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This supplementary text provides details of the model structure for both within- and between-

season dynamics, with derivation of the full model using the concept of pulse vaccination [6].

1 Disease dynamics within a season

We assumed that the cross-protective immunity acquired through natural infection declines gradu-

ally in the absence of re-exposure to similar strains or vaccination [1]. We considered this decline

in the model, and assumed that the pre-existing immunity (resulted from natural infection) becomes

ineffective after m1 seasons (due to continual viral drift). Consistent with the observed data, we

considered the recurrence of seasonal epidemics with a period of T = 1 year. Let a denote the

recovery age (the time-period elapsed since last infection), and r(t, a) ∈ C (R+× [0, m1T )→ R)

represent the density of the individuals with the recovery age a at time t, as shown in Figure 1.

Similar to the work of Metz and Diekmann [3], the dynamics of the density r(t, a) at nth season
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can be described by the following partial differential equation:( ∂
∂t

+
∂

∂a

)
r(t, a) = −κr(t, a)r(t, a)I(t), t ∈ [nT, (n+ 1)T ]. (1.1)

where κr(t, a) is the disease transmission rate for individuals in the recovery class. Here, we as-

sume that no re-infection occurs within the same season due to the high level of immunity acquired

from infection with the same pathogen. Incorporating the seasonal impact on disease transmission,

one can write κr(t, a), t ∈ [nT, (n+ 1)T ) in the form of a step function,

κr(t, a) =

0 0 ≤ a ≤ t− nT,

βr(a)Pr(t) t− nT < a < m1T,

where βr(a) is an increasing function of age a since last infection (considering the increase in

susceptibility to infection due to the reduced efficiency of pre-existing immunity); and Pr(t) is

a periodic function of time t reflecting seasonal variations. In this work, we adopted the two

functions proposed in [5] for βr(a) and Pr(t),

βr(a) =
βs

1 + a1eb1/(a−m1T )
, a ∈ [0,m1T )

and

Pr(t) = 1 + εr cos(2πt/T ),

where βs is the baseline transmission rate in the absence of any pre-existing immunity (i.e., fully

susceptible); and a1, b1 and εr are constant coefficients. Furthermore, we assumed that the immune

protection developed following natural infection, regardless of seasonality, is equivalent to that

generated by vaccination: βr(0) = βs(1− σ), where σ is the vaccine efficacy.

From the definition of r(t, a), the total population of recovered individuals at time t can be

expressed by

R(t) =

∫ m1T

0

r(t, a) da. (1.2)

The population of individuals with the recovery age a = 0 is the number of individuals who have

just recovered from infection. Thus,

r(t, 0) = γI(t). (1.3)
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Figure 1: Model diagram for transitions between different population compartments within season

n, where n = 1, 2, · · · .

Individuals recovered m1T seasons ago (r(t,m1T )) will return to the susceptible class due to the

loss of protective effects of pre-existing immunity.

Based on the practice of vaccination against influenza, we assumed that vaccination takes place

between seasons, at time t = 0, T, 2T, · · · , and considered it as a pulse vaccination strategy [4, 6]

represented in Figure 2. Assuming that the protective effects of vaccine-induced immunity last for

m2 seasons after vaccination, we have m2 compartments for vaccinated individuals with different

levels of immunity. These include:

1) V0(t): the total number of susceptible individuals who have taken their most recent vaccina-

tion at the start of the current season;

2) Vi(t), i = 1, · · · ,m2 − 1: the total number of individuals for whom the most recent vacci-

nation was received at i seasons ago.

Therefore, instead of having a continuous age structure (partial differential equation), we may
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represent a (age post recent vaccination) by t − nT + iT , and use a discrete age structure to

describe the loss of vaccine-induced protection during the nth season (t ∈ [nT, (n + 1)T )) by the

following ordinary differential equation,

dVi(t)

dt
= −κiv(t)I(t)Vi(t), i = 0, 1, · · · ,m2 − 1, t ∈ [nT, (n+ 1)T ),

where κiv(t) = βiv(t)Pv(t) is the disease transmission rate for Vi; βiv(t) is an increasing function

of t − nT + iT corresponding to the reduction in the vaccine-induced protection; and Pv(t) is a

periodic function, reflecting the seasonality of disease transmission. We also assumed that βiv(t)

has a similar form as βr(a), i.e.,

βiv(t) =
βs

1 + a2eb2/(t−nT+iT−m2T )
, i = 0, 1, · · · ,m2 − 1, t ∈ [nT, (n+ 1)T )

where a2 and b2 are constant coefficients. Here, we set the transmission rate for newly vaccinated

individuals as β0
v(0) = βs(1 − σ), with σ representing the efficacy of vaccine (i.e., reduction in

transmissibility due to vaccine-induced protection).

For compartments of individuals previously recovered within m1 seasons or vaccinated within

m2 seasons (in what follows, we will write as ‘previously recovered’ or ‘previously vaccinated’),

and received vaccination at the beginning of the current season, we use the notation Vv and Rv,

respectively.

2 Disease dynamics between seasons

At the end of season n (before the start of vaccination for season n + 1), those who still remained

in the Vi class (i = 0, 1, 2, · · · , m2 − 2) will progress to Vi+1; and individuals in the Vm2−1 class

will proceed to the susceptible class. Those whose age post recent recoverey is m1 will also move

to susceptible class. Individuals in the I class will move to r(nT−, 0) as recent recovery, and those

in Vv and Rv enter the class V1, as their age since the most recent vaccination is T . Thus, prior to
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Figure 2: Model diagram for transitions and compartments between seasonal epidemics.

vaccination for the upcoming n+ 1 season, we have the following changes for each compartment:

S(nT ) =S(nT−) + Vm2−1(nT−),

V0(nT ) =0,

V1(nT ) =V0(nT−) + Vv(nT
−) +Rv(nT

−),

Vi+1(nT ) =Vi(nT
−), i = 1, 2, ...,m2 − 2,

Vv(nT ) =0,

Rv(nT ) =0,

I(nT ) =0,

r(nT, a) =r(nT−, a),

r(nT−, 0) =I(nT−).

(2.1)
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We divided the total population into three classes by the following rules:

1) Susceptible individuals (S(nT )): without having any cross-protection effects of natural in-

fection or vaccination;

2) Previously vaccinated individuals (V(nT )): having some level of cross-protection induced

by vaccination; and

3) Recovered individuals (R(nT )): having some level of cross-protection induced by natural

infection.

We now include the distribution of vaccines into the model. Suppose N is the total population

size, and there is µN vaccine doses available, where 0 < µ < 1. We distribute vaccines to the three

classes such that qsS(nT ) + qvV(nT ) + qrR(nT ) = µN , where qs, qv, and qr represent the pro-

portions of susceptible, previously vaccinated, and previously recovered individuals, respectively,

who receive vaccines for the upcoming season. Within each class, we assume vaccines are evenly

distributed regardless of age structure post vaccination or infection. After vaccination, we consider

the population dynamics as follows:

1) Newly vaccinated individuals from S, V and R will move to the compartments V0, Vv and

Rv, respectively;

2) There is no difference in the level of immunity for the newly vaccinated individuals regard-

less of their history of vaccination or infection within the Vv or Rv classes; and

3) The effect of vaccine-induced protection on disease transmissibility will be β0
v ≥ β̄v ≥ β̄r,

where β0
v , β̄v, and β̄r represent the baseline transmission rates of newly vaccinated individu-

als who were susceptible, previously vaccinated, or previously recovered, respectively.

6



Hence, we have the following initial conditions for the upcoming season:

S(nT+) =(1− qs)S(nT ),

V0(nT+) =qsS(nT ),

Vi(nT
+) =(1− qv)Vi(nT ), i = 1, 2, ...,m2 − 1,

Vv(nT
+) =qv

m2−1∑
i=1

Vi(nT ),

Rv(nT
+) =qr

∫ m1T

0

r(nT, a) da,

r(nT+, a) =(1− qr)r(nT, a),

(2.2)

In order to introduce infection into the population, we move one individual from the susceptible

class S(nT+), or recovered class r(nT+, a), or vaccinated class Vi(nT+) to the infection class

I(nT+). Therefore, we can rewrite the initial conditions for the corresponding classes as:

S(nT+) = max{(1− qs)S(nT )− 1, 0},

I(nT+) = max{S(nT+)− (1− qs)S(nT ), 0}.
(2.3)

or
max
a
{r(nT+, a)} = max{max

a
{(1− qr)r(nT, a)− 1}, 0},

I(nT+) = max{max
a
{r(nT+, a)} −max

a
{(1− qr)r(nT, a)}, 0}.

(2.4)

or
max
i
{Vi(nT+)} = max{max

i
{(1− qv)Vi(nT )− 1}, 0},

I(nT+) = max{max
i
{Vi(nT+)} −max

i
{(1− qv)Vi(nT )}, 0},

(2.5)

where nT (nT−) is a point in time after season n has ended (before the start of vaccination for
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season n+ 1). In summary, we can define the initial conditions for season n as

S0 =S(nT+);

V 0
i =Vi(nT

+), i = 0, 1, ...,m2 − 1;

V 0
v =Vv(nT

+),

R0
v =Rv(nT

+),

Φ(a) =r(nT+, a).

(2.6)

where nT+ represents a point in time after vaccination for season n + 1, and before the onset of

epidemic in season n+ 1.

3 Full model

Combining the dynamics of within- and between-seasons of the model with the initial conditions

described above for each season, we can express R(t) from equation (1.1), using the characteristic

method, by

R(t) =

∫ m1T

0

r(t, a) da,

=

∫ t−nT

0

γI(t− a)e−
∫

a

0
κr(t+u−a,u)I(t+u−a) du da

+

∫ m1T

t−nT
Φ(a− (t− nT ))e−

∫
t−nT

0
κr(u,a−(t−nT )+u)I(u) du da,

=

∫ t−nT

0

γI(t− a) da (κr(t, a) = 0 for a ≤ t− nT )

+

∫ m1T

t−nT
Φ(a− (t− nT ))e−

∫
t−nT

0
κr(u,a−(t−nT )+u)I(u) du da
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where t ∈ [nT, (n+ 1)T ). Therefore, we have the full model in the form:

dS(t)

dt
=− κs(t)I(t)S(t) + Φ(m1T − (t− nT ))e−

∫
t−nT

0
κr(u,m1T−(t−nT )+u)I(u) du,

dVi(t)

dt
=− κiv(t)I(t)Vi(t), i = 0, 1, ...,m2 − 1,

dVv(t)

dt
=− κ̄v(t)I(t)Vv(t),

dRv(t)

dt
=− κ̄r(t)I(t)Rv(t),

dI(t)

dt
=− γI(t) + κs(t)I(t)S(t)

+ κ̄v(t)I(t)Vv(t) +

m2−1∑
i=0

κiv(t)I(t)Vi(t)

+ κ̄r(t)I(t)Rv(t)

+

∫ m1T

t−nT
κ(t, a)I(t)Φ(a− (t− nT ))e−

∫
t−nT

0
κr(u,a−(t−nT )+u)I(u) du da,

(3.1)

where t ∈ [nT, (n + 1)T ); κ̄v(t) = β̄vPv(t) and κ̄r(t) = β̄rPr(t) represent transmission rates for

newly vaccinated individuals who received vaccines within the past m2 seasons, and individuals

who had recovered from infection within the past m1 seasons, respectively; with the baseline

values β̄v and β̄r corresponding to seasonality factors Pv(t) and Pr(t), respectively. The Volterra

intergro-differntial quation system (3.1) satisfies the hypotheses stated by Miller ([7], P338 ) that

are sufficient to ensure the existence, uniqueness, and continuity of solutions on t ∈ [nT, (n+1)T ).

Furthermore, for any non-negative initial conditions,

S(0) > 0, Vi(0) ≥ 0, Vv ≥ 0, Rv ≥ 0, I(0) ≥ 0,

r(0, a) ≥ 0, r(t, 0) ≥ 0, i = 0, 2, ..,m2 − 1, a, t ∈ R/R−,

system (3.1) (with r(t, a) replaced by (3.2)) has a unique solution. By using the variation-of-

constant formula to individual equations, one can verify the non-negativity of the equations. This

proves the well-posedness of the full model.
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One can also show the well-posedness of the partial differential equation for r(t, a). Fixing

(t, a) and letting W (s) = r(t + s, a + s), one can replace the equation for r(t, a) in (3.1) by an

ordinary differential equation,
dW (s)

ds
= B(s)W (s), (3.2)

where B(s) = −κr(t + s, a + s)I(t + s) with the initial condition W (0) = r(t, a). We can show

the non-negativity of I(t) by solving its related equation; therefore, W (s) ≥ 0 and its uniqueness

can be easily obtained.

4 Computer implementation

We implemented the model using C++ and Matlab software package to perform simulations of

the model. The integro-differential equations were solved numerically using forward-time central-

space algorithm and midpoint method. We simulated several scenarios in the presence and absence

of seasonal vaccination (represented in Figure 3-8 in main text). For each scenario, we considered

a combination of m1 and m2, and ran 100 independent simulations for 12 seasons. The algorithm

for simulations proceeded with the following steps:

Step 1: At the beginning of each season, we assigned initial values for (S0, V0, R0) to different pop-

ulation compartments. For the first season of the simulation run, we set the same distri-

bution in each scenario for different m1 and m2. For subsequent seasons, we chose the

population distribution simulated from previous season ((S(nT−), V (nT−), R(nT−)), n =

1, 2, ..., 11);

Step 2: Based on the chosen distribution, the feasible region of (qs, qv) is determined as Ω =

{(qs, qv)|0 ≤ qs, qv ≤ 1, qsS
0 + qvV

0 ≤ µN}. We discretized the space
[
0,
µN

S0

]
×
[
0,
µN

V 0

]
,

S0 > 0, V 0 > 0 on a square grid (with a side-length grid of 0.02), and used each pair of

(qs, qv) on the node of the grid to regroup the total population into m2 + 5 subpopulations,

(S0, V 0
0 , V

0
1 , ..., V

0
m2−1, V

0
v , R

0
v,Φ, I),
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with (2.2)− (2.6) as the initial conditions for simulations of the current season.

Step 3: We numerically solved the model governed by the integral-differential equations system to

determine the dynamics of epidemic within a season, for all possible pairs of (qs, qv), and

stored the values of all population compartments at the end of the season. Iterations were

ended when I(t) < εI (a given small threshold) or t ≥ T . The remaining subpopulation I(t)

was moved to r(0, t), and I(t) class was set to zero.

Step 4: Two strategies were examined individually to proceed with the selection of the population

distribution (S0, V0, R0) for each subsequent season:

4.1. Random selection: a pair of (qs, qv) was randomly selected in space Ω regardless of

outputs at the end of each season, and the simulated population distribution

(S(nT ), V0(nT ), V1(nT ), ..., Vm2−1(nT ), Vv(nT ), Rv(nT ), r(a, (nT )))

was used to compute (S0, V0, R0) according to the rule mathematically presented in

(2.1).

4.2. Optimal selection: we computed the final size of epidemic (i.e., the total number of

infections throughout the epidemic), given all possible pairs of (qs, qv):

J(qs, qv) =

∫ (n+1)T

nT

γI(η) dη,

for season n, n = 1, 2, ..., 12. The pair (qs, qv) that gave

Jnmin = min
(qs, qv)∈Ω

J(qs, qv),

was identified, and the associated simulation results were adopted to compute (S0, V0, R0)

according to (2.1). If there were more that one pair satisfying the minimum epidemic

final size, we chose one randomly. This highlights our observations that the optimal

vaccine distribution may not be uniquely determined.
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We repeated steps 1-4 for all 12 simulated seasons in each scenario.

Remark 4.1 In each scenario of (qs, qv), the fraction of previously recovered individuals (qr) who

are vaccinated for the current season was determined using the relation qsS + qvV + qrR = µN .

In simulation plots, under the circumstances that a pair of (qs, qv) on grid satisfied qsS + qvV >

µN , we compared two cases of maximum vaccine distribution: 1) all vaccines are given to the S

subpopulation; 2) all vaccines are given to the V subpopulation. The resulting simulation outputs

of the pair (qs, qv) with the lower epidemic final size was adopted.

References

[1] Couch RB, Kasel JA, Immunity to influenza in man. Annu Rev Microbiol 1983; 37: 529-49.

[2] Diekmann O, Heesterbeek J.A.P, Mathematical Epidemiology of Infectious Diseases, Chich-

ester: Wiley, 2000.

[3] Metz JAJ, Diekmann O, The dynamics of physiologically structured populations. Springer,

New York 1986.

[4] d’Onofrio A, On pulse vaccination strategy in the SIR epidemic model with vertical trans-

mission, Appl. Math Lett 2005; 18: 729 - 732.

[5] Dushoff J, Plotkin JB, Levin SA, Earn DJ, Dynamical resonance can account for seasonality

of influenza epidemics, Proc Natl Acad Sci U S A. 2004; 101: 16915-16916.

[6] Shulgin B, Stone J, Agur A, Pulse vaccination strategy in the SIR epidemic model, Bull.

Math. Biol. 1998; 60: 1123 - 1148.

[7] Miller RK, Nonlinear Volterra Integral Equations, Benjamin, Menlo Park, California,1971.

12


