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Supplementary Figure S1 | Historical progression of ideas explaining fringing, barrier and atoll reef
types. Darwin’s subsidence theory' suggests reef types are genetically related and form during a single
episode of relative SL rise produced by progressive island subsidence. Daly’s marine planation theory’
suggests they are unrelated, but result from differential wave erosion of unprotected shores during glacially
lowered SL, with barrier reefs forming on terraces, and atolls on wave-levelled platforms during
postglacial SL rise. Purdy’s antecedent karst theory'' also suggests reef-types are unrelated, and result
from subaerial dissolution during lowstands, with rims undergoing less dissolution than platform interiors
leading to shallow atoll-like basins on carbonate platforms and barrier-like half basins on continental or
island margins. It posits that glacial karst foundations control the morphology of modern reefs.
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Supplementary Figure S2 | Fringing reef and reef-front development between 16.1 to 14.5 ka (ie. prior
to Meltwater pulse 1a). Shallow reef development is largely absent at Maraa sites, and patchy at Tiarei
sites, with best patch development at sites 25B and 24A, which are drilled on the same reef-front pinnacle.
Note absence of patch in site 25A which was drilled 5 m from 25B, illustrating discontinuous nature of
reef-front development at Tiarei. Legend same as Fig. 3.
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Supplementary Figure S3 | Pleistocene reef-flat platform unit, showing intergrown crustose-coralline
algae, vermetids and stubby branched corals, which are typical of reef-flat settings. a, and b, from a 3
m-thick unit at site 7A, show how intergrown fabric has been moderately bioeroded and the interstices
filled with a cemented well-sorted medium-sized skeletal/volcanic sand. ¢, from a 2.5 m unit at site 17A,
shows a similar intergrown fabric, but with thicker, less bioeroded corallines within a unit dominated by
larger corals, which is more typical of shallow reef-front settings (such as spur and groove).
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Supplementary Figure S4 | Composition, **°Th age, and magnetostratigraphy of reef-flat platform
which underlies the highest postglacial fringing- reef unit and the basal barrier-reef unit. Upper section
consists of poorly consolidated (and recovered) detrital unit with isolated patches of coral framework that
return Last Interglacial ages, and has a magnetostratigarphic signature consistent with the Blake Event
between 120-115 ka*. This is underlain by a well-consolidated unit of uncertain age due to large true-age
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Reef Core Analysis
Protocol

Biofabric
Element support and packing®

1. Dense: colony supported, tightly
packed with little or no intercolony space,
line contacts common.

2. Open: colony supported, closely
packed with easily distinguishable
intercolony space, line contacts rare,
point contacts common.

3. Loose: colony supported, but loosely
packed and dominated by intercolony
space, with rare point contacts.

4. Dispersed: not colony supported, with
colony spacing <1 m or 2 unit distance.

5. Sparse: not colony supported, colony
spacing >1 m or 2 unit distance.

Element shape-uniformity '°

1. Monomorphic: biofabric dominated by
single colony shape type.

2. Bimorphic: biofabric dominated by two
shape types.

3. Multimorphic: biofabric dominated by
>2 shape types.

Unit Geometry

1. Layer: units have bedded geometry w/
sub-horizontal upper & lower surfaces.

2. Mosaic: juxtaposed group of units
each with discontinuous horizontal or
vertical extent.

3. Patch/Pinnacle: unit isolated within
another (Pinnacle =5 m height).

4. Lens: unit isolated within another but
with limited vertical extent.

Unit Contacts

1. Sharp

2. Erosive (evidence of truncation)

3. Transitional

4. Intercalated

5. Inferred

Framework Plot 12

On a 3-component triangular diagram, plot

normalized proportion of:

F: framework (primary + secondary
framework)

M: interstitial matrix, infauna, cavities (incl
cavity fill cement)

D: Bioclastic detritus (ie. coral gravel
fragments).

Reef Framework
Primary framework
1. Main Reef-Building Corals’
Secondary framewok
1. Corallines: crustose (cCA), branched (bCA).
2. Encrusters: Vermetids, Foraminifera?,
Serpulids.
3. Biolithite and its biofabric
4. Marine cement varieties®
Coral In-situ Indicators:
1. Encrusting basal contact present
2. Up-oriented Coral or corallites
3. Colonies lack evidence of fragmentation.
4. Consistent up-oriented geopetals >0.3 cm
diameter with lithified sediment fill.
5. Consistency in orientation or mutual proximi-
ty of colonies.
Coral shape type and size?
1. Massive: (>10 cm vertical)
smalft 10-25cm
medium: 25-50 cm
large: 50-150 cm
super. >150 cm
2. Branch: (br.)
Br. length: long >10 cm, short 1-10 cm
Br. thickness: delicate <1 cm, thick 1-2 cm,
robust =2 cm.
Compact Br: short, robust with large basal
attachment.
3. Plate (>1, <10 cm vertical),
Pt, (thin 1-5cm), PT, (thick 5-10 cm),
Pc (compound), Pe (encrusting).
4. Sheet (< 1cm).
Sc (compound), Se (encrusting).

Reef Detritus

Bioclasts (gravel-size fragments)
composition, size (VWentworth scale®) visual
sorting (size and/or shape), texture’, fabric.
Indicators of transport:
1. Inclined or inconsistent colony orientation
2. Colonies fragmented or abraded.
3. Inclined or inconsistent geopetal orientation
4. Poor colony condition (bioeroded, multiple
encrusters)
Matrix (sand, silt, clay-size grains) Size, sorting,
texture (8), fabric

Condition
Skeletal Preservation State™
1. Fresh skeletal features (features
unmodified)
2. Modified skeletal features (species identifi-
cation still possible)
3. Semi-obscurred skeletal features (species
id possible, but unreliable)
4. Obscurred skeletal features (no species id
possible)
Bioerosion Ichnotaxa?
Entobia
Gastrochaenolites
Trypanites
Bioerosion Intensity
Small galleries
1. light (<10% host removal)
2. moderate (10-30% removal)
3. heavy (>30 % removal)
Large Galleries
1. light (<30 removal)
2. moderate (30-60 removal)
3. heavy (>60 removal)
Encrustation Intensity
1. light (<0.5 cm thick)
2. moderate (0.5-1.5 cm thick)
3. heavy (1.5-3.0 cm thick)
4. extreme (>3.0 cm thick)
Diagenetic State
1. Unaltered (original mineral phase intact)
2. Cemented (primary pore occlusion)
3. Leached (modification of primary or gener-
ation of secondary pores)
4. Recrystallized (inversion or replacement of
original mineral phase)

Framework Name
+C (B+P+8) framestone where:
B is colony biofabric packing
P is primary framework taxa
S is colony shape
C is a modifier based on condition, detrital
elements, shape uniformity, etc.
Eqg: heavily bioeroded, Ioose, Acropora branch
framestone

Supplementary Figure S5 | Core description protocol used for reefal sedimentary units (Modified from
ref 56). 1. Following ref 57. 2. Modified from ref 56. 3. Following ref 58-60. 4. Following ref 61. 5.
Following ref 62. 6. Modified by ref 63. 7. Following ref 64. 8. Following ref 65. 9. Modified from ref 66.
10. Modified from ref 67. 11. Modified from ref 68. 12. Modified from ref 69.
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Supplementary Figure S6 | Paleowater depth reconstruction derived from elevation comparison

between coeval corals, assuming that the highest coral is at, or close to mean minimum SL (defined as a
smoothed curve fitted to the highest coral elevations). U-Th data from refs. 16 and 17.

Supplementary Discussion:

Age of the Pleistocene reef-flat platform and subsidence at Tahiti.

All holes drilled during the IODP Expedition-310 penetrated the underlying Pleistocene substrate but only
three holes at Maraa and Tiarei recovered more than 10 m. The longest sequence at Maraa hole 5D was
86 m, followed by 25 m at 9D and 21.5 m at hole 8A. Two holes drilled at Faaa, just offshore of the
Papeete barrier reef, also recovered 34-39 m of Pleistocene substrate (Fig. 1). In the holes at Maraa and
Faaa, the Pleistocene sequence can be subdivided into an upper, poorly-consolidated unit with low
recoveries, and a lower, well-consolidated unit with high recoveries (100% in some cases). Such
differences imply that the contact between these units is an unconformity.

Radiometric dating of corals™ in the upper poorly-consolidated unit at these two sites provides age
constraints on the Pleistocene reef-flat platform that lies beneath the postglacial sequence at ~85 m
(Supplementary Fig. S4). In Faaa hole 19A, replicate ***Th ages of ~133-134 ka were measured in a
Porites head at 115 m (~32 m below the platform surface at 83 m). Similarly, in Maraa hole 5D, replicate



ages of ~132-134 ka were measured in a Porites head at 117 m (~24 m below the platform surface at

93.5 m). These ages are considered to be reliable given that replicate ages only show true-age variations
of ~2 ka’”’. Furthermore, a reversal in the paleomagnetic signature in this hole between 120-100 m has
been attributed to the Blake Event that occurred between 120-115 ka during MIS-5¢**. Combined, these
data indicate that the upper poorly consolidated unit formed during the Last Interglacial (LIG). And
although no age data exists for the 5-15 m sequence above 100 m depth, the sedimentary sequence in both
holes is conformable over this interval, implying that the reef-flat platform formed during LIG
(Supplementary Fig. S4).

A LIG age for the 85 m reef-flat platform would imply that the subsidence rate of Tahiti is greater than
the 0.25 mm yr™' estimate derived from a 550 ka basalt recovered in hole P7 in the Papeete barrier-reef'’.
Higher subsidence rates have been measured in ref. 71 which used several independent geodetic
techniques and tide-gauge data to show an average rate of 0.5 mm yr' (but with large uncertainties).
Furthermore, MIS 9 ages were obtained’” from corals of the Maraa sequence in hole 5D between
126-128 mbsl suggesting a maximum constraint on subsidence for the past 325 ka of 0.39 +0.03 mm yr'.
However replicate ages measured over that 2 m interval have a true-age variation of 184 ka (n=12) for
both closed and open systems, implying considerable uncertainty for the MIS-9 age determination and
subsidence rates calculated from it. A similar magnitude of true-age variation was found from samples
from the well-consolidated unit at the base of hole 5D, making it difficult to use any of these data to
calculate subsidence rates.

As noted above, more reliable ages have been obtained from coral colonies that grew during the LIG in
holes 5D and 19A (Supplementary Fig. S4). In hole 5D these corals had replicate **°Th ages from 132-138
ka, and in 19A replicate ages from 133-137 ka*. In addition, ages in 5D were adjusted for open-system
diagenetic alteration and returned corrected ages of 128-136 ka*. Within this extended interval (128-137
ka), SL has been documented at 10-20 m of its highstand position of +3-6 m, from well dated LIG reefs on
stable coasts of Western Australia’™, Florida’, the Bahamas’®, Grand Cayman’’, and uplifted
Barbados™”. Assuming that the massive Porites and tabular acroporid corals in holes 5D and 19A grew
in water-depths of 30 m, which is the maximum extent of their modern depth range', and a SL that was
10-20 m lower than present at 128 ka, a subsidence rate of 0.5 to 0.6 mm yr’' is required to account for
their present elevation at 115-117 m below SL. This rate of subsidence is consistent with the 85 m
elevation of the LIG reef-flat platform below the postglacial reef sequence at Maraa site 7, Faaa site 19A,
and the Papeete barrier reef. What is clear from this argument, is that resolution of the subsidence rate of
Tahiti requires dating of in-situ corals from the uppermost part of the Pleistocene reef-flat platform, as has
been standard practice in other areas where postglacial SL has been reconstructed™.
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