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ABSTRACT Li and Chakravarti [Li, C. C. & Chakravarti,
A. (1994) Hum. Hered. 44, 100-109] compared the probability
(Mo) of a random match between the two DNA profiles of a
pair of individuals drawn from a random-mating population
to the probability (MF) of the match between a pair of random
individuals drawn from a subdivided population. The level of
heterogeneity in this subdivided population is measured by the
parameter F, where there is no subdivision when F = 0 and
increasing values ofF indicate increasing subdivision. Li and
Chakravarti concluded that it is conservative to use the match
probability MO, which is derived under the assumption that
the two individuals are drawn from a homogeneous random-
mating population without subdivision. However, MO may not
be always greater than MF, even for biologically reasonable
values of F. We explore here those mathematical conditions
under which MO is less than MF, and we find that MO is not
conservative mainly when there is an allele with a much higher
frequency? than all the other alleles. When empirical data for
both variable number of tandem repeat (VNTR) and short
tandem repeat (STR) systems are evaluated, we find that in
the majority of cases MO represents a conservative probability
of a match, and so the subdivision of human populations may
usually be ignored for a random match, although not, of
course, for relatives. Loci for which MO is not conservative
should be avoided for forensic inference.

Li and Chakravarti (1) investigated the effects of population
subdivision on the probability of a chance match between two
DNA profiles. A DNA profile of an individual is generated by
typing a sample of DNA at several polymorphic markers. Li
and Chakravarti compared the probability of a random match
between a pair of individuals drawn from a random-mating
population (Mo) to the probability of a match between a pair
drawn from a subdivided population (MF). The level of
heterogeneity in this subdivided population is measured by the
parameter F, which is defined as an F statistic (2). When F =

0, there is no subdivision, and increasing values of F indicate
increasing subdivision. Li and Chakravarti concluded that
"Since MO > MF for the range of F values in human popula-
tions, the use of MO is 'conservative'." In other words, they
concluded that it is conservative to use a match probability
derived under the assumption that the two individuals are
drawn from a homogeneous random-mating population with-
out subdivision. However, MO may not be always greater than
MF, even for biologically reasonable values of F. We explore
here those conditions under which MO is less than MF, when it
is inappropriate to ignore population subdivision.

Matching Probabilities

LetAI,A2, . . .,Ak represent the k alleles at an autosomal locus,
where the ith allele has frequency pi, with 2k= pi = 1. The

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertisement" in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

probability of a perfect match in a random-mating population
is (3)

k

Mo = Epi4 + 4 > pi2pJ
il 1i<j'k

= a4 + 2(a2 - a4)

= 2a2 - a4,

where ar = X1 lp, for integer values of r (= 1, 2, 3, .. .). This
equation has been derived by Lange (4) for siblings in the
context of an affected-sib-pair method for linkage analysis
using identity-by-state relations. Lange's argument can be
modified to derive Mo as follows: Consider the random pair of
individuals (b, c) and (d, e), where b, c, d, and e are four
independent genes in a random-mating population. A perfect
match occurs whenever (b, c) = (d, e)-i.e., when the two
individuals have the same genotype. This could happen in two
ways: (i) b = d and c = e, where P(b = d) = a2 and P(c = e)
= a2. The joint probability is thus a2; (ii) b = e and c = d, which
also has a joint probability of a2. However, both possibilities
include the special pairs (A,, A,) and (A,, A,)-i.e., b = c = d
= e, which has probability a4. Hence, the probability of a match
is

Mo = 2a2 - a4,

as we derived previously by different arguments (3).
The frequency of genotypes in one large population with

subdivision may be expressed in terms of two distinct compo-
nents (ref. 2, pp. 175 and 179):

Panmictic 1 - F
Fixation F

Homozygotes
p2 AiAi
Pi A1Ai

Heterozygotes
2pipj AAj, i < j

0 ArAj
where F is a measure of heterogeneity (O c F c 1) and also the
correlation between uniting gametes. The genotype distribu-
tion in the panmictic component is the same as that of a
random mating population. The fixation component consists of
homozygotes only and there are no heterozygotes. Note that
for human populations F is typically less than 1% (5).

Let MF be the probability of a DNA profile match between
two random individuals drawn from the heterogeneous pop-
ulation shown above. If both individuals are from the panmic-
tic component, with frequency (1 - F)2, the match probability
is simply MO, the same as that for a random-mating population.
If both individuals are drawn from the fixation component,
with frequency F2, the match probability is X(pi x pi) = a2. If
one individual is from the panmictic component and one is

Abbreviations: VNTR, variable number of tandem repeats; STR, short
tandem repeat; FBI, Federal Bureau of Investigation.
ITo whom reprint requests should be addressed.

12031



Proc. Natl. Acad. Sci. USA 92 (1995)

from the fixation component, with frequency 2F(1 - F), the
match probability is E(p2 X pi) = a3. Hence, the total match
probability is (1):

MF = (1 - F)2MO + 2F(1 - F)a3 + F2a2,

where F - 0 measures the level of heterogeneity. Note that this
equation has recently been independently derived by Collins
and Morton (6).

Properties of MF

Some of the properties of MF have already been discussed by
Li and Chakravarti (1). Here, we shall concentrate on the
location of the minimum value of MF. It was found that the
minimum point occurs at the following value of F:

F
MO - a3

min MO + a2 - 2a3

which was derived by setting dMF/dF equal to zero and solving
for F (1). First, we show that the denominator of Fmin is always
positive. Noting that lp2(1 - p1)2 = a2 - 2a3 + a4 > 0, we may
write the denominator as

MO + a2 - 2a3 = (2a2- a4) + a2 - 2a3 + a4 - a4

= 2(a22 _ a4) + (a2 - 2a3 + a4) > 0,

as the quantities in the parentheses are always positive. In the
example given by them, MO > a3 SO that Fmin is a positive
quantity (Fig. 1A). It was on the basis of this example that Li
and Chakravarti (1) concluded that the use ofMo for low values
of F in human populations is conservative, because Mo > MF
in this low-F region.
Nowwe investigate the conditions under whichMO ' a3, with

Fmin < 0. Since, by definition, F must be greater than or equal
to zero, then ifMO < a3, then the minimum value ofMF is MO,
since the equation determining MF is concave up. Thus, if MO
< a3, then MF 2 MO, and therefore it is no longer conservative
to use MO instead of MF.

Consider first the case when there are two alleles with
frequenciesp and q (p + q = 1). Then (ignoring the trivial case
where either p = 1 or q = 1)

MO = a3 iffp4 + 4p2q2 + q4 =p3 + q3.

This ultimately reduces to 1 - 6pq = 0, or pq = 1/6, which
implies thatp = 0.788675. Thus, for the two-allele case, MO <
a3 when p - 0.788675 orp 0.211325, that is, whenp is either
fairly large or fairly small.
A numerical example at this point may assist in illustrating

the situation when MO < a3. Consider a population with gene

frequencies (p, q) = (0.9, 0.1) or (01, 0.9). For this population,
a2 = 0.82, a3 = 0.73, a4 = 0.6562, and MO = 2a2- a4 = 0.6886
< a3. Suppose F = 0.05. Then,

MF = (0.95)2M( + 2(0.05)(0.95)a3 + (0.05)2a2 = 0.6929,

which is greater than Mo = 0.6886. In this situation, Mo is no
longer conservative (Fig. 1C). On the other hand, if the gene

frequencies are (p, q) = (0.7, 0.3) or (0.3, 0.7), then Mo is
greater than MF for small values of F and is, therefore,
conservative (Fig. IA).

Second, consider the case where there are k alleles of equal
frequencies (pi = 1 /k). Then a2 = 1 /k, a3 = 1 /k2, a4 = 1 /k3,
and MO = 2(1 /k2) - 1 /k3 = 1 /k2 + 1 /k2 - 1 /k3 > a3 = 1 /k2.
Thus, for equally frequent alleles, we always have MO > a3 and
sO M( > MF and it is conservative to use MO. In fact, this is also
true when the allele frequencies are only approximately equal.
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FIG. 1. Graphs of MF = (1 -F)2MO + 2F(1 - F)a3 + F2a2 as a

quadratic function of F, where a2, a3, and MO are constants for any

given locus. (A) The minimum value of MF occurs at a positive value
F. In this case, there is a region of low F values where Mo is greater than
MF. This is the case with the majority of variable number of tandem
repeat (VNTR) loci employed for forensic tests. (B) The minimum
value of MF occurs at F = 0. In this case, MF = MO at F = 0. For all
other values of F, MF is greater than M(. (C) The minimum value of
MF occurs at a negative value of F. In this case, all MF values for
positive F are greater than MO.

To visualize the case where there are three alleles with
frequencies p, q, and r (p + q + r = 1), we computed those
points for which M() - a3 was less than zero at a fine grid of
points in the (p, q, r) space. The results are displayed in Fig.
2 as a three-dimensional graph, where the equilateral triangle
indicates the plane where p + q + r = 1. Note that the points
for which Mo < MF occur in the corners of the triangle, where
one of the three allele frequencies is larger than the other two,
which have small frequencies.
We now explore mathematically how prevalent the most

common allele must be for Mo to cease to be conservative.
Define:

k k

Ik =M 0-a3 = Ep4+4 E p - EP3, [1]
i=l 1s-i<j-k i=1

where pi is the frequency of the ith allele in a k-allele system,
subject to

k

E pi = 1, pi 0 for all i. [2]
i=1

Mo = 0.425

Fmjn=0.206

,

Mo = 0.500

Fmin= 0.000

Mo= 0.689

Fmin =
-0.852

. . .4

i
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FIG. 2. Graph of the points for which Mo < MF in (p, q, r) space.
The equilateral triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1)
indicates the plane for whichp + q + r = 1. Note that the points where
Mo is not conservative (i.e., Mo < MF) occur in the corners of the
triangle, where one allele frequency is larger than the other two
frequencies. At all other points in the interior of the triangle, it is
conservative to use Mo instead of MF.

The problem is to find the region(s) in which T c 0-i.e.,
where it is not conservative to use M0 instead of MF. Suppose
without loss of generality that allele 1 is at least as frequent as any other
in the population. Let Qlk be the singly-connected domain (i.e., a region
without "holes"), centered on pi = 1 in which Tk S 0.

Minimum Bound

CLAIM. There exists a value Pc (greater than 2) such that allpoints
with p1 > PC lie in fk for any k > 1.
We provide a proof by induction on k. We have shown

earlier that P2 < 0 if p1 is greater than the value 0.788675.
Lower bound on Pc: Suppose Tk < 0 for any arrangement of

frequencies such thatpi > PA, and consider two arrangements

Xn = (PI ...*Pn- IPn) Xn+1 = (Pi1...*Pn-jq a, b),

wherepn = a + b. We claim thatX, E fl, Xn+i E Qn+l
Write S = E p2 and consider:

i<n
'n(Xn) -n+l(Xn+l)

= p4 + 4p2S - p3 - a4 - b4 - 4a2S - 4b2S - 4a2b2 + a3 + b3

= 4a3b + 2a2b2 + 4ab3 + 8abS - 3a2b - 3ab2

= ab(4a2 + 2ab + 4b2+ 8S - 3a - 3b). [3]

The last term of Eq. 3 can be shown to be positive using the
inequalities

1 1 3
pi>- 8S>2, a+b<-#3a+3b<2. [4]

Hence Tn(Xn) > kn+1(Xn+1) as required. Thus PC must exist
and PC 2 PA.

Upper bound on Pc: Consider the arrangement

Xk(e)= (PA-s, 1 -PA + £, 0, . . .,0).

Obviously, Tk(e)=T2(s), and, using our results for k = 2, we
have Tk(S) > 0 for small £ > 0, so that PA-E > PC. Since £ can
be made arbitrarily small this implies PC ' PA-
Combining the upper and lower bounds gives Pc = PA =

0.788675 for all k.

Maximum Bound

CLAIM. For k . 6, the smallest value of pi for which both Tk =
0 and pi > pi for all i * 1 occurs when the other alleles are
equifrequent.

Consider two arrangements:

X= (pl ...Pk-2,a,b), Y=(p1,... ,Pk-2,C,C), [5]

where a + b = 2c > 0 andpi >pi for all i * 1. We claim that
Pk(X) 2 Tk(Y) if PI > 0.4191. If this is true, then given any
arrangement X of frequencies, we can form a series of ar-
rangements {X1, X2, . . .} in which at each stage two of the
frequencies (other than pi) have been replaced by their
combined average, and 'Ik(Xi) 2 Pk(Xi+1). This series con-
verges to the arrangement

Z=(p1,q,q,...,q), p1+(k-1)q=1. [6]

Hence Tk(Z) < Tk(X), and there must be some critical value Pm
(ofpi) such that Tk(Z(Pm)) = 0 and Tk(X(Pm)) > 0 for any set
of non-equifrequent minor alleles.
We prove this by writing a = c + s, b = c - a and expanding

Pk(X) - 'Ik(Y) = a4 + b4 + 4a2S + 4b2S + 4a2b2 - a3 - b3

-2c4-8c2S-4c4 + 2c3

= 4c2s2 + 8s2S + 6s4- 6c82

= 2s2(4S + 32 + 2c2 - 3c)

where S = lkj-42p?. Now
4S + 2c2 - 3c 2 4p2 + 2C2 - 3c

[7]

.p+2 -P1)2 - ( P1)4P (
+ 2 3

9 21
= + -2p - 1,

since 2c2 - 3c is strictly decreasing on [0, 3/4] and c s (1 -pl)!2
3/4. Note that

2 + P1 - 1 > 0 ifP 1
> 18 = 0.4191.2p1+2p11Oip> 18

Thus, Tk(X) - Tk(Y) is positive provided pi > 0.4191.
Note that the restriction that the number of alleles k ' 6 is

a result of the requirement that p, > 0.4191. For k > 6, the
critical value ofp, such that Tk(pl, q, q,. . ., q) = 0 occurs when
pi < 0.4191 (see Eq. 9 below). Thus, while this value ofp, may
occur when the other alleles are equifrequent, our proof above
does not guarantee this when k > 6. For example, if k = 7, then
the critical value of pi is 0.40342. If we let X = (0.40342,
0.00001, 0.00001, 0.00001, 0.00001, 0.40300, 0.19354), so a =
0.40300 and b = 0.19354, then Y = (0.40342, 0.00001, 0.00001,
0.00001, 0.00001, 0.29827, 0.29827) with c = 0.29827. Then
T7(X) - T7(Y) = 0.07036 - 0.07108 = -0.00072.

Numerical Bounds

We have thus established two values, PC and Pm (the latter
dependent on the dimension) such that

0.788675 = Pc <Pi . 1 c> '1k < 0 (Mo not conservative)

Pm <P1 < Pc = 0.788675 > indeterminate

Pi < Pm > Pk > 0 (Mo conservative). [8]

Genetics: Weeks et al.
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Table 1. Results based on 10,000,000 random probability vectors: Vector with smallest p1 for
which T < 0, and percentage of vectors that are nonconservative (i.e., T < 0)

Number of %
alleles Vector with minimum pi: Seven largest allele frequencies nonconservative

3 0.65556, 0.17258, 0.17186 26.3614
4 0.56374, 0.14778, 0.14474, 0.14373 19.3008
5 0.49692, 0.13400, 0.13213, 0.11855, 0.11839 15.3437
6 0.44572, 0.11679, 0.11196, 0.11127, 0.10774, 0.10653 12.8361
7 0.40548, 0.11436, 0.11205, 0.09733, 0.09246, 0.09041, 0.08791 11.1186
8 0.37211, 0.10346, 0.10069, 0.09225, 0.08596, 0.08396, 0.08345 9.8448
9 0.34763, 0.09622, 0.08916, 0.08552, 0.08096, 0.07791, 0.07647 8.9049

The value of Pm for various dimensions may be computed by
finding the smallest positive root of the polynomial

Mo- a3 = p4 + 4(k - 1)p2q2

+ (k - 1)(2k - 3)q4 -p3 - (k -l)q3, [9]

where p + (k - 1)q = 1, giving the results:

k Pm
2 0.78867
3 0.65554
4 0.56364
5 0.49618
6 0.44444

If the number of alleles is greater than 6, our proof no longer
guarantees that the smallest value of pi for which both Tk =

0 and pi.> pi for all i * 1 occurs when the other alleles are

equifrequent. However, we have investigated this by creating
10,000,000 random probability vectors and recording the one

with the smallest value ofpi satisfying these criteria (Table 1).
As expected, these values (for k = 3 to 6) were very close to
the values of Pm displayed above. Table 1 also presents the
percentage of vectors that were nonconservative: this percent-
age starts out at 26% for three alleles and decreases to 8.9%
for 9 alleles. However, these percentages may not be accurate,
as the relative proportion of the parameter space actually
sampled by this Monte Carlo approach decreases rapidly as the
number of alleles increases. To check this, we carried out
numerical integration for k = 3 and 4, obtaining 26.358% and
19.290%, respectively. These match fairly well the results
(26.3614, 19.3008) obtained by simulation (Table 1).

Empirical Data

Devlin and Risch (7) estimated allele frequency distributions
for two VNTR loci, Dl 7S79 and D2S44, for African American,

Caucasian, and Hispanic samples from Federal Bureau of
Investigation (FBI) and Lifecodes data bases. On the basis of
their allele frequency distributions, we have computed T and
found it to be positive at both of these loci for each of the data
sets (Table 2), indicating that for these data, Mo is conserva-

tive. Table 2 also displays the frequencies of the five most
common alleles.
Hammond et al. (8) evaluated several short tandem repeat

(STR) loci for forensic use. They present the allele frequencies
for 8 STR loci with 5-10 alleles in four populations (Caucasian,
Black, Mexican American, and Asian). While most of these
systems have at least one common allele (e.g., 81% have an

allele with frequency greater than 0.30), all but one of them
have a positive T. The exception is a 6-allele system (HUM-
LIPOL) in Asians, where the most common allele has a

frequency of 0.675 (see population III of Table 3).

Discussion

Since the match probability (MF) for a heterogeneous popu-
lation is a quadratic function of F, we have to locate the
minimum point ofMF in order to plot the graph ofMplWe have
found previously that MF assumes its minimum value at the F
value given by Fmin = (MO- a3)/(Mo + a2 -2a3). If Fmin is
positive (i.e., MO > a3), the graph ofMF (Fig. 1A) shows Mo >
MF for low values of F, and we may use MO instead ofMF to be
conservative (favorable to the defendant).
Now, the question naturally arises: What would be the

situation if MO < a3 and Fmin is negative? This report is
essentially dealing with this problem. The situation is shown in
Fig. 1C. In this case, it is seen in the positive half of F values
that MF is greater than MO so that Mo exaggerates the rarity of
the match event and is no longer conservative. A locus which
is not conservative is a poor choice for forensic inference.
However, the knowledge described in the paragraph above

does not tell us what to do in practical applications. What we

need to know are the conditions of the allele frequency
distribution that make Mo > a3 (conservative) or Mo < a3 (not

Table 2. Observed 'Is and five most common alleles for data from Devlin and Risch (7)

Data set k N Five most common alleles

D1 7S79
African Americans, FBI 62 0.00092 0.102, 0.076, 0.075, 0.072, 0.064
Caucasians, FBI 49 0.00283 0.204, 0.161, 0.123, 0.102, 0.044
Southeast Hispanics, FBI 43 0.00279 0.170, 0.153, 0.102, 0.083, 0.079
Southwest Hispanics, FBI 38 0.00111 0.207, 0.140, 0.102, 0.067, 0.058
African Americans, Lifecodes 73 0.00117 0.089, 0.084, 0.079, 0.072, 0.068
Caucasians, Lifecodes 68 0.00280 0.212, 0.144, 0.132, 0.114, 0.064

D2S44
African Americans, FBI 149 0.00015 0.035, 0.029, 0.027, 0.027, 0.026
Caucasians, FBI 145 0.00013 0.047, 0.030, 0.030, 0.029, 0.029
Southeast Hispanics, FBI 117 0.00017 0.048, 0.040, 0.039, 0.031, 0.029
Southwest Hispanics, FBI 119 0.00018 0.051, 0.050, 0.048, 0.036, 0.034
African Americans, Lifecodes 253 0.00004 0.028, 0.017, 0.017, 0.017, 0.015
Caucasians, Lifecodes 246 0.00005 0.040, 0.024, 0.023, 0.022, 0.019

k is the number of alleles with nonzero frequencies.

12034 Genetics: Weeks et al.
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Table 3. Examples of allele frequency distributions and the values of a3 and Mo
Population Allele frequencies pi a3 Mo Mo conservative

I 0.60, 0.20, 0.10, 0.10 0.2260 > 0.2214 No
II 0.60, 0.22, 0.10, 0.08 0.2282 < 0.2288 Yes
III* 0.675, 0.130, 0.130, 0.045, 0.013, 0.007 0.3120 > 0.2753 No
IVt 0.396, 0.370, 0.179, 0.028, 0.019, 0.008 0.1185 < 0.1695 Yes

*Example III is based on the HUMLIPOL data for Asians from ref. 8.
tExample IV is based on the HUMCD4 data for Mexican Americans from ref. 8.

conservative). We have explored this above and established
that if the frequency of the most common allele,p1, is greater
than PC = 0.788675, thenMo is not conservative for any number
of alleles. In addition, we provide a bound, Pm, for which Mo
is conservative ifpI < Pm; the specific value ofPm depends on
the number of alleles. Ifp1 lies between Pm and Pc, thenMo may
or may not be conservative. Populations I and II (Table 3) fall
into this region of ambiguity, since, for four alleles, we would
needpI < Pm = 0.56364 to be assured that MO is conservative.
We had hypothesized that Mo is not conservative whenever
there is a single allele whose frequency is much larger than all
the others. However, while both populations I and II have an
allele that is "much more" frequent than the other alleles, Mo
is not conservative in population I, but is conservative in
population II (Table 3). Thus, in regions of ambiguity, it may
be necessary to explicitly determine whether or not Mo is
conservative; this involves simple numerical computation of
Mo and a3 based on the allele frequencies. However, while the
exact boundaries of the nonconservative region may be im-
precisely known, the points where MO is not conservative occur
in the corners (Fig. 2), where the most frequent allele is very
common, while the points where Mo is conservative occur
internally (the point where pi = 1/k is always conservative).
Populations III and IV (Table 3), which have six alleles,
therefore behave as expected, since population III lies in a
corner with p1 = 0.675, while in population IV the two most
frequent alleles have similar frequencies (0.396 and 0.370).
While we are on the subject of allele frequency distribution,

we take the risk of being blamed for belaboring a point which
should have been obvious from the beginning. Let us consider
a VNTR locus with five alleles but with different distributions
(ordered by allele size) in two populations as shown in the
following:

Alleles: A1 A2 A3 A4 A5
Population B: 0.1 0.2 0.4 0.2 0.1
Population J: 0.2 0.2 0.1 0.1 0.4

In the B population (say, Brazil) the distribution is bell-shaped
(symmetrical). In the J population (say, Japan) the distribution
is J-shaped. The two distributions are thus drastically different.
However, they have the same values of a2 = 0.260, a3 = 0.082,
a4 = 0.029, and MO = 0.1062. Thus, MO is greater than a3 (Fmin
is positive) so that MO is greater than MF and is thus conser-
vative. The highest frequency, 0.40, falls below the boundary
Pm = 0.49618. The allele frequency distribution with respect to
size is not important. It is the raw moments of the allele
frequencies (a2, a3, a4) that determine the forensic properties
of the test locus. A permutation of a set of allele frequencies
does not affect its forensic properties. Thus, the allele fre-
quencies may be arranged in descending order from the highest
frequency to the lowest (we may call this type of distribution
"stair-shaped"). Arranged this way, populations B and J would
have the same distribution (0.4, 0.2, 0.2, 0.1, 0.1), revealing that
they have the same properties for forensic inference. Thus, as
far as forensic applications are concerned, these two frequency

distributions (B and J) should be considered identical rather
than drastically different.
VNTR loci have been used for a large number of forensic

tests, but now there is a shift towards using STR loci. For
VNTR loci, the allele frequency distribution tends to be
uniform without an allele that is much more frequent than the
others, and so Mo is usually conservative. This conclusion is
supported by the fact that VNTR loci have extremely large
numbers of alleles: as the number of alleles increases, the
percentage of time a random allele frequency vector falls in a
nonconservative region decreases (Table 1). In contrast, STR
loci have limited numbers of alleles and are much more likely
to have a very frequent most common allele; however, Mo is
still usually conservative (at least on the basis of our limited
survey of empirical data from ref. 8).

Lewontin (quoted on p. 261 of ref. 9) suggests that the DNA
profiling be replaced by idiotyping. Idiotyping is a method
based on differences in actual DNA sequences among the
repeats in the VNTR loci, so that each person can be recog-
nized by a unique sequence. Then, as for dermal fingerprint-
ing, there would be no need to calculate the probabilities of
matching or likelihood ratios. Lewontin (10) says it is a real
"DNA fingerprinting" ("DNAprinting" would be a better
term). Such methods are now under development. Note,
however, that the hypothesis that every person can be identi-
fied by a unique sequence requires support from an extremely
large data base, and it is violated by siblings. There will be a
day when both Lewontin and forensic scientists are happy, but
we cannot rush history. Pending DNAprinting (based on
sequences rather than fragment size), usuallywe may disregard
the heterogeneity of human populations and use Mo as a
conservative probability of a match.
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