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Abstract

This is the supplementary materials section outlining the biharmonic equation derivation, its

boundary conditions and the expression of scattering coefficients for the core-shell system.
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I. SET-UP OF THE BIHARMONIC EQUATION IN ANISOTROPIC THIN-

PLATES

A. Subdomain governing equation

To perform our simulations, we use the FEM commercial softaware COMSOL

Multiphysics1. The biharmonic equation2 is obtained by a set of two coupled PDE in-

volving two independent functions V and U , where U is the displacement field of the plate.

It is straightforward to show that V and U satisfy the set of equations3,4∇.(−ζ
−1∇U) + λ−1 V = 0

∇.(−ζ−1∇V ) + λ−1 β4
0 U = 0 ,

(1)

where ζ is an inhomogeneous anisotropic 2D tensor and λ is an inhomogeneous coefficient

of the material (to be specified). In cylindrical coordinates and assuming that ζr, ζθ (com-

ponents of ζ) and λ depend only in radial coordinate, these equations become 1
r
∂r(

r
ζr
∂r U) + 1

ζθ r2
∂2θ U − λ−1 V = 0

1
r
∂r(

r
ζr
∂r V ) + 1

ζθ r2
∂2θ V − λ−1 β4

0 U = 0 .
(2)

The equation satisfied by the out-of-plane displacement U is then3–6

∇.(ζ−1∇ (λ∇.(ζ−1∇U)))− λ−1 β4
0 U = 0 . (3)

In cylindrical coordinates and assuming that U =
∑∞

n=−∞ Un(r)ei n θ, the equation satisfied

by Wn writes

∂r(
r

ζr
∂r(λ(

1

r
∂r(

r

ζr
∂r Un)− n2

ζθ r2
Un)))

− n2 λ

ζθ r
(
1

r
∂r(

r

ζr
∂r Un)− n2

ζθ r2
Un)

− r λ−1 β4
0 Un = 0 . (4)

The next step is to find the physical signification of the parameters used in Eq. (3) and

to link them to the physical parameters of the elastic plate. To do so, we can suppose

that the coefficients of Eq. (3) are constants and are expressed in term of the homogeneous

parameters ρ0, E0, ν0 and h0 (density, Young modulus, Poisson ratio and hight of the plate

respectively),

{E−10

12 (1− ν20)

h20
ρ0}{λ−1 ζ2} ⇔ {E−1

12 (1− ν20)

h20
ρ} . (5)
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One possible physical choice is the following one3,4

ζ = E−1/2 , and λ = ρ−1 . (6)

B. Boundary conditions in weak formulation

When considering propagation in finite media, the biharmonic equation [Eq. (3)] is

generally supplied with appropriate boundary conditions that are of three types: simply

supported, fixed (clamped or Dirichlet-type) and freely vibrating (Neumann-type). In terms

of cylindrical coordinates, they can be written respectively as follows (for a plate of radius

a)

U |r=a = 0 , Mr|r=a = 0 , (7)

U |r=a = 0 ,
∂U

∂r
|r=a = 0 , (8)

Mr|r=a = 0 , (Vr −
1

r

∂Mrt

∂θ
)|r=a = 0 , (9)

with Mr = −D[∂2rU + ν(1/r∂rU + 1/r2∂2θU)], Mrt = D(1 − ν)(1/r∂2r,θU − 1/r2∂θU ] and

Vr = −D∂r(∂2rU + 1/r∂rU + 1/r2∂2θU) − 1/r∂θMrt. The first condition given in Eq. (7)

means the plate does not experience any deflection and that bending moments are zero.

The second condition in Eq. (8) says that the boundary of the plate does not experience

any deflection and that it must be horizontal (the derivative is zero). The last one given in

Eq. (9) expresses that the plate is freely vibrating.

The first two conditions can be easily implemented in the commercial software Comsol1.

Howerver, the third one poses a serious convergence problems and is hard to formulate in a

correct manner.

On General form (PDE module of Comsol), the order of equations is important, since in

weak formulation the first equation is multiplied by the test function U and the second one

by the test function test(V ). The natural boundary conditions appear when integrating by

part the following system  −∇ · ∇V + β4U = 0

−∇ · ∇U + V = 0
(10)
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They are given by  n · ∇V = gU

n · ∇U = gV
(11)

where the U and V indices on the boundary flux terms are ther to remind with which test

function they should be multiplied.

As most of the cases we have studied were linked with cylindrical geometries, we will

consider the special case of constant radius circles (with normal vector n pointing towards

the origin). The system (11) becomes

 ∂V/∂r = −gU
∂U/∂r = −gV

(12)

The first condition in (9) which means that there is no bending at the boundary of the

plate can be written for a constant r in cylindrical coordinates as

∂2U

∂r2
+ ν
(1

r

∂U

∂r
+

1

r2
∂2U

∂θ2

)
= 0 (13)

Using the development of the Laplacien in cylindrical coordinates permit us to re-writes

Equation (13) in this form

V −
(1

r

∂U

∂r
+

1

r2
∂2U

∂θ2

)
+ ν
(1

r

∂U

∂r
+

1

r2
∂2U

∂θ2

)
= 0 (14)

This can also be written as follows in order to compare with (12)

∂U

∂r
= r
( V

1− ν
− 1

r2
∂2U

∂θ2

)
(15)

which clearly means that

gV = −r
( V

1− ν
− 1

r2
∂2U

∂θ2

)
(16)

The last step is to express this equation in cartesian system because as we know the

package Comsol isn’t adapted to other types of coordinates (cylindrical or spherical). To do

so, we will use the correspondance ∂/∂r ⇒ (−n · ∇) = −∂/∂n

∂/r∂r ⇒ (−t · ∇) = −∂/∂t
(17)
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where t is the tangential unitary vector (perpendicular with the normal vector n. We remark

that this vector is always twicely applied, so that its direction doesn’t matter. This double

application is also important for the weak formulation which consists in integrating by part

and by using a function test.

Under all these assumption, Equation (16) turns to be implemented in the following weak

form

test(V )gV = −r
(test(V )V

1− ν
+∇T test(V ) · ∇TU

)
(18)

We now turn to the the second condition in (9) expressing that the generalized Kirchhoff

stress is zero can be written

∂

∂r

(∂2U
∂r2

+
1

r

∂U

∂r
+

1

r2
∂2U

∂θ2

)
+

(1− ν)

r

∂

∂θ

(1

r

∂2U

∂r∂θ
− 1

r2
∂U

∂θ

)
(19)

This condition can be transformed, and we finally get the expression of gU

gU =
(1− ν)

r

∂

∂θ

(1

r

∂

∂θ

(∂U
∂r

)
− 1

r2
∂U

∂θ

)
(20)

Finally, we can integrate by parts and multiply by a function test test(U) to obtain the

appropriate form

test(U)gU = −(1− ν)∇T test(V ) ·
(
∇T

(∂U
∂r

)
− 1

r
∇TU

)
(21)

II. SCATTERING COEFFICIENTS

The incident field is a plane wave eik0rcos θ and can be developed in this way

U inc =
∑
n

εni
n Jn(k0 r) cosnθ (22)

The scattered field must satisfy the radiation condition and can be developed in term of the

cylindrical Hankel functions and the modified Bessel ones

U scatt =
∑
n

εni
n[AnH

(1)
n (k0 r) +BnKn(k0 r)] cosnθ (23)

Inside the cloaking shell (as < r < ac), the field must remain finite at r = as, then

U cloak =
∑
n

εni
n[Cn Yn(kc r) +DnKn(kc r) + En Jn(kc r) + Fn In(kc r)] cosnθ (24)
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The field inside the obstacle is given by

U int =
∑
n

εni
n[Gn Jn(ks r) +Hn In(ks r)] cosnθ (25)

The scatterd field can be made identically zero if the scattering coefficients An = Bn = 0

for every n. As pointed out, in the far-field we have Bn = 0. Thus, we have to calculate the

inverse matrix and to find the conditions to impose to have a zero-scattered field.

The scattering coefficients An of the core-shell systems of Fig. 1 are given in Eq. (2) of

the manuscript. These are expressed as ratios An = Ãn/dn. Ãn are the determinants given

in Eq. (4) of the manuscript. The remaining terms dn are also determinants and they could

be expressed as:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H
(1)
n (k0ac) Kn(k0ac) −Yn(kcac) −Kn(kcac) −Jn(kcac) −In(kcac) 0 0

0 0 Yn(kcas) Kn(kcac) Jn(kcac) In(kcac) −Jn(ksas) −In(ksas)

k0H
(1)′
n (k0ac) k0K

′
n(k0ac) −kcY

′
n(kcac) −kcK

′
n(kcac) −kcJ

′
n(kcac) −kcI

′
n(kcac) 0 0

0 0 kcY
′
n(kcas) kcK

′
n(kcas) kcJ

′
n(kcas) kcI

′
n(kcas) −kJ

′
n(ksas) −kI

′
n(ksas)

SH(k0ac) SK(k0ac) −SY (kcac) −SK(kcac) SJ(kcac) SI(kcac) 0 0

0 0 SY (kcas) SK(kcas) SJ(kcas) SI(kcas) −SJ(ksas) SI(ksas)

TH(k0ac) TK(k0ac) −TY (kcac) −TK(kcac) TJ(kcac) TI(kcac) 0 0

0 0 TY (kcas) TK(kcas) TJ(kcas) TI(kcas) −TJ(ksas) TI(ksas)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(26)

with same notations of the parameters as in the manuscript.

The scattering coefficients from clamped obstacles and stress-free holes of the same radius

as could also be obtained from the general case above by removing the sixth and eighth

lines and last two columns, and second and fourth lines and last two columns from the 8× 8

determinants of density-dependent objects, respectively. One obtains thus 6×6 determinants

that can be used to describe scattering from these obstacles.
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