Supporting Information

Expanded Cellular Amino Acid Pools Containing Phosphoserine, Phosphothreonine, and Phosphotyrosine

Justin B. Steinfeld^{II,3}, Hans R. Aerni^{II,1,2}, Svetlana Rogulina^{1,2}, Yuchen Liu³, and Jesse Rinehart^{*1,2}

Department of ¹Cellular & Molecular Physiology, ²Systems Biology Institute, and ³Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520.

^IThese authors contributed equally to this work.

*To whom correspondence should be addressed, jesse.rinehart@yale.edu

Supplemental Figure 1. LC-MS/MS analysis of pThr.

A) A typical chromatogram of an LC-MS/MS run is shown. Unique MRM transitions are plotted for the amino acids indicated above the individual peaks. **B)** A representative calibration curve for pThr is shown. The fitted calibration function for this curve was $y = -1.596345x^2 + 3797.168958x - 862.935161$ and the maximum % residual was 8.7.

Supplemental Figure 2. LC-MS/MS analysis of pTyr.

A) A typical chromatogram of an LC-MS/MS run is shown. Unique MRM transitions are plotted for the amino acids indicated above the individual peaks. **B)** A representative calibration curve for pTyr is shown. The fitted calibration function for this curve was $y = -17.446301x^2 + 34286.990110x - 2974.004316$ and the maximum % residual was 4.4.

Supplemental Figure 3. Quantitation of intracellular amino acids in a $\Delta pnhE1 E$. coli strain.

Measured amino acid quantities of select amino acids in K12 BW25113 WT vs. Δ*phnE1 E. coli* grown in LPM media (light grey vs. dark grey), in LPM media with 5mM pSer (light blue vs. grey), in LPM with 5mM pThr (light violet vs. dark violet), and LPM media with 5mM pTyr (light orange vs. dark orange). Error bars were calculated using the 95% confidence interval, n=5.

Supplemental Figure 4. Dynamic levels of pSer in the cell extracts.

A) Measured amino acid quantities of select amino acids in K12 BW25113 Δ serB E. coli grown in LPM media without (white) or with 5mM pSer (light grey), L-Ser (grey), and pSer/L-Ser (black). **B)** Measured amino acid quantities of select amino acids in K12 BW25113 Δ serB E. coli grown in LPM media (white), HPM media (light grey), in LPM media with 5mM pThr (grey), and HPM media with 5mM pThr (black). Error bars were calculated using the 95% confidence interval, n=5.

Amino	Retention		Product ion	Collision				
Acid	Time (min)	MS	MS ²	Energy (V)				
pSer	0.68	186.02	87.9*	8				
pSer	0.68	186.02	70.0	16				
pThr	0.74	200.03	102.1*	4				
pThr	0.74	200.03	56.0	20				
pTyr	0.92	262.05	216.0*	4				
pTyr	0.92	262.05	118.1	20				
pTyr	0.92	262.05	117.1	48				
pTyr	0.92	262.05	91.0	44				
L-Ser	1.30	106.05	60.0*	4				
L-Ser	1.30	106.05	42.0	20				
L-Ser	1.30	106.05	30.1	20				
L-Thr	1.70	120.07	74.0*	4				
L-Thr	1.70	120.07	56.2	12				
L-Thr	1.70	120.07	29.2	28				
L-Tyr	4.80	182.08	136.1	8				
L-Tyr	4.80	182.08	91.0*	28				
L-Tyr	4.80	182.08	76.9	40				
L-Tyr	4.80	182.08	51.0	68				
L-Phe	8.10	166.09	120.0*	8				
L-Phe	8.10	166.09	103.0	28				
L-Phe	8.10	166.09	76.9	48				
L-Phe	8.10	166.09	51.0	60				
L-His	11.43	156.08	110.1*	13				
L-His	11.43	156.08	82.9	25				
L-His	11.43	156.08	56.1	37				
L-Lys	11.43	147.12	130.3*	8				
L-Lys	11.43	147.12	84.3	0				
L-Lys	11.43	147.12	56.1	28				
L-Arg	11.77	175.12	130.1	12				
L-Arg	11.77	175.12	116.1	12				
L-Arg	11.77	175.12	70.0*	24				
L-Arg	11.77	175.12	60.0	12				

Supplementary Table 1. Optimized Transitions for the Determination of Amino Acids by LC-MS/MS

*Primary transition used for quantitation.

Supplementary Table 2. Upper and Lower Limits of Detection for Measured Amino Acids

	Lower Limit of	Upper Calibration
	Detection (pmol)	Limit (pmol)
pSer	0.5	500
pThr	1	500
pTyr	0.5	500
L-Ser	3	500
L-Thr	2	500
L-Tyr	0.5	500
L-Phe	0.5	500
L-Lys	5	500
L-His	3	500
L-Arg	1	500

Supplementary Table 3. Table of Bacterial Strains.

Strain	Name	Reference
<i>E. coli</i> K12 BW25113	WT (K12)	(1)
E. coli K12 Keio Collection JW4351	ΔserB (K12 ΔserB)	(1)
E. coli BL-21 ΔserB	ΔserB (BL-21 ΔserB)	(2)
E. coli Keio Collection (JW4064)	ΔphnE1	(1)
rEc7.∆prfA.∆tolC.bla:T7.∆serB	EcAR7	(3)

Supplementary Table 4. Final Dynamic MRM Method Method Name 120801_dMRM_final5.m

Method Description

This is 20 pmol/ul of a mino acids in solvent A with 3 ul injection volume. This is dMRM with large windows for Y and Thr

Device List

µHiP ALS NanoPump

Agilent Technologies

CapPump
MS 000

MS QQQ Mass Spectrometer

Ion Source		AIS ES	i		Tune File			atunes.TUNE.XML						
Stop Mode		No Limit/As Pump		Stop Time (n	nin)		1							
Time Filter		On		Time Filter V	Vidth (min)		0.07							
Time Segme	ents	¢		Dividen	Dalla FAAV	64	Curla	Trianad						
Index	(min)	Scan Type	ion Mode	Div valve	Delta ENIV	store	Cycie Time (ms)	riggerea ?	мкм кереаts					
1	0.04	Dyna micM	ESI+A gilent	To MS	350	Yes	800	No	0					
		RM	Jet											
Cod Name	ent 1	ISTD	Scan S Prec	MS1 Res	Prod lon	MS2 Res	Frag (V)	CE(V)	Cell Acc (V)	Ret	Ret	Polarity		
		?	lon				_		-	Time	Window			
F		No	166.09	Wide / Unit (6490)	120	Wide / Unit (6490)	380	8	5	78.1	2.46	Positive		
F		No	7166.09	Wide / Unit (6490)	1 03	Wide / Unit (6490)	" 380	28	5	8.1	2.46	Positive		
F		No	166.09	Wide / Unit (6490)	76.9	Wide / Unit (6490)	380	48	5	8.1	2.46	Positive		
F		No	166.09	Wide / Unit (6490)	51	Wide / Unit (6490)	380	60	5	8.1	2.46	Positive		
н		No	156.08	Wide / Unit (6490)	110.1	Wide / Unit (6490)	380	13	5	11.43	1.62	Positiv e		
н		No	156.08	Wide / Unit (6490)	82.9	Wide / Unit (6490)	380	25	5	11.43	1.62	Positive		
н		No	156.08	Wide / Unit (6490)	56.1	Wide / Unit (6490)	380	37	5	11.43	1.62	Positive		
к		No	147.12	Wide / Unit (6490)	130.3	Wide / Unit (6490)	380	8	5	11.43	1.4	Positive		
к		No	147. 12	Wide / Unit (6490)	84.3	Wide / Unit (6490)	380	0	5	11.43	1.4	Positive		
к		No	147.12	Wide / Unit (6490)	56.1	Wide / Unit (6490)	380	28	5	11.43	1.4	Positive		
L-Serine		No	106.05	Wide / Unit (6490)	60	Wide / Unit (6490)	380	4	5	1.3	2	Positive		
L-Serine		No	106.05	Wide / Unit (6490)	42	Wide / Unit (6490)	380	20	5	1.3	2	Positive		
L-Serine		No	106.05	Wide / Unit (6490)	30.1	Wide / Unit (6490)	380	20	5	1.3	2	Positive		
L-Threonine		No	120.07	Wide / Unit (6490)	74	Wide / Unit (6490)	380	4	5	1.7	2	Positive		
L-Threonine		No	120.07	Wide / Unit (6490)	56.2	Wide / Unit (6490)	380	12	5	1.7	2	Positive		
L-Threonine		No	120.07	Wide / Unit (6490)	29.2	Wide / Unit (6490)	380	28	5	1.7	2	Positive		
L Ty rosinc		No	182.08	Widc / Unit (6490)	136.1	Widc / Unit (6490)	380	8	5	4.8	2	Positive		
L-Ty rosine		No	182.08	Wide / Unit (6490)	91	Wide / Unit (6490)	380	28	5	4.8	2	Positive		
L-Ty rosine		No	182.08	Wide / Unit (6490)	76.9	Wide / Unit (6490)	380	40	5	4.8	2	Positive		
L-Ty rosine		No	182.08	Wide / Unit (6490)	51	Wide / Unit (6490)	380	68	5	4.8	2	Positive		
pSer		No	186.02	Wide / Unit (6490)	87.9	Wide / Unit (6490)	380	8	5	0.68	2.5	Positive		
pSer		No	186.02	Wide / Unit (6490)	70	Wide / Unit (6490)	380	16	5	0.68	2.5	Positive		
pThr		No	200.03	Wide / Unit (6490)	102. 1	Wide / Unit (6490)	380	4	5	0.74	2	Positive		
pThr		No	200.03	Wide / Unit (6490)	56	Wide / Unit (6490)	380	20	5	0.74	2	Positive		
pTyr		No	262.05	Wide / Unit (6490)	216	Wide / Unit (6490)	380	4	5	0.92	2	Positive		
pTyr		No	262.05	Wide / Unit (6490)	118. 1	Wide / Unit (6490)	380	20	5	0.92	2	Positive		
pTyr		No	262.05	Wide / Unit (6490)	117.1	Wide / Unit (6490)	380	48	5	0.92	2	Positive		
pTyr		No	262.05	Wide / Unit (6490)	91	Wide / Unit (6490)	380	44	5	0.92	2	Positive		
R		No	175. 12	Wide / Unit (6490)	130.1	Wide / Unit (6490)	380	12	5	11.77	2	Positive		
R		No	175.12	Wide / Unit (6490)	116.1	Wide / Unit (6490)	380	12	5	11.77	2	Positiv e		
R		No	175. 12	Wide / Unit (6490)	70	Wide / Unit (6490)	380	24	5	11.77	2	Positive		
R		No	175. 1 2	Wide / Unit (6490)	60	Wide / Unit (6490)	380	12	5	11.77	2	Positive		

Supplementary Table 4 (continued). Final Dynamic MRM Method

Parameter Value		: (+)	Value (-)											
Gas Te	mp (°C)		350		350									
Gas Flo	ow (I/mi	n)	11		11									
Nebuli	zer (psi))	23		23									
Sheath	GasHea	ater	150		150									
Sheath	GasFlo	w	12		12									
Capilla	ry (V)		2500		3000									
VCharg	ging		500		1500									
Chrom	atogran	15												
Chrom	Туре	Label	Offset	Y-Range										
MRM		MRM	10	10000										
Instrun	nent Cu	rves												
Capilla	ry Pump	0												
Name				CapPump)	Model	G1376A							
Ordina	I #			1		Options	SSV_FS1_FCC							
Stop Ti	me (mir	ו)		30		Post Time (min)	Off							
Mode				Normal F	low	Flow (µl/min)	200							
Pressu	re Min (bar)		0		Pressure Max (bar)	400							
Fast Re	conditi	oning		Off		Max Flow Gradient (ml/min)	100							
Primar	y Flow (µl/min)	500		Column Flow Ready	N/A							
Calibrated As				Uncalibrated(H2O-H2O)										
Solven	t A			99.5 % Water, 0.5 % ACN, 0.1 % FA, 0.1 % PFOA										
Solven	t Ratio A	4		100										
Compr	ess. A (*	10-6/b	oar)	100										
Solvent B				90 % ACN 0.1 FA, 0.1 % PFOA										
Solven	t Ratio I	3		0										
Compr	ess. B (*	10-6/b	ar)	115										
Stroke	Β (μl)			Auto										
Stroke	Α (μΙ)			Auto										
Contac	t 1			Off										
Contac	t 2			Off										
Contac	t 3			Off										
Contac	t 4			Off										
Pump 1	Time Tal	ble												
Time	Flow	Press	ure	SolvRatio	В									
0	200	400		0										
2	200	400		0										
3	200	400		30										
15	200	400		62										
15.5	300	400		100										
21.5	350	400		100										
22.5	200	400		0										
Signals	Selecte	d												
Descrip	otion													
Pressu	re													
Solven	t% B													

Supplementary Table 4 (continued). Final Dynamic MRM Method Micro Wellplate Sampler

Name			μHiP ALS		Mode	l	G1377A		
Ordinal #			1		Optior	15	THM		
Stop Time (min	ı)		No Limit		Post Ti	me (min)	Off		
Injection Type			Needle Wash		Injecti	on Volume (µl)	3		
Overlap Time (min)		Disable		Draw F	Position (mm)	1		
Vial/Well bott	om sensing		Overlapped Yes		Draw	need (ul/min)	20		
Eiect Speed (ul	/min)		100		Flush (Dut Factor	5		
Automatic Del	av Volume Reg	luction	No		Fauilit	pration Time (sec)	0		
Wash Vessel	-,		N/A		Wash I	ocation	FlushF	Port	
Wash Time			10		Wash	Cycles	N/A	0.11	
Contact 1			Off			-,	,		
Contact 2			Off						
Contact 3			Off						
Contact 4			Off						
Nano Pump		Model		G2226	A				
Name	NanoPump	Options		SSV FS	3 FCC				
Ordinal #	1								
Stop Time (min	n)		No Limit			Post Time (min)		Off	
Mode			Normal Flow			Flow (µl/min)		3	
Pressure Min (bar)		6			Pressure Max (bar)	400	
Fast Recondition	oning		Off			Max Flow Gradien	nt (ml/n [°] 100		
Primary Flow (µl/min)		500			Column Flow Read	ły	N/A	
Calibrated As			Uncalibrated(H2						
Solvent A						Solvent B			
Solvent Ratio A	4		100			Solvent Ratio B		0	
Compress. A (*	10-6/bar)		100			Compress. B (*10-	6/bar)	115	
Stroke A (µl)			Auto						
Contact 1			Off						
Contact 2			Off						
Contact 3									
contact 5			Off						

Supplementary Table 5. Table of Amino Acid Measurements

Figure	Strain (media)	pSer	Error	pThr	Error	pTyr	Error	Ser	Error	Thr	Error	Tyr	Error	Phe	Error	Lys	Error	His	Error	Arg	Error
Fig. 2A	K-12 LPM	LOQ	nd	LOQ	nd	LOQ	nd	60.2	36.0	14.1	2.6	35.2	3.7	64.8	10.8	114.3	34.1	40.0	6.4	37.6	12.5
Fig. 2A	K-12 LB	LOQ	nd	7.6	1.1	LOQ	nd	12.8	4.9	6.6	0.8	149.8	12.6	292.5	23.0	315.4	29.7	93.4	13.8	162.8	16.8
Fig. 2B	K-12 LPM	LOQ	nd	LOQ	0.0	LOQ	nd	60.2	36.0	14.1	2.6	35.2	3.7	64.8	10.8	114.3	34.1	40.0	6.4	37.6	12.5
Fig. 2B	K-12 LPM 5mM pSer	LOQ	nd	1.3	0.1	LOQ	nd	269.2	40.3	127.0	15.3	52.5	11.1	103.8	10.2	329.7	44.8	107.7	11.9	68.3	17.2
Fig. 2B	K-12 LPM 5mM pThr	LOQ	nd	4.3	0.9	LOQ	nd	146.5	50.1	195.1	31.2	81.8	9.9	137.2	18.8	462.9	39.1	117.1	17.3	47.1	8.1
Fig. 2B	K-12 LPM 5mM pTyr	LOQ	nd	LOQ	nd	20.8	3.6	130.5	70.7	137.0	34.0	148.2	16.2	95.0	16.4	360.3	33.5	97.0	10.6	42.5	10.7
Fig. 2B	K-12 LB	LOQ	nd	7.6	1.1	LOQ	nd	12.8	4.9	6.6	0.8	149.8	12.6	292.5	23.0	315.4	29.7	93.4	13.8	162.8	16.8
Fig. 2B	K-12 LB 5mM pSer	2.5	1.3	8.1	3.4	LOQ	nd	10.1	3.2	7.4	1.5	125.3	43.0	230.6	20.3	121.1	32.5	70.2	6.0	61.1	19.3
Fig. 2B	K-12 LB 5mM pThr	LOQ	nd	11.4	1.2	LOQ	nd	14.1	6.4	8.1	2.5	131.5	76.8	240.8	48.3	172.1	38.3	80.1	21.1	86.8	23.6
Fig. 2B	K-12 LB 5mM pTyr	LOQ	nd	6.3	2.1	LOQ	nd	8.4	3.4	5.5	1.6	1016.7	471.5	181.7	47.9	152.5	35.3	90.3	20.7	86.3	28.2
Fig. 3A	K-12 LPM	LOQ	nd	LOQ	nd	LOQ	nd	60.2	36.0	14.1	2.6	35.2	3.7	64.8	10.8	114.3	34.1	40.0	6.4	37.6	12.5
Fig. 3A	K-12 LB	LOQ	nd	7.6	1.1	LOQ	nd	12.8	4.9	6.6	0.8	149.8	12.6	292.5	23.0	315.4	29.7	93.4	13.8	162.8	16.8
Fig. 3A	K-12 AserB LPM	308.3	35.3	LOQ	nd	LOQ	nd	39.3	8.6	15.1	1.4	28.7	2.2	39.9	2.5	115.0	7.6	26.5	1.3	44.0	2.4
Fig. 3A	K-12 ΔserB LB	7.6	0.8	5.8	1.0	LOQ	nd	9.4	2.7	3.9	0.9	87.1	19.4	190.6	24.8	248.9	24.7	58.1	6.4	143.0	26.8
Fig. 3B	K-12 ∆serB LPM	308.3	35.3	LOQ	nd	LOQ	nd	39.3	8.6	15.1	1.4	28.7	2.2	39.9	2.5	115.0	7.6	26.5	1.3	44.0	2.4
Fig. 3B	K-12 ΔserB LPM 5mM pSer	212.7	3.9	LOQ	nd	LOQ	nd	65.1	8.3	14.3	0.7	24.7	1.9	39.3	3.9	124.6	37.3	20.8	6.2	46.3	23.3
Fig. 3B	K-12 ∆serB LPM 5mM pThr	665.8	119.2	5.4	0.7	LOQ	nd	39.7	5.9	175.7	31.4	22.0	3.2	46.2	6.7	165.7	29.3	25.6	3.7	80.3	22.9
Fig. 3B	K-12 ∆serB LPM 5mM pTyr	462.5	53.4	LOQ	nd	82.6	8.9	21.5	4.1	16.3	1.7	41.9	5.5	25.6	4.5	109.4	21.5	15.6	1.9	57.7	20.7
Fig. 3B	K-12 ∆serB LB	7.6	0.8	5.8	1.0	LOQ	nd	9.4	2.7	3.9	0.9	87.1	19.4	190.6	24.8	248.9	24.7	58.1	6.4	143.0	26.8
Fig. 3B	K-12 ∆serB LB 5mM pSer	12.2	1.5	7.2	1.5	LOQ	nd	11.9	4.3	5.1	0.9	70.2	4.4	161.2	11.1	130.5	18.6	63.9	7.3	59.3	5.9
Fig. 3B	K-12 ∆serB LB 5mM pThr	9.2	1.1	10.8	1.0	LOQ	nd	10.1	3.1	6.0	0.5	86.8	18.9	186.3	9.3	152.2	21.8	71.3	7.3	66.4	12.9
Fig. 3B	K-12 ∆serB LB 5mM pTyr	7.8	1.8	8.3	2.4	LOQ	nd	13.5	4.8	6.2	1.4	910.8	177.3	185.8	35.0	138.4	22.2	88.4	16.6	68.4	5.0
Fig. 4A	K-12 WT LPM	LOQ	nd	LOQ	nd	LOQ	nd	60.2	36.0	14.1	2.6	35.2	3.7	64.8	10.8	114.3	34.1	40.0	6.4	37.6	12.5
Fig. 4A	K-12 WT LB	LOQ	nd	7.6	1.1	LOQ	nd	12.8	4.9	6.6	0.8	149.8	12.6	292.5	23.0	315.4	29.7	93.4	13.8	162.8	16.8
Fig. 4A	K-12 ∆serB LPM	308.3	35.3	LOQ	nd	LOQ	nd	39.3	8.6	15.1	1.4	28.7	2.2	39.9	2.5	115.0	7.6	26.5	1.3	44.0	2.4
Fig. 4A	K-12 ∆serB LB	7.6	0.8	5.8	1.0	LOQ	nd	9.4	2.7	3.9	0.9	87.1	19.4	190.6	24.8	248.9	24.7	58.1	6.4	143.0	26.8
Fig. 4A	K-12 ΔserB LPM	308.3	35.3	LOQ	nd	LOQ	nd	39.3	8.6	15.1	1.4	28.7	2.2	39.9	2.5	115.0	7.6	26.5	1.3	44.0	2.4
Fig. 4A	K-12 ∆serB LPM 5mM pSer	212.7	3.9	LOQ	nd	LOQ	nd	65.1	8.3	14.3	0.7	24.7	1.9	39.3	3.9	124.6	37.3	20.8	6.2	46.3	23.3
Fig. 4A	K-12 ∆serB LPM 5mM Ser	33.0	13.8	LOQ	nd	LOQ	nd	117.2	23.8	33.2	11.9	35.5	4.1	83.9	9.2	170.5	43.2	49.4	12.3	20.6	1.9
Fig. 4A	K-12 ∆serB LPM 5mM Ser&pSer	3.4	0.8	LOQ	nd	LOQ	nd	106.4	21.5	42.0	4.2	30.5	1.8	59.5	3.4	216.1	25.9	49.7	9.3	35.4	3.9
Fig. 4A	K-12 ΔserB LPM	308.3	35.3	LOQ	nd	LOQ	nd	39.3	8.6	15.1	1.4	28.7	2.2	39.9	2.5	115.0	7.6	26.5	1.3	44.0	2.4
Fig. 4A	K-12 ∆serB HPM	637.6	147.5	0.9	0.4	LOQ	nd	42.6	10.7	22.2	7.6	48.0	10.6	70.3	7.1	529.0	78.6	93.0	6.8	210.7	37.1
Fig. 4A	K-12 ∆serB LPM 5mM pThr	665.8	119.2	5.4	0.7	LOQ	nd	39.7	5.9	175.7	31.4	22.0	3.2	46.2	6.7	165.7	29.3	25.6	3.7	80.3	22.9
Fig. 4A	K-12 ∆serB HPM 5mM pThr	1213.6	115.9	6.9	0.9	LOQ	nd	14.6	1.0	11.1	1.1	20.4	1.0	26.0	2.2	125.3	3.3	16.0	1.4	123.9	9.7
	BL-21 AserB LB	11.6	1.4	3.0	0.6	LOQ	nd	10.4	2.7	8.0	0.7	108.7	3.3	236.4	29.8	497.8	48.3	94.2	14.1	14.7	3.7
	BL-21 AserB LB 5mM pSer	16.8	1.6	7.1	0.9	LOQ	nd	10.2	4.7	8.5	1.1	67.9	3.4	177.7	17.7	380.3	13.9	92.8	5.3	5.8	0.5
	BL-21 AserB LB 5mM pThr	16.8	2.5	7.0	1.9	LOQ	nd	8.9	1.5	9.1	1.2	83.1	23.8	184.4	10.8	443.5	65.5	114.3	14.1	5.8	0.9
	BL-21 AserB LB 5mM pTyr	15.2	2.2	4.6	1.9	4.3	2.2	7.7	1.1	8.5	0.7	246.2	17.3	169.8	15.0	398.5	19.9	98.6	6.6	7.0	1.8
	BL-21 AserB LPM	25.4	5.1	LOQ	nd	LOQ	nd	23.8	2.8	11.4	1.8	66.8	6.2	162.7	19.1	240.2	13.6	29.1	5.0	23.3	5.5
	BL-21 AserB LPM 5mM pSer	2.5	0.2	LOQ	nd	LOQ	nd	114.7	19.5	10.9	1.2	95.4	10.3	220.6	25.1	396.1	59.8	28.6	4.1	42.0	9.6
	BL-21 AserB LPM 5mM pThr	24.2	4.9	2.6	0.3	LOQ	nd	22.5	5.9	10.5	2.5	79.5	10.0	192.7	18.7	396.6	76.6	27.1	6.5	48.6	22.8
	BL-21 AserB LPM 5mM pTyr	24.5	3.4	LOQ	nd	30.5	6.67	22.9	4.4	12.6	1.7	199.3	20.4	120.5	18.5	433.5	46.0	32.1	4.7	22.4	2.2
	K-12 ∆serB LB	7.6	0.8	5.8	1.0	LOQ	0	9.4	2.7	3.9	0.9	87.1	19.4	190.6	24.8	248.9	24.7	58.1	6.4	143.0	26.8
	K-12 ∆serB LB 5mM pSer	12.2	1.47	7.2	1.5	LOQ	0	11.9	4.3	5.1	0.9	70.2	4.4	161.2	11.1	130.5	18.6	63.9	7.3	59.3	5.9
	K-12 ∆serB LB 5mM pThr	9.2	1.1	10.8	1.0	LOQ	nd	10.1	3.1	6.0	0.5	86.8	18.9	186.3	9.3	152.2	21.8	71.3	7.3	66.4	12.9
	K-12 ∆serB LB 5mM pTyr	7.8	1.8	8.3	2.4	LOQ	nd	13.5	4.8	6.2	1.4	910.8	177.3	185.8	35.0	138.4	22.2	88.4	16.6	68.4	5.0
	K-12 ∆serB LPM	308.3	35.3	LOQ	0	LOQ	0	39.3	8.6	15.1	1.4	28.7	2.2	39.9	2.5	115.0	7.6	26.5	1.3	44.0	2.4
	K-12 ΔserB LPM 5mM pSer	212.7	3.9	LOQ	nd	LOQ	nd	65.1	8.3	14.3	0.7	24.7	1.9	39.3	3.9	124.6	37.3	20.8	6.2	46.3	23.3
	K-12 ∆serB LPM 5mM pThr	665.8	119.2	5.4	0.7	LOQ	nd	39.7	5.9	175.7	31.4	22.0	3.2	46.2	6.7	165.7	29.3	25.6	3.7	80.3	22.9
	K-12 ∆serB LPM 5mM pTyr	462.5	53.4	LOQ	nd	82.6	8.9	21.5	4.1	16.3	1.7	41.9	5.5	25.6	4.5	109.4	21.5	15.6	1.9	57.7	20.7

Errors were calculated using the 95% confidence interval, n=5; LOQ=below limit of quantitation; nd=no data

Supplementary References

- 1. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., and Mori, H. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, *Mol. Syst. Biol.* 2.
- Park, H. S., Hohn, M. J., Umehara, T., Guo, L. T., Osborne, E. M., Benner, J., Noren, C. J., Rinehart, J., and Söll, D. (2011) Expanding the genetic code of Escherichia coli with phosphoserine, *Science* 333, 1151-1154.
- 3. Heinemann, I. U., Rovner, A. J., Aerni, H. R., Rogulina, S., Cheng, L., Olds, W., Fischer, J. T., Soll, D., Isaacs, F. J., and Rinehart, J. (2012) Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion, *FEBS Lett. 586*, 3716-3722.