOAc, 95:5 v/v): $R_f \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.31 – 7.34 (m, 3H), 7.43 - 7.45 (m, 2H), 7.48 – 7.50 (m, 1H), 7.59 – 7.65 (m, 4H), 7.72 – 7.74 (m, 1H), 8.19 – 8.22 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 110.5, 120.2, 124.5, 125.0, 125.1, 125.2, 125.6, 126.2, 128.3, 129.2, 129.6, 131.0, 131.1, 131.2, 140.9, 141.6, 144.7, 150.6, 163.1; IR (KBr) v_{max}: 2927, 1749, 1609, 1459, 1278, 1261, 1091 cm⁻¹; HRMS (M + Na)⁺ calcd. for C₁₉H₁₂NOFNa, 312.0801; found, 312.0806.

2-(4'-Trifluoromethyl-biphenyl-2-yl)-benzoxazole 3k (Scheme 1):- Off white semisolid; TLC (Hexane:EtOAc, 95:5 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.28 – 7.33 (m, 3H), 7.40 – 7.42 (m, 2H), 7.46 (dd, J = 7.4, 1.4 Hz, 1H), 7.54 – 7.63 (m, 4H), 7.69 – 7.71 (m, 1H), 8.18 (dd, J = 7.7, 1.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 110.5, 120.2, 124.5, 125.0, 125.0, 125.1, 125.1, 125.2, 126.2, 128.3, 128.9, 129.3, 129.6, 131.0, 131.1, 131.1, 140.9, 141.6, 144.8, 150.6, 163.1; IR (KBr) v_{max}: 3001, 1737, 1698, 1677, 1540, 1522, 1457, 1326, 1277, 1261, 1122 cm⁻¹; HRMS (M + Na)⁺ calcd. for C₂₀H₁₂NOF₃Na, 362.0769; found, 362.0774.

2'-Benzoxazol-2-yl-biphenyl-4-carbaldehyde 31 (Scheme 1):- Off white semi-solid; TLC (Hexane:EtOAc, 90:10 v/v): $R_f \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.30 – 7.35 (m, 3H), 7.48 – 7.53 (m, 3H), 7.59 – 7.66 (m, 2H), 7.71 – 7.73 (m, 1H), 7.88 – 7.90 (m, 2H), 8.19 – 8.22 (m, 1H), 10.08 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 110.6, 120.2, 124.5, 125.2, 126.2, 128.5, 129.6, 129.6, 131.0, 131.0, 131.2, 135.2, 141.0, 141.6, 147.4, 150.6, 163.0, 192.1; IR (KBr) v_{max} : 1708, 1600, 1241, 1211, 1030 cm⁻¹; HRMS (M + Na)⁺ calcd. for C₂₀H₁₃NO₂Na, 322.0844; found, 322.0849.

2'-Benzoxazol-2-yl-biphenyl-4-carbonitrile 3m (Scheme 1):- Off white semi-solid; TLC (Hexane:EtOAc, 85:15 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.34 – 7.36 (m, 3H), 7.42 – 7.44 (m, 2H), 7.46 – 7.48 (m, 1H), 7.61 – 7.64 (m, 2H), 7.65 – 7.68 (m, 2H), 7.70 – 7.72 (m, 1H), 8.20 – 8.24 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 110.5, 111.1, 120.3, 124.6, 125.4, 126.1, 128.7, 129.7, 130.9, 131.0, 131.2, 131.9, 140.4, 141.5, 145.9, 150.6; IR (KBr) v_{max}:

2921, 2859, 2223, 1611, 1457, 1244, 1032 cm⁻¹; HRMS $(M + Na)^+$ calcd. for $C_{20}H_{12}N_2ONa$, 319.0847; found, 319.0844.

Biology Data

Cyclooxygenase Inhibition Studies

In vitro COX-1 and COX-2 inhibitory activities (µM) were determined using COX inhibitor screening assay kit (ovine COX-1 and human recombinant COX-2) with 96-well plates as per the manufacturer's protocol through direct measurement of $PGF_{2\alpha}$ produced by $SnCl_2$ reduction of COX-derived PGH₂.⁸ The samples for determination of initial activity of COX-1, COX-2 and inhibitor screening were prepared by adding 950 µL reaction buffer, 10 µL heme, 10 µL of COX-1/COX-2 enzyme and 20 µL of DMSO (inhibitor dissolved in DMSO in case of inhibitor screening) in separate test tubes. The COX-1/COX-2 background samples were prepared by adding 970 µL reaction buffer, 10 µL heme and 10 µL of inactivated COX-1/COX-2 enzyme (inactivated by incubating in boiling water for 3 min) in the test tube. Reactions were initiated by adding 10 µL of arachidonic acid (AA) to each test tube and incubated at 37 °C for 2 minutes. The enzyme catalysis was quenched by adding 50 µL of 1 M HCl. PGH₂ thus formed was reduced to $PGF_{2\alpha}$ by adding 100 µL of $SnCl_2$ solution to each test tube. The quantification of prostaglandin formed in each well was done using specific prostaglandin antiserum and reading the 96-well plate at 405 nm using ELISA plate reader. The results of this assay have been represented in terms of the percent inhibition of COX-1 and COX-2 enzymes at 10 µM of inhibitor/standard concentration. The IC₅₀ values of the selected test compounds and standard drug was calculated from concentration-inhibition response curve.

Carrageenan-Induced Paw Edema Method

The acute anti-inflammatory effect was evaluated by the carrageenan-induced paw edema assay in Wistar albino rats following the reported protocol⁹ in compliance with the relevant laws on approval with IAEC (Institutional Animal Ethics Committee). The rats were divided into the following groups: carrageenan control, test compounds, celecoxib and diclofenac as standards, each comprising six animals. Acute edema was induced by subplantar administration of 0.1 mL of carrageenan (1%). The test compounds were suspended in 1% Tween-80 suspension and administrated intraperitoneally <u>10 min after the administration of Carrageenan</u>. Paw volume was measured prior to injection of carrageenan (0 h) and then at an interval of 1 h up to 3 h using a plethysmograph. The results are reported as paw volume expressed in mL. The change in paw volume was measured using the formula:

% reduction of inflammation = $[1 - (V_t/V_c) \times 100]$

Where, V_t is the change in paw volume in the test compound treated group, and V_c , is the change in paw volume in the control group.

Rationalisation of COX-2 selectivity of the novel inhibitors 3g, 3n, and 3o through Computational Studies (3D QSAR) and correlation with the coxibs (Celecoxib, Rofecoxib, and Etoricoxib).

For the COX-2 docking studies celecoxib was used as the standard. Celecoxib gave more or less same results as SC-558. Celecoxib maintained four major interactions with Gln192, His90, Ser353 and Leu352 in the COX-2 active site.¹⁰ The hydrogen atom attached to the N atom of the sulfonamide moiety of celecoxib forms hydrogen bonding interaction with the carbonyl oxygen of Gln192 (N- $H^{...}O$ =C-Gln192, 3.0 Å), Leu352 (N- $H^{...}O$ =C-Leu352, 2.4 Å) and Ser353 ((N- $H^{...}O$ =C-Ser353, 2.3 Å). The oxygen atom of sulfonamide moiety of celecoxib forms hydrogen bonding interaction with the imidazole NH of His90 (S= $O^{...}H$ -N-His90, 2.4 Å).

The compounds **3g**, **3n** and **3o** were docked individually. The **3g** showed weak interaction of the hydrogen atom of the methoxy group with the carbonyl (C = O) oxygen atom of Gln192. The docking score was 66.9734. The compound **3n** showed hydrogen bonding interaction through the hydrogen atom of the hydroxyl group with the carbonyl (C = O) oxygen atom of Gln192 (O- $H^{...}O$ =C-Gln192, 3.0 Å). The docking score was 63.1820. The **3o** showed strong hydrogen bonding interaction through the oxygen atom of SO₂Me group with the hydrogen atom of the C = NH of the guanidine moiety of Arg513 (S= $O^{...}H$ -N-Arg512, 2.8 Å). The docking score was 63.2420. The marketed COX-2 selective drugs, having methyl sulfonyl moieties e.g. rofecoxib and etoricoxib were docked into the active site of COX-2 and similar type of interactions were observed. The devoid of the amino acid Arg513 in COX-1 provides the advantage for COX-2 selectivity.

Celecoxib, **3a**, **3g**, **3n** and **3o** were docked individually into the active site of COX-1 (3KK6). However, none of these showed any significant interaction in the COX-1 active site that account for the COX-2 selectivity of these compounds.

COMPOUND	DOCKING POSE	INTERACTION	GOLD
(Celecoxib)	PHE-518 ALA-516 TYR-385 PHE-381 PHE-381 PHE-518 ALA-516 TYR-385 PHE-518 ALA-516 TYR-385 PHE-518 ALA-516 TYR-385 SEP 553 HIS-90 VAL-34 SER 530 LEU-359 VAL-116	Gln192, His90, Ser353, Leu352.	SCORE 70.5354
(Compound 3b)	TYB-385 PHE-518 ARG+513 PHE-381 LEU-	No interaction	56.2468
(Compound 3c)	PHE-518 PHE-522 PHE-384 PHE-381 PHE-381 PHE-381 PHE-381 PHE-381 PHE-381 PHE-381 PHE-381 PHE-381 PHE-381 PHE-381 PHE-381 PHE-381	Oxygen of OMe is interacting with His 90.	58.3078

Table C: Comparison of benzoxazole derivatives with celecoxib in COX-2 (6COX)

(Compound 3g)	ALAS16 GLN192 GLY-354 TYR-355 LED-359 MET-522 VAL-23 GLY-526 PHE-381 SER-530 LEU-359	Weak interaction of hydrogen of methoxy group with Gln192	66.9734
(Compound 3h)	GLN 192 ARG 513 PHE-518 CEH-384 MET-522 CEH-384 HIS-590 CEH-526 HIS-590 CEH-526 SER 530 ARG-120	Lone pair of Cl is weakly interacting with carbonyl of Leu 352.	58.1217
(Compound 3i)	PHE- \$18 ALA-516 GLY-192 GLY-526 ALA-527 ALA-527 LEU-359	Lone pair of Cl is weakly interacting with NH of His 90.	52.3478

F (Compound 3j)	MET-522 VAL-93 LEU-352 TYB-355	Lone pair of F is very weakly interacting with carbonyl of Leu 352.	51.5463
$F_{3}C$ (Compound 3k)	GLN 192 ADAY516 3'4 LEU-352 GLY-526	Lone pair of F is very weakly interacting with carbonyl of Leu 352 and Gln 192.	58.3421
Compound 31)	PHE-518 METr522 3.6 ALA-527	Oxygen of C= O is interacting with N-H of PHE 518.	55.4321

(Compound 3m)	GLN 192 ARG:518 325 VAL:523 GL:526 ALA527 ARG:120	Nitrogen of cyano group is weakly interacting of C= O of Gln 192.	56.3256
(Compound 3n)	Per Educational Use Only FIT-301 FIT-301 CLU 192 CLU 193 CLU	Hydroxy is interacting with GIn192	63.1820
(Compound 3o)	For Educational Use Only HIS-90 ARG-513 2:8 ARG-513 2:1 ALA-516 PHE-518 CLN-192 LEU-352 SER-530	Oxygen of SO ₂ Me is interacting with Arg 513	63.2420

Figure G: Comparison of poses of different coxibs (celecoxib, etoricoxib, rofecoxib) with 3b-3f and 3h-3m inside the active site of COX-2.

Celecoxib is in green color, Etoricoxib is in pink color, Rofecoxib is in blue color and **compound 3b** is in light blue.

Celecoxib is in green color, Etoricoxib is in pink color, Rofecoxib is in blue color and **compound 3c** is in marine blue.

Celecoxib is in green color, Etoricoxib is in pink color, Rofecoxib is in blue color and **compound 3d** is in slate blue.

Celecoxib is in green color, Etoricoxib is in pink color, Rofecoxib is in blue color and **compound 3e** is in purple blue.

Celecoxib is in green color, Etoricoxib is in pink color, Rofecoxib is in blue color and **compound 3f** is in tv red.

Celecoxib is in green color, Etoricoxib is in pink color, Rofecoxib is in blue color and **compound 3h** is in red selmon.

Celecoxib is in green color, Etoricoxib is in pink color, Rofecoxib is in blue color and **compound 3i** is in red brown color.

Celecoxib is in green color, Etoricoxib is in pink color, Rofecoxib is in blue color and **compound 3j** is in tv yellow color.

Celecoxib is in green color, Etoricoxib is in pink color, Rofecoxib is in blue color and **compound 3k** is in yellow wheat color.

Celecoxib is in green color, Etoricoxib is in pink color, Rofecoxib is in blue color and **compound 31** is in yellow sand color.

Celecoxib is in green color, Etoricoxib is in pink color, Rofecoxib is in blue color and **compound 3m** is in bright orange color.

Comparison of docking poses of **3g**, **3n** and **3o** with celecoxib was performed (Fig. H) and it was observed that all of these compounds have 'V shape' docking pose similar to that with celecoxib.

For Educational Use Only

Figure H: Comparison of interaction poses of 3g, 3n and 3o with celecoxib inside the active site of COX-2.

(Celecoxib is in green color, **3g** is in orange color, **3n** is in gray white color and **3o** is in blue color).

Scanned NMR Spectra

¹H NMR of 2-(4'-Methoxy-biphenyl-2-yl)-benzoxazole 3b (Scheme 1):-

0 ·ppm

¹H NMR of 2-(3',4'-Dimethoxy-biphenyl-2-yl)-benzoxazole 3c (Scheme 1):-

¹H NMR of 2-(2',3'-Dimethoxy-biphenyl-2-yl)-benzoxazole 3d (Scheme 1):-

S32

¹H NMR of 2-(3'-Chloro-4'-isopropoxy-biphenyl-2-yl)-benzoxazole 3h (Scheme 1):-

S34

¹H NMR of 2-(4'-Trifluoromethyl-biphenyl-2-yl)-benzoxazole 3k (Scheme 1):-

¹H NMR of 2'-Benzoxazol-2-yl-3-chloro-biphenyl-4-ol 3n (Scheme 2):-

Scanned HPLC Spectra to Determine the Purity of Compounds

HPLC of 2-Biphenyl-2-yl-benzoxazole 3a (Scheme 1):-

E:\B Pujala\Kapil\KS-314A1.lcd

Acquired by	: Admin
Sample Name	: KS-314A
Sample ID	: KS-314A
Vail #	: 32
Injection Volume	: 10 uL
Data File Name	: KS-314A1.lcd
Method File Name	: COAN1.lcm
Batch File Name	:
Report File Name	: Default.lcr
Data Acquired	: 4/8/2012 9:27:20 PM
Data Processed	: 4/8/2012 10:12:22 PM

<Chromatogram>

1 PDA Multi 1/256nm 4nm

PDA Ch1 25	6nm 4nm		PeakTa	ble	
Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.424	613853	18503	3.759	4.241
2	10.445	15714980	417780	96.241	95.759
Total		16328833	436283	100.000	100.000

HPLC of 2-(4'-Methoxy-biphenyl-2-yl)-benzoxazole 3b (Scheme 1):-

E:\B Pu	jala\Ka	pil\KS-3	09.lcd
---------	---------	----------	--------

Acquired by	: Admin
Sample Name	: KS-309
Sample ID	: KS-309
Vail #	: 31
Injection Volume	: 10 uL
Data File Name	: KS-309.lcd
Method File Name	: COAN1.lcm
Batch File Name	:
Report File Name	: Default.lcr
Data Acquired	: 4/8/2012 6:37:13 PM
Data Processed	: 4/8/2012 7:22:16 PM

<Chromatogram>

1 PDA Multi 1/256nm 4nm

				PeakTable		
Р	DA Ch1 2	56nm 4nm				
Г	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	3.415	132095	8838	0.509	1.048
	2	3.794	274031	17473	1.056	2.072
	3	9.227	25550927	817160	98.435	96.881
	Total		25957053	843471	100.000	100.000

S42

HPLC of 2-(3',4'-Dimethoxy-biphenyl-2-yl)-benzoxazole 3c (Scheme 1):-

E:\B Pujala\Kapil\KS-310.lcd

Acquired by	: Admin
Sample Name	: KS-310
Sample ID	: KS-310
Vail #	: 36
Injection Volume	: 10 uL
Data File Name	: KS-310.lcd
Method File Name	: COAN1.lcm
Batch File Name	:
Report File Name	: Default.lcr
Data Acquired	: 4/9/2012 12:23:36 PM
Data Processed	: 4/9/2012 1:08:39 PM

<Chromatogram>

1 PDA Multi 1/256nm 4nm

DA Ch1 256nm 4nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	5.331	1018910	51212	1.031	1.612	
2	7.887	94291851	3054643	95.399	96.164	
3	9.054	3528292	70645	3.570	2.224	
Total		98839053	3176499	100.000	100.000	

PeakTable

HPLC of 2-(2',3'-Dimethoxy-biphenyl-2-yl)-benzoxazole 3d (Scheme 1):-

E:\B Pujala\Kapil\KS-308.Icd

Acquired by	: Admin
Sample Name	: KS-308
Sample ID	: KS-308
Vail #	: 35
Injection Volume	: 10 uL
Data File Name	: KS-308.lcd
Method File Name	: COAN1.lcm
Batch File Name	:
Report File Name	: Default.lcr
Data Acquired	: 4/9/2012 11:31:57 AM
Data Acquired	: 4/9/2012 11:31:57 AM
Data Processed	: 4/9/2012 12:17:01 PM

<Chromatogram>

1 PDA Multi 1/256nm 4nm

reakiable					
PDA Ch1 25	56nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.456	25444160	1114988	99.130	99.283
2	8.806	223290	8055	0.870	0.717
Total		25667450	1123043	100.000	100.000

PeakTable

HPLC of 2-(3'-Cyclopentyloxy-4'-methoxy-biphenyl-2-yl)-benzoxazole 3e (Scheme

1):-

E:\B Pujala\Kapil\KS-303.ld	cd
-----------------------------	----

Acquired by	: Admin
Sample Name	: KS-303
Sample ID	: KS-303
Vail #	: 39
Injection Volume	: 10 uL
Data File Name	: KS-303.lcd
Method File Name	: COAN1.lcm
Batch File Name	:
Report File Name	: Default.lcr
Data Acquired	: 4/9/2012 3:31:56 PM
Data Processed	: 4/9/2012 4:17:01 PM

1 PDA Multi 1/256nm 4nm

D	1 T	••	1. 1	
100	V I.	•	n.	0
r ca	N I.	a	U)	
			-	-

PDA Ch1 24	PDA Ch1256nm 4nm						
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	10.838	391709	10491	1.659	2.403		
2	14.802	22612096	417005	95.758	95.511		
3	20.369	609970	9108	2.583	2.086		
Total		23613775	436604	100.000	100.000		

HPLC of 2-(4'-Methylsulfanyl-biphenyl-2-yl)-benzoxazole 3f (Scheme 1):-

E:\B Pujala\Kapil\KS-305C1.lcd

Acquired by	: Admin
Sample Name	: KS-305C
Sample ID	: KS-305C
Vail #	: 30
Injection Volume	: 10 uL
Data File Name	: KS-305C1.lcd
Method File Name	: COAN1.lcm
Batch File Name	:
Report File Name	: Default.lcr
Data Acquired	: 4/8/2012 5:39:58 PM
Data Processed	: 4/8/2012 6:25:01 PM

<Chromatogram>

1 PDA Multi 1/256nm 4nm

1 Cak I abie						
PDA Ch1 256nm 4nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	3.301	287226	18001	0.984	2.577	
2	4.704	374155	21575	1.281	3.088	
3	13.068	28541938	659078	97.735	94.335	
Total		29203320	698655	100.000	100.000	

PeakTable

HPLC of 2-(3'-Chloro-4'-methoxy-biphenyl-2-yl)-benzoxazole 3g (Scheme 1):-

Shimadzu CLASS-VP V6.14 SP1 Area % Report Page 1 of 1

Method Name:C:\CLASS-VP\untitled.metData Name:I:\KApil Seth\KS-SKG-4OMeUser:SystemAcquired:4/12/2012 10:38:02 AMPrinted:10/26/2013 12:37:19 PM

Detector A (256nm)							
Pk #	Retention Time	Area	Area %				
1	4.067	180423	0.723				
2	6.033	237314	0.951				
3	18.458	24543688	98.326				
Totals							
		24961425	100.000				

HPLC of 2-(3'-Chloro-4'-isopropoxy-biphenyl-2-yl)-benzoxazole 3h (Scheme 1):-

E:\B Pujala\Kapil\KS-312.lcd

Acquired by	: Admin
Sample Name	: KS-312
Sample ID	: KS-312
Vail #	: 33
Injection Volume	: 10 uL
Data File Name	: KS-312.lcd
Method File Name	: COAN1.lcm
Batch File Name	:
Report File Name	: Default.lcr
Data Acquired	: 4/8/2012 10:15:41 PM
Data Processed	: 4/8/2012 11:00:45 PM

1	PDA	Multi	1/256nm 4	1nm
---	-----	-------	-----------	-----

PDA Ch1 2	56nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.659	179029	3919	0.211	0.397
2	16.450	303919	5109	0.358	0.518
3	23.883	84244025	975452	99.241	98.894
4	30.424	161129	1881	0.190	0.191
Total		84888103	986361	100.000	100.000

PeakTable

HPLC of 2-(4'-Benzyloxy-3'-chloro-biphenyl-2-yl)-benzoxazole 3i (Scheme 1):-

E:\B Pujala\Kapil\KS-304.lcd

Acquired by Sample Name Sample ID Vail # Injection Volume Data File Name Method File Name Batch File Name Report File Name Data Acquired Data Processed	: Admin : KS-304 : KS-304 : 34 : 10 uL : KS-304.lcd : COAN1.lcm : : Default.lcr : 4/8/2012 11:03:41 PM : 4/8/2012 11:48:43 PM
Data Processed	: 4/8/2012 11:48:43 PM

PDA Ch1 2	56nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	2.917	32271	2714	0.169	1.536
2	3.460	116712	6606	0.612	3.739
3	23.560	176415	2404	0.925	1.361
4	32.389	18738025	164948	98.293	93.364
Total		19063423	176672	100.000	100.000

PeakTable

HPLC of 2-(4'-Fluoro-biphenyl-2-yl)-benzoxazole 3j (Scheme 1):-

E:\B Pujala\Kapil\KS-315B1.lcd

Acquired by Sample Name	: Admin : KS-315B : KS-315B
Vail #	38
Injection Volume	: 10 uL : KS-315B1 lcd
Method File Name	COAN1.lcm
Batch File Name	
Report File Name	Default.lcr
Data Acquired	4/9/2012 2:38:43 PM
Data Processed	: 4/9/2012 3:23:48 PM

PeakTable						
PDA Ch1 25	56nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	6.899	652613	29977	0.411	0.994	
2	10.792	156725242	2964514	98.769	98.260	
3	17.251	1300302	22520	0.819	0.746	
Total		158678157	3017011	100.000	100.000	

HPLC of 2-(4'-Trifluoromethyl-biphenyl-2-yl)-benzoxazole 3k (Scheme 1):-

E:\B Pujala\Kapil\KS-313.lcd

Acquired by	: Admin
Sample Name	: KS-313
Sample ID	: KS-313
Vail #	: 37
Injection Volume	: 10 uL
Data File Name	: KS-313.lcd
Method File Name	: COAN1.lcm
Batch File Name	:
Report File Name	: Default.lcr
Data Acquired	: 4/9/2012 1:45:49 PM
Data Processed	: 4/9/2012 2:30:53 PM

<Chromatogram>

1 PDA Multi 1/256nm 4nm

C1 1 2 5 C

PeakTable

r DA Chi 230nm 4nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	6.846	98967	4265	0.134	0.360	
2	17.005	73754620	1181853	99.866	99.640	
Total		73853587	1186118	100.000	100.000	

HPLC of 2'-Benzoxazol-2-yl-biphenyl-4-carbaldehyde 3l (Scheme 1):-

Shimadzu CLASS-VP V6.12 SP3 Area % Report

Method Name:C:\CLASS-VP\untitled.metData Name:D:\class-vp\DATA\VSM\KApil Seth\KS307User:SystemAcquired:4/11/2012 8:25:59 PMPrinted:4/13/2012 11:54:32 AM

Detector	A (256nm)				
Pk #	Retention Time	Area	Area %	Height	Height %
1	7.992	58843	0.141	2349	0.378
2	20.917	41562589	99.858	618407	99.615
3	29.717	63	0.000	22	0.004
4	29.833	59	0.000	19	0.003
Totals					
		41621554	100.000	620797	100.000

HPLC of 2'-Benzoxazol-2-yl-biphenyl-4-carbonitrile 3m (Scheme 1):-

Method Name: C:\CLASS-VP\untitled.met Data Name: D:\class-vp\DATA\VSM\KApil Seth\KS306 User: System Acquired: 4/11/2012 9:52:52 PM Printed: 4/13/2012 11:50:27 AM

Detector	A (256nm)				
Pk #	Retention Time	Area	Area %	Height	Height %
1	9.892	150716	0.395	6088	1.208
2	25.442	37777155	99.028	493855	98.006
3	27.700	220237	0.577	3962	0.786
Totals					
		38148108	100.000	503905	100.000

HPLC of 2-(4'-Methanesulfonyl-biphenyl-2-yl)-benzoxazole 3o (Scheme 2):-

Shimadzu CLASS-VP V6.12 SP3 Area % Report

Method Name:C:\CLASS-VP\untitled.metData Name:D:\class-vp\DATA\VSM\KApil Seth\KS-SKG-SOUser:SystemAcquired:4/12/2012 9:51:38 AMPrinted:4/13/2012 12:15:31 PM

Detector A (256nm)								
Pk #	Retention Time	Area	Area %	Height	Height %			
1	8.575	28499800	99.327	902763	99.419			
2	12.242	193129	0.673	5278	0.581			
Totals								
		28692929	100.000	908041	100.000			

HPLC of 2'-Benzoxazol-2-yl-3-chloro-biphenyl-4-ol 3n (Scheme 2):-

Shimadzu CLASS-VP V6.12 SP3 Area % Report

Method Name:C:\CLASS-VP\untitled.metData Name:D:\class-vp\DATA\VSM\KApil Seth\KS-SKG-4OHUser:SystemAcquired:4/12/2012 11:24:14 AMPrinted:4/13/2012 12:04:32 PM

Detector A (256nm)								
Pk #	Retention Time	Area	Area %	Height	Height %			
1	7.083	427543	0.698	19762	1.313			
2	8.017	120556	0.197	4668	0.310			
3	9.008	68552	0.112	2857	0.190			
4	11.208	59864612	97.734	1460852	97.057			
5	13.067	771214	1.259	17013	1.130			
Totals								
		61252477	100.000	1505152	100.000			

References

- Rimon, G.; Sidhu, R. S.; Lauver, D. A.; Lee J. Y.; Sharma, N. P.; Yuan, C.; Frieler, R. A.; Trievel, R. C.; Lucchesi, B. R.; Smith, W. L. Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1. *Proc. Natl. Acad. Sci. USA* 2010, *107*, 28-33.
- Kurumbail, R. G.; Stevens, A. M.; Gierse, J. K.; McDonald, J. J.; Stegeman, R. A.; Pak, J. Y.; Glidehaus, D.; Miyashiro, J. M.; Penning, T. D.; Seibert, K.; Isakson, P. C.; Stallings, W. C. Structural basis for selective inhibition of cyclooxygenase-2 by antiinflammatory agents. *Nature* 1996, 384, 644-688.
- 3. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. *J. Mol. Biol.* **1997**, *267*, 727-748.
- 4. Jones, G.; Willett, P.; Glen, R. C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. *J. Mol. Biol.* **1995**, *245*, 43-53.
- 5. Sato, H.; Shewchuk, L. M.; Tang, J. Prediction of multiple binding modes of the CDK2 inhibitors, anilinopyrazoles, using the automated docking programs GOLD, FlexX, and LigandFit: an evaluation of performance. *J. Chem. Inf. Model.* **2006**, *46*, 2552-2562.
- 6. Kumar, D.; Rudrawar, S.; Chakraborti, A. K. One-pot synthesis of 2-substituted benzoxazoles directly from carboxylic acids. *Aust. J. Chem.* **2008**, *61*, 881-887.
- 7. Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Nickel-catalyzed direct arylation of azoles with aryl bromide. *Org. Lett.* **2009**, *11*, 1737-1740.
- 8. Catalog number 560131, Cayman chemical company, www.caymanchem.com.
- Winter, C. A.; Risley, E. A.; Nuss, G. W. Anti-inflammatory and antipyretic activities of indomethacin, 1-(*p*-chlorobenzoyl)-5-methoxy-2-methylindole-3-acetic acid. *Pharmacol. Exp. Ther.* **1963**, *141*, 369-376.
- Wang, J. L.; Carter, J.; Kiefer, J. R.; Kurumbail, R. G.; Pawlitz, J. L.; Brown, D.; Hartmann, S. J.; Graneto, M. J.; Seibert, K.; Talley, J. J. The novel benzopyran class of selective cyclooxygenase-2 inhibitors-part I: The first clinical candidate. *Bioorg. Med. Chem. Lett.* 2010, 20, 7155–7158.