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Figure 1: An explanatory example of bispectral plane during parasympathetic dominance. The
bispectrum has been estimated using the instantaneous NARI point-process based analysis on
RR interval series acquired during supine rest condition. The red square indicates the region of
highest power on the high-frequency band for each axis.
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Figure 2: An explanatory example of bispectral plane during sympathetic dominance. The
bispectrum has been estimated using the instantaneous NARI point-process based analysis on
RR interval series acquired after postural changes by means of tilt table. The red square indicates
the region of highest power on the low-frequency band for each axis.

3



Table 1: Instantaneous bispectral features from the point-process NARI model

Feature Name Parameters Math. Derivation Formula

0 < a ≤ 1 I(a, t) = Ir(a, t) + jIi(a, t) = P (a, t)

Bispectral Invariants [1] =
∫

1
1+a

f1=0+
Bis(f1, af1, t)df1

j =
√

−1 P (a, t) = arctan

(

Ii(a,t)
Ir(a,t)

)

σP(a,t)

Mean Magnitude [2] - - Mmean(t) = 1
L

∑

Ω |Bis(f1, f2, t)|

p(Ψn, t) = 1
L

∑

Ω 1 (Φ (Bis(f1, f2, t))) ǫΨn)

Phase Entropy [2] n = 0, 1, ... Ψn = Pe(t) =
∑

n p(Ψn, t) log(p(Ψn, t))
N − 1 {Φ| − π + 2πn/N ≤ φ ≤ −π + 2π(n + 1)/N}

Normalized Bispectral - pn(t) =
|Bis(f1,f2,t)|

∑

Ω |Bis(f1,f2,t)| P1(t) = −∑

n pn(t) log(pn(t))

entropy [3]

Normalized Bispectral - pn(t) =
|Bis(f1,f2,t))|2

∑

Ω |Bis(f1,f2,t)|2 P2(t) = −∑

n pn(t) log(pn(t))

squared entropy [3]

Sum of Logarithmic - - Hbis1(t) =
∑

Ω log (|Bis(f1, f2, t)|)
Bispectral Amplitudes [4]

Nonlinear LL(t) =
∫0.15
f1=0+

∫ 0.15
f2=0+

Bis(f1, f2, t)df1df2

Sympatho-Vagal - - LH(t) =
∫ 0.15
f1=0+

∫ 0.4
f2=0.15+

Bis(f1 , f2, t)df1df2

Interactions HH(t) =
∫ 0.4
f1=0.15+

∫ 0.4
f2=0.15+

Bis(f1 , f2, t)df1df2
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Table 2: Experimental results on the Autocorrelation plot statistics using point-process linear
and NARI models. Columns refer to: subject identifier, number of points outside the confidence
interval (CI), Sum of the Squared Distances (SSD) of the points outside the CI. For each subject,
linear stands for values given by the linear point-process model, whereas nonlinear stands for
values given by NARI models. The tick indicates improvements (i.e., reductions of the number
of points outside the CI or SSD) given by the use of NARI models.

Number of Points outside CI SSD

Subjects Linear→Nonlinear Linear→Nonlinear

1 10→6
√

0.3103→0.0718
√

2 15→4
√

0.2166→0.0722
√

3 12→1
√

0.2576→0.0001
√

4 10→4
√

0.1842→0.0656
√

5 11→5
√

0.1327→0.0437
√

6 4→1
√

0.1031→0.0124
√

7 3→2
√

0.0925→0.0229
√

8 11→2
√

0.2511→0.0280
√

9 9→6
√

0.1661→0.0701
√

10 6→6 0.1220→0.0338
√

11 10→6
√

0.1028→0.0457
√

12 11→3
√

0.2058→0.0143
√

13 9→8
√

0.1205→0.0501
√

14 7→2
√

0.2529→0.0160
√

15 8→3
√

0.1242→0.0219
√

16 15→9
√

0.1998→0.0660
√

17 10→1
√

0.2597→0.0001
√

18 10→5
√

0.2492→0.0549
√

19 7→4
√

0.1188→0.0243
√

20 11→3
√

0.1529→0.0436
√

21 11→3
√

0.1513→0.0501
√

22 12→2
√

0.2095→0.0126
√

23 15→5
√

0.3251→0.0718
√

24 5→3
√

0.0904→0.0165
√

25 6→6 0.0933→0.0509
√

26 7→1
√

0.1068→0.0185
√

27 6→5
√

0.0675→0.0408
√

28 6→4
√

0.0903→0.0470
√

29 10→2
√

0.2272→0.0172
√

30 8→2
√

0.1779→0.0136
√
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